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Autonomous cyber-physical agents play an increasingly large role in our lives. To ensure that they
behave in ways aligned with the values of society, we must develop techniques that allow these agents
to not only maximize their reward in an environment, but also to learn and follow the implicit
constraints of society. We detail a novel approach that uses inverse reinforcement learning to learn a
set of unspecified constraints from demonstrations and reinforcement learning to learn to maximize
environmental rewards. A contextual bandit-based orchestrator then picks between the two policies:
constraint-based and environment reward-based. The contextual bandit orchestrator allows the agent
to mix policies in novel ways, taking the best actions from either a reward-maximizing or constrained
policy. In addition, the orchestrator is transparent on which policy is being employed at each time
step. We test our algorithms using Pac-Man and show that the agent is able to learn to act optimally,
act within the demonstrated constraints, and mix these two functions in complex ways.

Introduction
Concerns about the ways in which autonomous decision
making systems behave when deployed in the real world are
growing. Stakeholders worry about systems achieving goals
in ways that are not considered acceptable according to
values and norms of the impacted community, also called
“specification gaming” behaviors [23]. Thus, there is a
growing need to understand how to constrain the actions of
an AI system by providing boundaries within which the
system must operate. To tackle this problem, we may take
inspiration from humans, who often constrain the decisions
and actions they take according to a number of exogenous
priorities, be they moral, ethical, religious, or business
values [17, 18, 25], and we may want the systems we build
to be restricted in their actions by similar principles [6]. The
overriding concern is that the agents we construct may not
obey these values while maximizing some objective function
[23, 26].

The idea of teaching machines right from wrong has
become an important research topic in both AI [34] and
related fields [32]. Much of the research at the intersection
of artificial intelligence and ethics falls under the heading of
machine ethics, i.e., adding ethics and/or constraints to a
particular system’s decision making process [5]. One popular
technique to handle these issues is called value alignment,
i.e., restrict the behavior of an agent so that it can only
pursue goals which follow values that are aligned to human
values [17, 18, 24].

Another important notion for these autonomous decision
making systems is the idea of transparency or
interpretability, i.e., being able to see why the system made
the choices it did. Theodorou et al. [29] observe that the
Engineering and Physical Science Research Council
(EPSRC) Principles of Robotics dictates the implementation
of transparency in robotic systems. The authors go on to
define transparency in a robotic or autonomous decision
making system as “a mechanism to expose the decision

making of the robot”.

While giving a machine a code of morals or ethics is
important, there is still the question of how to provide the
behavioral constraints to the agent. A popular technique is
called the bottom-up approach, i.e., teaching a machine what
is right and wrong by example [3, 7, 8]. In this paper, we
adopt this approach as we consider the case where only
examples of the correct behavior are available to the agent,
and it must therefore learn from only these examples.

We propose a framework which enables an agent to learn
two policies: (1) πR, a reward maximizing policy obtained
through direct interaction with the world, and (2) πC ,
obtained via inverse reinforcement learning over
demonstrations by humans or other agents of how to obey a
set of behavioral constraints in the domain. Our agent then
uses a contextual-bandit-based orchestrator [11, 12] to learn
to blend the policies in a way that maximizes a convex
combination of the rewards and constraints. Within the RL
community this can be seen as a particular type of
apprenticeship learning [1] where the agent is learning how
to be safe, rather than only maximizing reward [15].

One may argue that we should employ πC for all
decisions as it will be more ‘safe’ than employing πR.
Indeed, although one could use πC exclusively for the agent,
there are a number of reasons to employ the orchestrator.
First, while the humans or other demonstrators may be good
at demonstrating the constrained behavior, they may not
provide good examples of how best to maximize reward.
Second, the demonstrators may not be as creative as the
agent when mixing the two policies [30]. By allowing the
orchestrator to learn when to apply which policy, the agent
may be able to devise better ways to blend the policies,
leading to behavior which both follows the constraints and
achieves higher reward than any of the human
demonstrations. Third, we may not want to obtain
demonstrations of what to do in all parts of the domain e.g.,
there may be dangerous or hard-to-model regions, or there
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may be mundane parts of the domain in which human
demonstrations are too costly or boring to obtain. In this
case, having the agent learn what to do in the
non-demonstrated parts through RL is complementary.
Finally, as we have argued, interpretability is an important
feature to have. Although the policies themselves may not be
directly interpretable (though there is recent work in this
area [16, 31]), our proposed explicit orchestrator captures
the notion of transparency and interpretability as we can see
which policy is being applied in real time.

Contributions. We propose and test a novel approach to
teach machines to act in ways that achieve and compromise
multiple objectives in a given environment. One objective is
the desired goal and the other one is a set of behavioral
constraints, learnt from examples. Our technique uses
aspects of both traditional reinforcement learning and inverse
reinforcement learning to identify policies that both
maximize rewards and follow particular constraints within an
environment. Our agent then blends these policies in novel
and interpretable ways using an orchestrator based on the
contextual bandits framework. We demonstrate the
effectiveness of these techniques on the Pac-Man domain
where the agent is able to learn both a reward-maximizing
and a constrained policy, and select between these policies
in a transparent way based on context, to employ a policy
that achieves high reward and obeys the demonstrated
constraints.

Related Work
Ensuring that autonomous systems act in line with our values
while achieving their objectives is a major research topic in
AI. These topics have gained popularity among a broad
community including philosophers [32] and non-profits [24].
Yu et al. [34] provide an overview of much of the recent
research at major AI conferences on ethics in AI.

Agents may need to balance objectives and feedback from
multiple sources when making decisions. One prominent
example is the case of autonomous cars. There is extensive
research from multidisciplinary groups into the questions of
when autonomous cars should make lethal decisions [10],
how to aggregate societal preferences to make these
decisions [22], and how to measure distances between these
notions [17, 18]. In a recommender systems setting, a parent
or guardian may want the agent to not recommend certain
types of movies to children, even if this recommendation
could lead to a high reward [7, 8]. Recently, as a compliment
to their concrete problems in AI saftey which includes
reward hacking and unintended side effects [4], a DeepMind
study has compiled a list of specification gaming examples,
where very different agents game the given specification by
behaving in unexpected (and undesired) ways.1

Within the field of reinforcement learning there has been
specific work on ethical and interpretable RL. Wu and Lin
[33] detail a system that is able to augment an existing RL

138 AI “specification gaming” exam-
ples are available at: https://docs.google.com/spreadsheets/d/e/

2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml

system to behave ethically. In their framework, the
assumption is that, given a set of examples, most of the
examples follow ethical guidelines. The system updates the
overall policy to obey the ethical guidelines learned from
demonstrations using IRL. However, in this system only one
policy is maintained so it has no transparency. Laroche and
Feraud [14] introduce a system that is capable of selecting
among a set of RL policies depending on context. They
demonstrate an orchestrator that, given a set of policies for a
particular domain, is able to assign a policy to control the
next episode. However, this approach use the classical
multi-armed bandit, so the state context is not considered.

Interpretable RL has received significant attention in
recent years. Luss and Petrik [19] introduce action
constraints over states to enhance the interpretability of
policies. Verma et al. [31] present a reinforcement learning
framework, called Programmatically Interpretable
Reinforcement Learning (PIRL), that is designed to generate
interpretable and verifiable agent policies. PIRL represents
policies using a high-level, domain-specific programming
language. Such programmatic policies have the benefit of
being more easily interpreted than neural networks, and
being amenable to verification by symbolic methods.
Additionally, Liu et al. [16] introduce Linear Model U-trees
to approximate neural network predictions. An LMUT is
learned using a novel on-line algorithm that is well-suited
for an active play setting, where the mimic learner observes
an ongoing interaction between the neural net and the
environment. The transparent tree structure of an LMUT
facilitates understanding the learned knowledge by analyzing
feature influence, extracting rules, and highlighting the
super-pixels in image inputs.

Background
Reinforcement Learning
Reinforcement learning defines a class of algorithms solving
problems modeled as a Markov decision process (MDP)
[28]. An MDP is usually denoted by the tuple
(S,A, T ,R, γ), where: S is a set of possible states; A is a
set of actions; T is a transition function defined by
T (s, a, s′) = Pr(s′|s, a), where s, s′ ∈ S and a ∈ A;
R : S ×A× S 7→ R is a reward function; γ is a discount
factor that specifies how much long term reward is kept. The
goal in an MDP is to maximize the discounted long term
reward received. Usually the infinite-horizon objective is
considered: max

∑∞
t=0 γ

tR(st, at, st+1).

Solutions come in the form of policies π : S 7→ A, which
specify what action the agent should take in any given state
deterministically or stochastically. One way to solve this
problem is through Q-learning with function
approximation [9]. The Q-value of a state-action pair,
Q(s, a), is the expected future discounted reward for taking
action a ∈ A in state s ∈ S. A common method to handle
very large state spaces is to approximate the Q function as a
linear function of some features. Let ψ(s, a) denote relevant
features of the state-action pair 〈s, a〉. Then, we assume
Q(s, a) = θ ·ψ(s, a), where θ is an unknown vector to be
learned by interacting with the environment. Every time the

https://docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml
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RL agent takes action a from state s, obtains immediate
reward r, and reaches new state s′, the parameter θ is
updated using

difference =
[
r + γmax

a′
Q(s′, a′)

]
−Q(s, a)

θi ← θi + α · difference · ψi(s, a),
(1)

where α is the learning rate. A common strategy used for
exploration is ε-greedy: during the training phase, a random
action is played with a probability of ε and the action with
maximum Q-value is played otherwise. The agent follows
this strategy and updates the parameter θ according to (1)
until either the Q-values converge or a maximum number of
time-steps is met.

Inverse Reinforcement Learning
IRL seeks to find the most likely reward function RE ,
which an expert E is executing [1, 20]. IRL methods assume
the presence of an expert that solves an MDP, where the
MDP is fully known and observable by the learner except
for the reward function. Since the state and action of the
expert is fully observable by the learner, it has access to
trajectories executed by the expert. A trajectory consists of a
sequence of state and action pairs,
Tr = (s0, a0, s1, a1, . . . , sL−1, aL−1, sL), where st is the
state of the environment at time t, at is the action played by
the expert at the corresponding time and L is the length of
this trajectory. The learner is given access to m such
trajectories {Tr(1), T r(2), . . . , T r(m)} to learn the reward
function. Since the space of all possible reward functions is
extremely large, it is common to represent the reward
function as a linear combination of ` > 0 features.
R̂w(s, a, s′) =

∑`
i=1 wiφi(s, a, s

′), where wi are weights to
be learned, and φi(s, a, s′)→ R is a feature function that
maps a state-action-state tuple to a real value, denoting the
value of a specific feature of this tuple. Current
state-of-the-art IRL algorithms utilize feature expectations as
a way of evaluating the quality of the learned reward
function [27]. For a policy π, the feature expectations
starting from state so are defined as

µ(π) = E

[ ∞∑
t=0

γtφ(st, at, st+1)
∣∣∣π] ,

where the expectation is taken with respect to the state
sequence achieved on taking actions according to π starting
from s0. One can compute an empirical estimate of the
feature expectations of the expert’s policy with the help of
the trajectories {Tr(1), T r(2), . . . , T r(m)}, using

µ̂E =
1

m

m∑
i=1

L−1∑
t=0

γtφ
(
s
(i)
t , a

(i)
t , s

(i)
t+1

)
. (2)

Given a weight vector w, one can compute the optimal
policy πw for the corresponding reward function R̂w, and
estimate its feature expectations µ̂(πw) in a way similar to
(2). IRL compares this µ̂(πw) with expert’s feature
expectations µ̂E to learn best fitting weight vectors w.

Contextual Bandits
Following Langford and Zhang [13], the contextual bandit
problem is defined as follows. At each time
t ∈ {0, 1, . . . , (T − 1)}, the player is presented with a
context vector c(t) ∈ Rd and must choose an arm
k ∈ [K] = {1, 2, . . . ,K}. Let r = (r1(t), . . . , rK(t)) denote
a reward vector, where rk(t) is the reward at time t
associated with the arm k ∈ [K]. We assume that the
expected reward is a linear function of the context, i.e.
E[rk(t)|c(t)] = µTk c(t), where µk is an unknown weight
vector (to be learned from the data) associated with the arm
k.

The purpose of a contextual bandit algorithm A is to
minimize the cumulative regret. Let H : C → [K] where C
is the set of possible contexts and c(t) is the context at time
t, ht ∈ H a hypothesis computed by the algorithm A at time
t and h∗t = argmax

ht∈H
rht(c(t))(t) the optimal hypothesis at the

same round. The cumulative regret is:
R(T ) =

∑T
t=1 rh∗t (c(t))(t)− rht(c(t))(t).

One widely used way to solve the contextual bandit
problem is the Contextual Thompson Sampling algorithm
(CTS) [2] given as Algorithm 1. In CTS, the reward rk(t)

Algorithm 1 Contextual Thompson Sampling Algorithm
1: Initialize: Bk = Id, µ̂k = 0d, fk = 0d for k ∈ [K].
2: Foreach t = 0, 1, 2, . . . , (T − 1) do
3: Sample µ̃k(t) from N(µ̂k, v

2B−1k ).
4: Play arm kt = argmax

k∈[K]

c(t)>µ̃k(t)

5: Observe rkt(t)
6: Bkt = Bkt + c(t)c(t)T , fkt = fkt + c(t)rkt(t),

µ̂kt = B−1kt fkt
7: End

for choosing arm k at time t follows a parametric likelihood
function Pr(r(t)|µ̃). Following Agrawal and Goyal [2], the
posterior distribution at time t+ 1,
Pr(µ̃|r(t)) ∝ Pr(r(t)|µ̃)Pr(µ̃) is given by a multivariate
Gaussian distribution N (µ̂k(t+ 1), v2Bk(t+ 1)−1), where
Bk(t) = Id +

∑t−1
τ=1 c(τ)c(τ)>, d is the size of the context

vectors c, v = R
√

24
z d · ln( 1

γ ) and we have R > 0,
z ∈ [0, 1], γ ∈ [0, 1] constants, and
µ̂(t) = Bk(t)−1(

∑t−1
τ=1 c(τ)rk(τ)).

Every step t consists of generating a d-dimensional
sample µ̃k(t) from N (µ̂k(t), v2Bk(t)−1) for each arm. We
then decide which arm k to pull by solving for
argmaxk∈[K] c(t)

>µ̃k(t). This means that at each time step
we are selecting the arm that we expect to maximize the
observed reward given a sample of our current beliefs over
the distribution of rewards, c(t)>µ̃k(t). We then observe the
actual reward of pulling arm k, rk(t) and update our beliefs.

Problem Setting
In our setting, the agent is in multi-objective Markov
decision processes (MOMDPs). Instead of the usual scalar
reward function R(s, a, s′), a reward vector ~R(s, a, s′) is
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present. The vector ~R(s, a, s′) consists of l dimensions or
components representing the different objectives, i.e.,
~R(s, a, s′) = (R1(s, a, s′), . . . , Rl(s, a, s

′)). However, not all
components of the reward vector are observed in our setting.
There is an objective v ∈ [l] that is hidden, and the agent is
only allowed to observe expert demonstrations to learn this
objective. These demonstrations are given in the form of
trajectories {Tr(1), T r(2), . . . , T r(m)}. To summarize, for
some objectives, the agent has rewards observed from
interaction with the environment, and for some objectives
the agent has only expert demonstrations. The aim is still the
same as single objective reinforcement learning, which is
trying to maximize

∑∞
t=0 γ

tRi(st, at, st+1) for each i ∈ [l].

Proposed Approach
The overall approach we propose, aggregation at the policy
phase, is depicted by Figure 1.2 It has three main
components. The first is the IRL component to learn the
desired constraints (depicted in green in Figure 1). We apply
IRL to the demonstrations depicting desirable behavior, to
learn the underlying constraint rewards being optimized by
the demonstrations. We then apply RL on these learned
rewards to learn a strongly constraint-satisfying policy πC .
Next, we augment this with a pure reinforcement learning
component (depicted in red in Figure 1). For this, we directly
apply reinforcement learning to the original environment
rewards to learn a domain reward maximizing policy πR.

Now we have two policies: the constraint-obeying policy
πC and the reward-maximizing policy πR. To combine these
two, we use the third component, the orchestrator (depicted
in blue in Figure 1). This is a contextual bandit algorithm
that orchestrates the two policies, picking one of them to
play at each point of time. The context is the state of the
environment; the bandit decides which arm (policy) to play
at each step. We use a modified CTS algorithm to train the
bandit. The context of the bandit is given by features of the
current state (for which we want to decide which policy to
choose), i.e., c(t) = Υ(st) ∈ Rd.

The exact algorithm used to train the orchestrator is given
in Algorithm 2. Apart from the fact that arms are policies
(instead of atomic actions), the main difference from the
CTS algorithm is the way rewards are fed into the bandit.
For simplicity, we call the constraint policy πC as arm 0 and
the reward policy πR as arm 1. We now go over
Algorithm 2. First, all the parameters are initialized as in the
CTS algorithm (Line 1). For each time-step in the training
phase (Line 3), we do the following. Pick an arm kt
according to the Thompson Sampling algorithm and the
context Υ(st) (Lines 4 and 5). Play the action according to
the chosen policy πkt (Line 6). This takes us to the next state
st+1. We also observe two rewards (Line 7): (i) the original
reward in environment, rRat(t) = R(st, at, st+1) and (ii) the
constraint rewards according to the rewards learnt by inverse
reinforcement learning, i.e., rCat(t) = R̂C(st, at, st+1). rCat(t)
can intuitively be seen as the predicted reward (or penalty)

2Alternative formulations of aggregation at the reward phase and aggrega-
tion at the data phase are discussed in the appendix.

for any constraint satisfaction (or violation) in this step.

Algorithm 2 Orchestrator Based Algorithm
1: Initialize: Bk = Id, µ̂k = 0d, fk = 0d for k ∈ {0, 1}.
2: Observe start state s0.
3: Foreach t = 0, 1, 2, ..., (T − 1) do
4: Sample µ̃k(t) from N(µ̂k, v

2B−1k ).
5: Pick arm kt = arg max

k∈{0,1}
Υ(st)

>µ̃k(t).

6: Play corresponding action at = πkt(st).
7: Observe rewards rCat(t) and rRat(t), and the next state
st+1.

8: Define rkt(t) = λ
(
rCat(t) + γV C(st+1)

)
+(1− λ)

(
rRat(t) + γV R(st+1)

)
9: Update Bkt = Bkt + Υ(st)Υ(st)

>, fkt = fkt +
Υ(st)rkt(t), µ̂kt = B−1kt fkt

10: End

To train the contextual bandit to choose arms that perform
well on both metrics (environment rewards and constraints),
we feed it a reward that is a linear combination of rRat(t)
and rCat(t) (Line 8). Another important point to note is that
rRat(t) and rCat(t) are immediate rewards achieved on taking
action at from st, they do not capture long term effects of
this action. In particular, it is important to also look at the
“value” of the next state st+1 reached, since we are in the
sequential decision making setting. Precisely for this reason,
we also incorporate the value-function of the next state st+1

according to both the reward maximizing component and
constraint component (which encapsulate the long-term
rewards and constraint satisfaction possible from st+1). This
gives exactly Line 8, where V C is the value-function
according the constraint policy πC , and V R is the
value-function according to the reward maximizing policy
πR.

In this equation, λ is a hyperparameter chosen by a user
to decide how much to trade off environment rewards for
constraint satisfaction. For example, when λ is set to 0, the
orchestrator would always play the reward policy πR, while
for λ = 1, the orchestrator would always play the constraint
policy πC . For any value of λ in-between, the orchestrator is
expected to pick policies at each point of time that would
perform well on both metrics (weighed according to λ).
Finally, for the desired reward rkt(t) and the context Υ(st),
the parameters of the bandit are updated according to the
CTS algorithm (Line 9).

Alternative Approaches
Observe that in the proposed approach, we combine or
“aggregate” the two objectives at the highest level, i.e., at
the policy stage. Alternative approaches could be to combine
the two objectives at lower levels, i.e., the reward stage or
the demonstrations stage itself.

• Aggregation at reward phase. As before, we can
perform inverse reinforcement learning to learn the
underlying rewards capturing the desired constraints.
Now, instead of learning a policy for each of the two



IBM J. RES. & DEV. R. Noothigattu et al.: Teaching AI Ethical Values Through Policy Orchestration Page | 5

IRL for Constraints

RL for Game Rewards

Orchestrator
Constrained
Demonstration

Rewards Capturing
Constraints R̂C

Constrained
Policy

Environment
Rewards R

Reward Maxi-
mizing Policy

πC

πR

Environment

a(t)

s(t+ 1)

r(t)

Figure 1 Overview of our system. At each time step the Orchestrator selects between two policies, πC and πR depending on the observations
from the Environment. The two policies are learned before engaging with the environment. πC is obtained using IRL on the demonstrations to
learn a reward function that captures demonstrated constraints. The second, πR is obtained by the agent through RL on the environment.

reward functions (environment rewards and constraint
rewards) followed by aggregating them, we could just
combine the reward functions themselves. And then, we
could learn a policy on these “aggregated” rewards that
performs well on both the objectives, environment reward,
and constraints. This process captures the intuitive idea of
“incorporating the constraints into the environment
rewards.” Hence, if we were explicitly given the penalty
of violating constraints this would be ideal. However, note
that this is a top-down approach and in this study we want
to focus on the example driven, or bottoms-up approach.

• Aggregation at data phase. Moving another step
backward, we could aggregate the two objectives of play
at the data phase. This could be performed as follows. We
perform pure reinforcement learning as in the proposed
approach given in Figure 1 (depicted in red). Once we
have our reward maximizing policy πR, we use it to
generate numerous reward-maximizing demonstrations.
Then, we combine these environment reward trajectories
with the original constrained demonstrations, aggregating
the two objectives in the process. And once we have the
combined data, we can perform inverse reinforcement
learning to learn the appropriate rewards, followed by
reinforcement learning to learn the corresponding policy.

Aggregation at the policy phase is the proposed approach
in the main paper, where we go all the way to the end of the
pipeline, learning a policy for each of the objectives
followed by aggregation. A similar parameter to λ there can
be used by the reward aggregation and data aggregation
approaches as well, to decide how to weigh the two
objectives while performing the corresponding aggregation.

The question now is, “which of these aggregation
procedures is the most useful?”. The reason we use
aggregation at the policy stage is to gain interpretability.
Using an orchestrator to pick a policy at each point of time
helps us identify which policy is being played at each point
of time and also the reason for which it is being chosen (in
the case of an interpretable orchestrator, which it is in our
case).

Figure 2 Layout of Pac-Man

Demonstration on Pac-Man
We demonstrate the applicability of the proposed algorithm
using the classic game of Pac-Man.

Details of the Domain
The layout of Pac-Man we use is given in Figure 2. The
rules for the environment (adopted from Berkeley AI
Pac-Man3) are as follows. The goal of the agent is to eat all
the dots in the maze, known as Pac-Dots, as soon as
possible while simultaneously avoiding collision with ghosts.
On eating a Pac-Dot, the agent obtains a reward of +10. On
successfully eating all the Pac-Dots, the agent obtains a
reward of +500. In the meantime, the ghosts roam the maze
trying to kill Pac-Man. On collision with a ghost, Pac-Man
loses the game and gets a reward of −500. The game also
has two special dots called Power Pellets in the corners of
the maze, which on consumption, give Pac-Man the
temporary ability of “eating” ghosts. During this phase, the
ghosts are in a “scared” state for 40 frames and move at half
their speed. On eating a ghost, the agent gets a reward of
+200, the ghost returns to the center box and returns to its
normal “unscared” state. Finally, there is a constant

3 http://ai.berkeley.edu/project overview.html

http://ai.berkeley.edu/project_overview.html
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time-penalty of −1 for every step taken.

For the sake of demonstration of our approach, we define
not eating ghosts as the desirable constraint in the game of
Pac-Man. However, recall that this constraint is not given
explicitly to the agent, but only through examples. To play
optimally in the original game one should eat ghosts to earn
bonus points, but doing so is being demonstrated as
undesirable. Hence, the agent has to combine the goal of
collecting the most points while not eating ghosts.

Details of the Pure RL
For the reinforcement learning component, we use
Q-learning with linear function approximation as described
in Section . Some of the features we use for an 〈s, a〉 pair
(for the ψ(s, a) function) are: “whether food will be eaten”,
“distance of the next closest food”, “whether a scared
(unscared) ghost collision is possible” and “distance of the
closest scared (unscared) ghost”.

For the layout of Pac-Man we use (shown in Figure 2), an
upper bound on the maximum score achievable in the game
is 2170. This is because there are 97 Pac-Dots, each ghost
can be eaten at most twice (because of two capsules in the
layout), Pac-Man can win the game only once and it would
require more than 100 steps in the environment. On playing
a total of 100 games, our reinforcement learning algorithm
(the reward maximizing policy πR) achieves an average
game score of 1675.86, and the maximum score achieved is
2144. We mention this here, so that the results in
Section can be seen in appropriate light.

Details of the IRL
For inverse reinforcement learning, we use the linear IRL
algorithm as described in Section . For Pac-Man, observe
that the original reward function R(s, a, s′) depends only on
the following factors: “number of Pac-Dots eating in this
step (s, a, s′)”, “whether Pac-Man has won in this step”,
“number of ghosts eaten in this step” and “whether Pac-Man
has lost in this step”. For our IRL algorithm, we use exactly
these as the features φ(s, a, s′). As a sanity check, when
IRL is run on environment reward optimal trajectories
(generated from our policy πR), we recover something very
similar to the original reward function R. In particular, the
weights of the reward features learned is given by
1/1000[+2.44,+138.80,+282.49,−949.17], which when
scaled is almost equivalent to the true weights
[+10,+500,+200,−500] in terms of their optimal policies.
The number of trajectories used for this is 100.

Ideally, we would prefer to have the constrained
demonstrations given to us by humans, but for the sake of
simplicity we generate them synthetically as follows. We
learn a policy π?C by training it on the game with the original
reward function R augmented with a very high negative
reward (−1000) for eating ghosts. This causes π?C to play
well in the game while avoiding eating ghosts as much as

possible.4 Now, to emulate erroneous human behavior, we
use π?C with an error probability of 3%. That is, at every
time step, with 3% probability we pick a completely random
action, and otherwise follow π?C . This gives us our
constrained demonstrations, on which we perform inverse
reinforcement learning to learn the rewards capturing the
constraints. The weights of the reward function learned is
given by 1/1000[+2.84,+55.07,−970.59,−234.34], and it is
evident that it has learned that eating ghosts strongly violates
the favorable constraints. The number of demonstrations
used for this is 100. We scale these weights to have a
similar L1 norm as the original reward weights
[+10,+500,+200,−500], and denote the corresponding
reward function by R̂C .

Finally, running reinforcement learning on these rewards
R̂C , gives us our constraint policy πC . On playing a total of
100 games, πC achieves an average game score of 1268.52
and eats just 0.03 ghosts on an average. Note that, when
eating ghosts is prohibited in the domain, an upper bound on
the maximum score achievable is 1370.

Details of the Contextual Bandit
The features of the state we use for context c(t) are: (i) A
constant 1 to represent the bias term, and (ii) The distance
of Pac-Man from the closest scared ghost in st. One could
use a more sophistical context with many more features, but
we use this restricted context to demonstrate a very
interesting behavior (shown in Section ).

Evaluation
We measure performance on two metrics, (i) the total score
achieved in the game (the environment rewards) and (ii) the
number of ghosts eaten (the constraint violation). We also
observe how these metrics vary with λ. For each value of λ,
the orchestrator is trained for 100 games. The results are
shown in Figure 3. Each point in the graph is averaged over
100 test games.

The graph shows a very interesting pattern. When λ is at
most than 0.215, the agent eats a lot of ghosts, but when it
is above 0.22, it eats almost no ghosts. In other words, there
is a value λo which behaves as a tipping point, across which
there is drastic change in behavior. Beyond the threshold, the
agent learns that eating ghosts is not worth the score it is
getting and so it avoids eating as much as possible. On the
other hand, when λ is smaller than λo, it learns the reverse
and eats as many ghosts as possible.

Policy-switching. As mentioned before, one important
property of our approach is interpretability, we know exactly
which policy is being played at each time. For moderate
values of λ > λo, the orchestrator learns a very interesting
policy-switching technique: whenever at least one of the
ghosts in the domain is scared, it plays πC , but if no ghosts
are scared, it plays πR. In other words, it starts the game

4We do this only for generating demonstrations. In real domains, we would
not have access to the exact constraints that we want to be satisfied, and hence
a policy like π?

C cannot be learned; learning from human demonstrations
would then be essential.
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Figure 3 Both performance metrics as λ is varied. The red curve
depicts the average game score achieved, and the blue curve depicts
the average number of ghosts eaten.

playing πR until a capsule is eaten. As soon as the first
capsule is eaten, it switches to πC until the scared timer
runs off. Then it switches back to πR until another capsule
is eaten, and so on. It has learned a very intuitive behavior:
when there is no scared ghost, there is no possibility of
violating constraints. Hence, the agent is as greedy as
possible (i.e., play πR). However, when there are scared
ghosts, it is better to be safe (i.e., play πC).

Discussion and Extensions
In this paper, we have considered the problem of
autonomous agents learning policies that are constrained by
implicitly-specified norms and values while still optimizing
their policies with respect to environmental rewards. We
have taken an approach that combines IRL to determine
constraint-satisfying policies from demonstrations, RL to
determine reward-maximizing policies, and a contextual
bandit to orchestrate between these policies in a transparent
way. This proposed architecture and approach for the
problem is novel. It also requires a novel technical
contribution in the contextual bandit algorithm because the
arms are policies rather than atomic actions, thereby
requiring rewards to account for sequential decision making.
We have demonstrated the algorithm on the Pac-Man video
game and found it to perform interesting switching behavior
among policies.

We feel that the contribution herein is only the starting
point for research in this direction. We have identified
several avenues for future research, especially with regards
to IRL. We can pursue deep IRL to learn constraints without
hand-crafted features, develop an IRL that is robust to noise
in the demonstrations, and research IRL algorithms to learn
from just one or two demonstrations (perhaps in concert
with knowledge and reasoning). In real-world settings,
demonstrations will likely be given by different users with
different versions of abiding behavior; we would like to
exploit the partition of the set of traces by user to improve
the policy or policies learned via IRL. Additionally, the
current orchestrator selects a single policy at each time, but

more sophisticated policy aggregation techniques for
combining or mixing policies is possible. Lastly, it would be
interesting to investigate whether the policy aggregation rule
(λ in the current proposal) can be learned from
demonstrations.

Acknowledgments
This work was conducted under the auspices of the IBM
Science for Social Good initiative. An abbreviated version of
this paper appeared at the 2019 International Joint
Conference on Artificial Intelligence (IJCAI 2019) [21].

References
1. P. Abbeel and A. Y. Ng. Apprenticeship learning via

inverse reinforcement learning. In Proceedings of the
21st International Conference on Machine Learning
(ICML), 2004.

2. Shipra Agrawal and Navin Goyal. Thompson sampling
for contextual bandits with linear payoffs. In ICML (3),
pages 127–135, 2013.

3. C. Allen, I. Smit, and W. Wallach. Artificial morality:
Top-down, bottom-up, and hybrid approaches. Ethics
and Information Technology, 7(3):149–155, 2005.

4. Dario Amodei, Chris Olah, Jacob Steinhardt, Paul
Christiano, John Schulman, and Dan Mané. Concrete
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