
Envy-Free Classification

Maria-Florina Balcan
Machine Learning Department

Carnegie Mellon University
ninamf@cs.cmu.edu

Travis Dick
Computer Science Department

Carnegie Mellon University
tdick@cs.cmu.edu

Ritesh Noothigattu
Machine Learning Department

Carnegie Mellon University
riteshn@cmu.edu

Ariel D. Procaccia
Computer Science Department

Carnegie Mellon University
arielpro@cs.cmu.edu

Abstract

In classic fair division problems such as cake cutting and rent division, envy-
freeness requires that each individual (weakly) prefer his allocation to anyone
else’s. On a conceptual level, we argue that envy-freeness also provides a com-
pelling notion of fairness for classification tasks, especially when individuals have
heterogeneous preferences. Our technical focus is the generalizability of envy-free
classification, i.e., understanding whether a classifier that is envy free on a sample
would be almost envy free with respect to the underlying distribution with high
probability. Our main result establishes that a small sample is sufficient to achieve
such guarantees, when the classifier in question is a mixture of deterministic
classifiers that belong to a family of low Natarajan dimension.

1 Introduction

The study of fairness in machine learning is driven by an abundance of examples where learning
algorithms were perceived as discriminating against protected groups [29, 6]. Addressing this problem
requires a conceptual — perhaps even philosophical — understanding of what fairness means in
this context. In other words, the million dollar question is (arguably1) this: What are the formal
constraints that fairness imposes on learning algorithms?

In this paper, we propose a new measure of algorithmic fairness. It draws on an extensive body of
work on rigorous approaches to fairness, which — modulo one possible exception (see Section 1.2)
— has not been tapped by machine learning researchers: the literature on fair division [3, 20]. The
most prominent notion is that of envy-freeness [10, 31], which, in the context of the allocation of
goods, requires that the utility of each individual for his allocation be at least as high as his utility
for the allocation of any other individual; for six decades, it has been the gold standard of fairness
for problems such as cake cutting [25, 24] and rent division [28, 12]. In the classification setting,
envy-freeness would simply mean that the utility of each individual for his distribution over outcomes
is at least as high as his utility for the distribution over outcomes assigned to any other individual.

It is important to say upfront that envy-freeness is not suitable for several widely-studied problems
where there are only two possible outcomes, one of which is ‘good’ and the other ‘bad’; examples
include predicting whether an individual would default on a loan, and whether an offender would
recidivate. In these degenerate cases, envy-freeness would require that the classifier assign each and
every individual the exact same probability of obtaining the ‘good’ outcome, which, clearly, is not a
reasonable constraint.

1Certain papers take a somewhat different view [17].

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

By contrast, we are interested in situations where there is a diverse set of possible outcomes, and
individuals have diverse preferences for those outcomes. For example, consider a system responsible
for displaying credit card advertisements to individuals. There are many credit cards with different
eligibility requirements, annual rates, and reward programs. An individual’s utility for seeing a
card’s advertisement will depend on his eligibility, his benefit from the rewards programs, and
potentially other factors. It may well be the case that an envy-free advertisement assignment shows
Bob advertisements for a card with worse annual rates than those shown to Alice; this outcome is
not unfair if Bob is genuinely more interested in the card offered to him. Such rich utility functions
are also evident in the context of job advertisements [6]: people generally want higher paying jobs,
but would presumably have higher utility for seeing advertisements for jobs that better fit their
qualifications and interests.

A second appealing property of envy-freeness is that its fairness guarantee binds at the level of
individuals. Fairness notions can be coarsely characterized as being either individual notions, or
group notions, depending on whether they provide guarantees to specific individuals, or only on
average to a protected subgroup. The majority of work on fairness in machine learning focuses on
group fairness [18, 9, 35, 13, 15, 34].

There is, however, one well-known example of individual fairness: the influential fair classification
model of Dwork et al. [9]. The model involves a set of individuals and a set of outcomes. The
centerpiece of the model is a similarity metric on the space of individuals; it is specific to the
classification task at hand, and ideally captures the ethical ground truth about relevant attributes. For
example, a man and a woman who are similar in every other way should be considered similar for
the purpose of credit card offerings, but perhaps not for lingerie advertisements. Assuming such a
metric is available, fairness can be naturally formalized as a Lipschitz constraint, which requires that
individuals who are close according to the similarity metric be mapped to distributions over outcomes
that are close according to some standard metric (such as total variation).

As attractive as this model is, it has one clear weakness from a practical viewpoint: the availability
of a similarity metric. Dwork et al. [9] are well aware of this issue; they write that justifying this
assumption is “one of the most challenging aspects” of their approach. They add that “in reality the
metric used will most likely only be society’s current best approximation to the truth.” But, despite
recent progress on automating ethical decisions in certain domains [23, 11], the task-specific nature
of the similarity metric makes even a credible approximation thereof seem unrealistic. In particular,
if one wanted to learn a similarity metric, it is unclear what type of examples a relevant dataset would
consist of.

In place of a metric, envy-freeness requires access to individuals’ utility functions, but — by contrast
— we do not view this assumption as a barrier to implementation. Indeed, there are a variety of
techniques for learning utility functions [4, 22, 2]. Moreover, in our running example of advertising,
one can use standard measures like expected click-through rate (CTR) as a good proxy for utility.

It is worth noting that the classification setting is different from classic fair division problems in
that the “goods” (outcomes) are non-excludable. In fact, one envy-free solution simply assigns each
individual to his favorite outcome. But this solution may be severely suboptimal according to another
(standard) component of our setting, the loss function, which, in the examples above, might represent
the expected revenue from showing an ad to an individual. Typically the loss function is not perfectly
aligned with individual utilities, and, therefore, it may be possible to achieve smaller loss than the
naïve solution without violating the envy-freeness constraint.

In summary, we view envy-freeness as a compelling, well-established, and, importantly, practicable
notion of individual fairness for classification tasks with a diverse set of outcomes when individuals
have heterogeneous preferences. Our goal is to understand its learning-theoretic properties.

1.1 Our Results

The challenge is that the space of individuals is potentially huge, yet we seek to provide universal
envy-freeness guarantees. To this end, we are given a sample consisting of individuals drawn from
an unknown distribution. We are interested in learning algorithms that minimize loss, subject to
satisfying the envy-freeness constraint, on the sample. Our primary technical question is that of
generalizability, that is, given a classifier that is envy free on a sample, is it approximately envy free
on the underlying distribution? Surprisingly, Dwork et al. [9] do not study generalizability in their

2

model, and we are aware of only one subsequent paper that takes a learning-theoretic viewpoint on
individual fairness and gives theoretical guarantees (see Section 1.2).

In Section 3, we do not constrain the classifier. Therefore, we need some strategy to extend a classifier
that is defined on a sample; assigning an individual the same outcome as his nearest neighbor in the
sample is a popular choice. However, we show that any strategy for extending a classifier from a
sample, on which it is envy free, to the entire set of individuals is unlikely to be approximately envy
free on the distribution, unless the sample is exponentially large.

For this reason, in Section 4, we focus on structured families of classifiers. On a high level, our goal
is to relate the combinatorial richness of the family to generalization guarantees. One obstacle is that
standard notions of dimension do not extend to the analysis of randomized classifiers, whose range is
distributions over outcomes (equivalently, real vectors). We circumvent this obstacle by considering
mixtures of deterministic classifiers that belong to a family of bounded Natarajan dimension (an
extension of the well-known VC dimension to multi-class classification). Our main theoretical result
asserts that, under this assumption, envy-freeness on a sample does generalize to the underlying
distribution, even if the sample is relatively small (its size grows almost linearly in the Natarajan
dimension).

Finally, in Section 5, we design and implement an algorithm that learns (almost) envy-free mixtures
of linear one-vs-all classifiers. We present empirical results that validate our computational approach,
and indicate good generalization properties even when the sample size is small.

1.2 Related Work

Conceptually, our work is most closely related to work by Zafar et al. [34]. They are interested in
group notions of fairness, and advocate preference-based notions instead of parity-based notions. In
particular, they assume that each group has a utility function for classifiers, and define the preferred
treatment property, which requires that the utility of each group for its own classifier be at least its
utility for the classifier assigned to any other group. Their model and results focus on the case of
binary classification where there is a desirable outcome and an undesirable outcome, so the utility of
a group for a classifier is simply the fraction of its members that are mapped to the desirable outcome.
Although, at first glance, this notion seems similar to envy-freeness, it is actually fundamentally
different.2 Our paper is also completely different from that of Zafar et al. in terms of technical
results; theirs are purely empirical in nature, and focus on the increase in accuracy obtained when
parity-based notions of fairness are replaced with preference-based ones.

Concurrent work by Rothblum and Yona [26] provides generalization guarantees for the metric notion
of individual fairness introduced by Dwork et al. [9], or, more precisely, for an approximate version
thereof. There are two main differences compared to our work: first, we propose envy-freeness as an
alternative notion of fairness that circumvents the need for a similarity metric. Second, they focus
on randomized binary classification, which amounts to learning a real-valued function, and so are
able to make use of standard Rademacher complexity results to show generalization. By contrast,
standard tools do not directly apply in our setting. It is worth noting that several other papers provide
generalization guarantees for notions of group fairness, but these are more distantly related to our
work [35, 32, 8, 16, 14].

2 The Model

We assume that there is a space X of individuals, a finite space Y of outcomes, and a utility function
u : X × Y → [0, 1] encoding the preferences of each individual for the outcomes in Y . In the
advertising example, individuals are users, outcomes are advertisements, and the utility function
reflects the benefit an individual derives from being shown a particular advertisement. For any
distribution p ∈ ∆(Y) (where ∆(Y) is the set of distributions over Y) we let u(x, p) = Ey∼p[u(x, y)]
denote individual x’s expected utility for an outcome sampled from p. We refer to a function
h : X → ∆(Y) as a classifier, even though it can return a distribution over outcomes.

2On a philosophical level, the fair division literature deals exclusively with individual notions of fairness. In
fact, even in group-based extensions of envy-freeness [19] the allocation is shared by groups, but individuals must
not be envious. We subscribe to the view that group-oriented notions (such as statistical parity) are objectionable,
because the outcome can be patently unfair to individuals.

3

2.1 Envy-Freeness

Roughly speaking, a classifier h : X → ∆(Y) is envy free if no individual prefers the outcome
distribution of someone else over his own.
Definition 1. A classifier h : X → ∆(Y) is envy free (EF) on a set S of individuals if u(x, h(x)) ≥
u(x, h(x′)) for all x, x′ ∈ S. Similarly, h is (α, β)-EF with respect to a distribution P on X if

Pr
x,x′∼P

(
u(x, h(x)) < u(x, h(x′))− β

)
≤ α.

Finally, h is (α, β)-pairwise EF on a set of pairs of individuals S = {(xi, x′i)}ni=1 if

1

n

n∑
i=1

I{u(xi, h(xi)) < u(xi, h(x′i))− β} ≤ α.

Any classifier that is EF on a sample S of individuals is also (α, β)-pairwise EF on any pairing of the
individuals in S, for any α ≥ 0 and β ≥ 0. The weaker pairwise EF condition is all that is required
for our generalization guarantees to hold.

2.2 Optimization and Learning

Our formal learning problem can be stated as follows. Given sample access to an unknown distribution
P over individuals X and their utility functions, and a known loss function ` : X × Y → [0, 1],
find a classifier h : X → ∆(Y) that is (α, β)-EF with respect to P minimizing expected loss
Ex∼P [`(x, h(x))], where for x ∈ X and p ∈ ∆(Y), `(x, p) = Ey∼p[`(x, y)].

We follow the empirical risk minimization (ERM) learning approach, i.e., we collect a sample of
individuals drawn i.i.d from P and find an EF classifier with low loss on the sample. Formally,
given a sample of individuals S = {x1, . . . , xn} and their utility functions uxi(·) = u(xi, ·), we are
interested in a classifier h : S → ∆(Y) that minimizes

∑n
i=1 `(xi, h(xi)) among all classifiers that

are EF on S.

Recall that we consider randomized classifiers that can assign a distribution over outcomes to each
of the individuals. However, one might wonder whether the EF classifier that minimizes loss on a
sample happens to always be deterministic. Or, at least, the optimal deterministic classifier on the
sample might incur a loss that is very close to that of the optimal randomized classifier. If this were
true, we could restrict ourselves to classifiers of the form h : X → Y , which would be much easier
to analyze. Unfortunately, it turns out that this is not the case. In fact, there could be an arbitrary
(multiplicative) gap between the optimal randomized EF classifier and the optimal deterministic EF
classifier. The intuition behind this is as follows. A deterministic classifier that has very low loss on
the sample, but is not EF, would be completely discarded in the deterministic setting. On the other
hand, a randomized classifier could take this loss-minimizing deterministic classifier and mix it with
a classifier with high “negative envy”, so that the mixture ends up being EF and at the same time has
low loss. This is made concrete in the following example.
Example 1. Let S = {x1, x2} and Y = {y1, y2, y3}. Let the loss function be such that

`(x1, y1) = 0 `(x1, y2) = 1 `(x1, y3) = 1

`(x2, y1) = 1 `(x2, y2) = 1 `(x2, y3) = 0

Moreover, let the utility function be such that

u(x1, y1) = 0 u(x1, y2) = 1 u(x1, y3) =
1

γ

u(x2, y1) = 0 u(x2, y2) = 0 u(x2, y3) = 1

where γ > 1. The only deterministic classifier with a loss of 0 is h0 such that h0(x1) = y1 and
h0(x2) = y3. But, this is not EF, since u(x1, y1) < u(x1, y3). Furthermore, every other deterministic
classifier has a total loss of at least 1, causing the optimal deterministic EF classifier to have loss of at
least 1.

To show that randomized classifiers can do much better, consider the randomized classifier h∗ such
that h∗(x1) = (1− 1/γ, 1/γ, 0) and h∗(x2) = (0, 0, 1). This classifier can be seen as a mixture of

4

the classifier h0 of 0 loss, and the deterministic classifier he, where he(x1) = y2 and he(x2) = y3,
which has high “negative envy". One can observe that this classifier h∗ is EF, and has a loss of just
1/γ. Hence, the loss of the optimal randomized EF classifier is γ times smaller than the loss of the
optimal deterministic one, for any γ > 1.

3 Arbitrary Classifiers

An important (and typical) aspect of our learning problem is that the classifier h needs to provide an
outcome distribution for every individual, not just those in the sample. For example, if h chooses
advertisements for visitors of a website, the classifier should still apply when a new visitor arrives.
Moreover, when we use the classifier for new individuals, it must continue to be EF. In this section,
we consider two-stage approaches that first choose outcome distributions for the individuals in the
sample, and then extend those decisions to the rest of X .

In more detail, we are given a sample S = {x1, . . . , xn} of individuals and a classifier h : S → ∆(Y)
assigning outcome distributions to each individual. Our goal is to extend these assignments to a
classifier h : X → ∆(Y) that can be applied to new individuals as well. For example, h could be the
loss-minimizing EF classifier on the sample S.

For this section, we assume that X is equipped with a distance metric d. Moreover, we assume in this
section that the utility function u is L-Lipschitz on X . That is, for every y ∈ Y and for all x, x′ ∈ X ,
we have |u(x, y)− u(x′, y)| ≤ L · d(x, x′).

Under the foregoing assumptions, one natural way to extend the classifier on the sample to all of X
is to assign new individuals the same outcome distribution as their nearest neighbor in the sample.
Formally, for a set S ⊂ X and any individual x ∈ X , let NNS(x) ∈ arg minx′∈Sd(x, x′) denote
the nearest neighbor of x in S with respect to the metric d (breaking ties arbitrarily). The following
simple result (whose proof is relegated to Appendix B) establishes that this approach preserves
envy-freeness in cases where the sample is exponentially large.

Theorem 1. Let d be a metric on X , P be a distribution on X , and u be an L-Lipschitz utility
function. Let S be a set of individuals such that there exists X̂ ⊂ X with P (X̂) ≥ 1 − α and
supx∈X̂ d(x,NNS(x)) ≤ β/(2L). Then for any classifier h : S → ∆(Y) that is EF on S, the
extension h : X → ∆(Y) given by h(x) = h(NNS(x)) is (α, β)-EF on P .

The conditions of Theorem 1 require that the set of individuals S is a β/(2L)-net for at least a (1−α)-
fraction of the mass of P on X . In several natural situations, an exponentially large sample guarantees
that this occurs with high probability. For example, if X is a subset of Rq, d(x, x′) = ‖x − x′‖2,
and X has diameter at most D, then for any distribution P on X , if S is an i.i.d. sample of size
O(1

α (
LD
√
q

β)q(q log
LD
√
q

β + log 1
δ)), it will satisfy the conditions of Theorem 1 with probability at

least 1−δ. This sampling result is folklore, but, for the sake of completeness, we prove it in Lemma 3
of Appendix B.

However, the exponential upper bound given by the nearest neighbor strategy is as far as we can go
in terms of generalizing envy-freeness from a sample (without further assumptions). Specifically,
our next result establishes that any algorithm — even randomized — for extending classifiers from
the sample to the entire space X requires an exponentially large sample of individuals to ensure
envy-freeness on the distribution P . The proof of Theorem 2 can be found in Appendix B.

Theorem 2. There exists a space of individuals X ⊂ Rq, and a distribution P over X such that,
for every randomized algorithm A that extends classifiers on a sample to X , there exists an L-
Lipschitz utility function u such that, when a sample of individuals S of size n = 4q/2 is drawn
from P without replacement, there exists an EF classifier on S for which, with probability at least
1− 2 exp(−4q/100)− exp(−4q/200) jointly over the randomness of A and S, its extension by A is
not (α, β)-EF with respect to P for any α < 1/25 and β < L/8.

We remark that a similar result would hold even if we sampled S with replacement; we sample here
without replacement purely for ease of exposition.

5

4 Low-Complexity Families of Classifiers

In this section we show that (despite Theorem 2) generalization for envy-freeness is possible using
much smaller samples of individuals, as long as we restrict ourselves to classifiers from a family of
relatively low complexity.

In more detail, two classic complexity measures are the VC-dimension [30] for binary classifiers,
and the Natarajan dimension [21] for multi-class classifiers. However, to the best of our knowledge,
there is no suitable dimension directly applicable to functions ranging over distributions, which in
our case can be seen as |Y|-dimensional real vectors. One possibility would be to restrict ourselves to
deterministic classifiers of the type h : X → Y , but we have seen in Section 2 that envy-freeness is a
very strong constraint on deterministic classifiers. Instead, we will consider a familyH consisting of
randomized mixtures of m deterministic classifiers belonging to a family G ⊂ {g : X → Y} of low
Natarajan dimension. This allows us to adapt Natarajan-dimension-based generalization results to
our setting while still working with randomized classifiers. The definition and relevant properties of
the Natarajan dimension are summarized in Appendix A.

Formally, let ~g = (g1, . . . , gm) ∈ Gm be a vector of m functions in G and η ∈ ∆m be a distribution
over [m], where ∆m = {p ∈ Rm : pi ≥ 0,

∑
i pi = 1} is the m-dimensional probability

simplex. Then consider the function h~g,η : X → ∆(Y) with assignment probabilities given by
Pr(h~g,η(x) = y) =

∑m
i=1 I{gi(x) = y}ηi. Intuitively, for a given individual x, h~g,η chooses one of

the gi randomly with probability ηi, and outputs gi(x). Let

H(G,m) = {h~g,η : X → ∆(Y) : ~g ∈ Gm, η ∈ ∆m}

be the family of classifiers that can be written this way. Our main technical result shows that
envy-freeness generalizes for this class.

Theorem 3. Suppose G is a family of deterministic classifiers of Natarajan dimension d, and let
H = H(G,m) for m ∈ N. For any distribution P over X , γ > 0, and δ > 0, if S = {(xi, x′i)}ni=1 is
an i.i.d. sample of pairs drawn from P of size

n ≥ O
(

1

γ2

(
dm2 log

dm|Y| log(m|Y|/γ)

γ
+ log

1

γ

))
,

then with probability at least 1− δ, every classifier h ∈ H that is (α, β)-pairwise-EF on S is also
(α+ 7γ, β + 4γ)-EF on P .

The proof of Theorem 3 is relegated to Appendix C. In a nutshell, it consists of two steps. First,
we show that envy-freeness generalizes for finite classes. Second, we show that H(G,m) can be
approximated by a finite subset.

We remark that the theorem is only effective insofar as families of classifiers of low Natarajan dimen-
sion are useful. Fortunately, several prominent families indeed have low Natarajan dimension [5],
including one vs. all, multiclass SVM, tree-based classifiers, and error correcting output codes.

5 Implementation and Empirical Validation

So far we have not directly addressed the problem of computing the loss-minimizing envy-free
classifier from a given family on a given sample of individuals. We now turn to this problem. Our
goal is not to provide an end-all solution, but rather to provide evidence that computation will not be
a long-term obstacle to implementing our approach.

In more detail, our computational problem is to find the loss-minimizing classifier h from a given fam-
ily of randomized classifiersH that is envy free on a given a sample of individuals S = {x1, . . . , xn}.
For this classifier h to generalize to the distribution P , Theorem 3 suggests that the familyH to use
is of the formH(G,m), where G is a family of deterministic classifiers of low Natarajan dimension.

In this section, we let G be the family of linear one-vs-all classifiers. In particular, denoting
X ⊂ Rq, each g ∈ G is parameterized by ~w = (w1, w2, . . . , w|Y|) ∈ R|Y|×q, where g(x) =

argmaxy∈Y
(
w>y x

)
. This class G has a Natarajan dimension of at most q|Y|. The optimization

6

problem to solve in this case is

min
~g∈Gm,η∈∆m

n∑
i=1

m∑
k=1

ηkL(xi, gk(xi))

s.t.
m∑
k=1

ηku(xi, gk(xi)) ≥
m∑
k=1

ηku(xi, gk(xj)) ∀(i, j) ∈ [n]2. (1)

5.1 Algorithm

Observe that optimization problem (1) is highly non-convex and non-differentiable as formulated,
because of the argmax computed in each of the gk(xi). Another challenge is the combinatorial nature
of the problem, as we need to find m functions from G along with their mixing weights. In designing
an algorithm, therefore, we employ several tricks of the trade to achieve tractability.

Learning the mixture components. We first assume predefined mixing weights η̃, and iteratively
learn mixture components based on them. Specifically, let g1, g2, . . . gk−1 denote the classifiers
learned so far. To compute the next component gk, we solve the optimization problem (1) with these
components already in place (and assuming no future ones). This induces the following optimization
problem.

min
gk∈G

n∑
i=1

L(xi, gk(xi))

s.t. USF
(k−1)
ii + η̃ku(xi, gk(xi)) ≥ USF (k−1)

ij + η̃ku(xi, gk(xj)) ∀(i, j) ∈ [n]2, (2)

where USF (k−1)
ij denotes the expected utility i has for j’s assignments so far, i.e., USF (k−1)

ij =∑k−1
c=1 η̃cu(xi, gc(xj)).

Solving the optimization problem (2) is still non-trivial because it remains non-convex and non-
differentiable. To resolve this, we first soften the constraints3. Writing out the optimization problem
in the form equivalent to introducing slack variables, we obtain

min
gk∈G

n∑
i=1

L(xi, gk(xi))

+ λ
∑
i 6=j

max
(
USF

(k−1)
ij + η̃ku(xi, gk(xj))− USF (k−1)

ii − η̃ku(xi, gk(xi)), 0
)
, (3)

where λ is a parameter that defines the trade-off between loss and envy-freeness. This optimization
problem is still highly non-convex as gk(xi) = argmaxy∈Yw

>
y xi, where ~w denotes the parameters of

gk. To solve this, we perform a convex relaxation on several components of the objective using the
fact that w>gk(xi)

xi ≥ w>y′xi for any y′ ∈ Y . Specifically, we have

L(xi, gk(xi)) ≤ max
y∈Y

{
L(xi, y) + w>y xi − w>yixi

}
,

−u(xi, gk(xi)) ≤ max
y∈Y

{
−u(xi, y) + w>y xi − w>bixi

}
, and

u(xi, gk(xj)) ≤ max
y∈Y

{
u(xi, y) + w>y xj − w>sixj

}
,

where yi = argminy∈YL(xi, y), si = argminy∈Yu(xi, y) and bi = argmaxy∈Y u(xi, y). While we
provided the key steps here, complete details and the rationale behind these choices are given in
Appendix D. On a very high-level, these are inspired by multi-class SVMs. Finally, plugging these
relaxations into (3), we obtain the following convex optimization problem to compute each mixture
component.

min
~w∈R|Y|×q

n∑
i=1

max
y∈Y

{
L(xi, y) + w>y xi − w>yixi

}
+ λ

∑
i 6=j

max
(
USF

(k−1)
ij (4)

+η̃k max
y∈Y

{
u(xi, y) + w>y xj − w>sixj

}
− USF (k−1)

ii + η̃k max
y∈Y

{
−u(xi, y) + w>y xi − w>bixi

}
, 0

)
.

3This may lead to solutions that are not exactly EF on the sample. Nonetheless, Theorem 3 still guarantees
that there should not be much additional envy on the testing data.

7

Learning the mixing weights. Once the mixture components ~g are learned (with respect to the
predefined mixing weights η̃), we perform an additional round of optimization to learn the optimal
weights η for them. This can be done via the following linear program

min
η∈∆m,ξ∈Rn×n

≥0

n∑
i=1

m∑
k=1

ηkL(xi, gk(xi)) + λ
∑
i 6=j

ξij

s.t.
m∑
k=1

ηku(xi, gk(xi)) ≥
m∑
k=1

ηku(xi, gk(xj))− ξij ∀(i, j). (5)

5.2 Methodology

To validate our approach, we have implemented our algorithm. However, we cannot rely on standard
datasets, as we need access to both the features and the utility functions of individuals. Hence, we
rely on synthetic data. All our code is included as supplementary material. Our experiments are
carried out on a desktop machine with 16GB memory and an Intel Xeon(R) CPU E5-1603 v3 @
2.80GHz×4 processor. To solve convex optimization problems, we use CVXPY [7, 1].

In our experiments, we cannot compute the optimal solution to the original optimization problem (1),
and there are no existing methods we can use as benchmarks. Hence, we generate the dataset such
that we know the optimal solution upfront.

Specifically, to generate the whole dataset (both training and test), we first generate random classifiers
~g? ∈ Gm by sampling their parameters ~w1, . . . ~wm ∼ N (0, 1)|Y|×q, and generate η? ∈ ∆m by
drawing uniformly random weights in [0, 1] and normalizing. We use h~g?,η? as the optimal solution
of the dataset we generate. For each individual, we sample each feature value independently and
u.a.r. in [0, 1]. For each individual x and outcome y, we set L(x, y) = 0 if y ∈ {g?k(x) : k ∈ [m]}
and otherwise we sample L(x, y) u.a.r. in [0, 1]. For the utility function u, we need to generate it
such that the randomized classifier h~g?,η? is envy free on the dataset. For this, we set up a linear
program and compute each of the values u(x, y). Hence, h~g?,η? is envy free and has zero loss, so it
is obviously the optimal solution. The dataset is split into 75% training data (to measure the accuracy
of our solution to the optimization problem) and 25% test data (to evaluate generalizability).

For our experiments, we use the following parameters: |Y| = 10, q = 10, m = 5, and λ = 10.0.
We set the predefined weights to be η̃ =

[
1
2 ,

1
4 , . . . ,

1
2m−1 ,

1
2m−1

]
.4 In our experiments we vary the

number of individuals, and each result is averaged over 25 runs. On each run, we generate a new
ground-truth classifier h~g∗,η∗ , as well as new individuals, losses, and utilities.

5.3 Results

Figure 1 shows the time taken to compute the mixture components ~g and the optimal weights η, as
the number of individuals in the training data increases. As we will see shortly, even though the η
computation takes a very small fraction of the time, it can lead to non-negligible gains in terms of
loss and envy.

Figure 2 shows the average loss attained on the training and test data by the algorithm immediately
after computing the mixture components, and after the round of η optimization. It also shows the
average loss attained (on both the training and test data) by a random allocation, which serves as
a naïve benchmark for calibration purposes. Recall that the optimal assignment h~g?,η? has loss 0.
For both the training and testing individuals, optimizing η improves the loss of the learned classifer.
Moreover, our algorithms achieve low training errors for all dataset sizes, and as the dataset grows
the testing error converges to the training error.

Figure 3 shows the average envy among pairs in the training data and test data, where, for each pair,
negative envy is replaced with 0, to avoid obfuscating positive envy. The graph also depicts the
average envy attained (on both the training and test data) by a random allocation. As for the losses,
optimizing η results in lower average envy, and as the training set grows we see the generalization
gap decrease.

4The reason for using an exponential decay is so that the subsequent classifiers learned are different from the
previous ones. Using smaller weights might cause consecutive classifiers to be identical, thereby ‘wasting’ some
of the components.

8

25 50 75 100 125 150
Number of train individuals

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(s

ec
)

mixture computation
optimization

Figure 1: The algorithm’s running time.

25 50 75 100 125 150
Number of train individuals

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

lo
ss

train loss after mixture
train loss after opt.
test loss after mixture
test loss after opt.
random assignment

Figure 2: Training and test loss. Shaded error
bands depict 95% confidence intervals.

25 50 75 100 125 150
Number of train individuals

0.00

0.02

0.04

0.06

0.08

Av
er

ag
e

cli
pp

ed
 e

nv
y

train envy after mixture
train envy after opt.
test envy after mixture
test envy after opt.
random assignment

Figure 3: Training and test envy, as a function of
the number of individuals. Shaded error bands
depict 95% confidence intervals.

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Value of envy

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
ns

 o
f p

ai
rs

train envy after mixture
train envy after opt.
test envy after mixture
test envy after opt.
envy by optimal alloc.
envy by random alloc.

Figure 4: CDF of training and test envy for 100
training individuals

In Figure 4 we zoom in on the case of 100 training individuals, and observe the empirical CDF of
envy values. Interestingly, the optimal randomized classifier h~g?,η? shows lower negative envy values
compared to other algorithms, but as expected has no positive envy pairs. Looking at the positive
envy values, we can again see very encouraging results. In particular, for at least a 0.946 fraction of
the pairs in the train data, we obtain envy of at most 0.05, and this generalizes to the test data, where
for at least a 0.939 fraction of the pairs, we obtain envy of at most 0.1.

In summary, these results indicate that the algorithm described in Section 5.1 solves the optimization
problem (1) for linear one-vs-all classifiers almost optimally, and that its output generalizes well even
when the training set is small.

6 Conclusion

In this paper we propose EF as a suitable fairness notion for learning tasks with many outcomes over
which individuals have heterogeneous preferences. We provide generalization guarantees for a rich
family of classifiers, showing that if we find a classifier that is envy-free on a sample of individuals, it
will remain envy-free when we apply it to new individuals from the same distribution. This result
circumvents an exponential lower bound on the sample complexity suffered by any two-stage learning
algorithm that first finds an EF assignment for the sample and then extends it to the entire space.
Finally, we empirically demonstrate that finding low-envy and low-loss classifiers is computationally
tractable. These results show that envy-freeness is a practical notion of fairness for machine learning
systems.

9

Acknowledgments

This work was partially supported by the National Science Foundation under grants IIS-1350598, IIS-
1714140, IIS-1618714, IIS-1901403, CCF-1525932, CCF-1733556, CCF-1535967, CCF-1910321;
by the Office of Naval Research under grants N00014-16-1-3075 and N00014-17-1-2428; and by
a J.P. Morgan AI Research Award, an Amazon Research Award, a Microsoft Research Faculty
Fellowship, a Bloomberg Data Science research grant, a Guggenheim Fellowship, and a grant from
the Block Center for Technology and Society.

References
[1] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system for convex

optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

[2] M.-F. Balcan, F. Constantin, S. Iwata, and L. Wang. Learning valuation functions. In Pro-
ceedings of the 25th Conference on Computational Learning Theory (COLT), pages 4.1–4.24,
2012.

[3] S. J. Brams and A. D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution.
Cambridge University Press, 1996.

[4] U. Chajewska, D. Koller, and D. Ormoneit. Learning an agent’s utility function by observing
behavior. In Proceedings of the 18th International Conference on Machine Learning (ICML),
pages 35–42, 2001.

[5] A. Daniely, S. Sabato, and S. Shalev-Shwartz. Multiclass learning approaches: A theoretical
comparison with implications. In Proceedings of the 25th Annual Conference on Neural
Information Processing Systems (NIPS), pages 485–493, 2012.

[6] A. Datta, M. C. Tschantz, and A. Datta. Automated experiments on ad privacy settings: A
tale of opacity, choice, and discrimination. In Proceedings of the 15th Privacy Enhancing
Technologies Symposium (PETS), pages 92–112, 2015.

[7] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[8] M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, and M. Pontil. Empirical Risk Minimiza-
tion under Fairness Constraints. arXiv:1802.08626, 2018.

[9] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S. Zemel. Fairness through awareness. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS), pages
214–226, 2012.

[10] D. Foley. Resource allocation and the public sector. Yale Economics Essays, 7:45–98, 1967.

[11] R. Freedman, J. Schaich Borg, W. Sinnott-Armstrong, J. P. Dickerson, and V. Conitzer. Adapting
a kidney exchange algorithm to align with human values. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI), pages 1636–1645, 2018.

[12] Y. Gal, M. Mash, A. D. Procaccia, and Y. Zick. Which is the fairest (rent division) of them all?
Journal of the ACM, 64(6): article 39, 2017.

[13] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In Proceedings
of the 30th Annual Conference on Neural Information Processing Systems (NIPS), pages 3315–
3323, 2016.

[14] Ú. Hébert-Johnson, M. P. Kim, O. Reingold, and G. N. Rothblum. Calibration for the
(computationally-identifiable) masses. In Proceedings of the 35th International Conference on
Machine Learning (ICML), 2018. Forthcoming.

[15] M. Joseph, M. Kearns, J. Morgenstern, and A. Roth. Fairness in learning: Classic and contextual
bandits. In Proceedings of the 30th Annual Conference on Neural Information Processing
Systems (NIPS), pages 325–333, 2016.

[16] M. Kearns, S. Neel, A. Roth, and S. Wu. Computing parametric ranking models via rank-
breaking. In Proceedings of the 35th International Conference on Machine Learning (ICML),
2018.

10

[17] N. Kilbertus, M. Rojas-Carulla, G. Parascandolo, M. Hardt, D. Janzing, and B. Schölkopf.
Avoiding discrimination through causal reasoning. In Proceedings of the 31st Annual Conference
on Neural Information Processing Systems (NIPS), pages 656–666, 2017.

[18] B. T. Luong, S. Ruggieri, and F. Turini. k-NN as an implementation of situation testing for
discrimination discovery and prevention. In Proceedings of the 17th International Conference
on Knowledge Discovery and Data Mining (KDD), pages 502–510, 2011.

[19] P. Manurangsi and W. Suksompong. Asymptotic existence of fair divisions for groups. Mathe-
matical Social Sciences, 89:100–108, 2017.

[20] H. Moulin. Fair Division and Collective Welfare. MIT Press, 2003.
[21] B. K. Natarajan. On learning sets and functions. Machine Learning, 4(1):67–97, 1989.
[22] T. D. Nielsen and F. V. Jensen. Learning a decision maker’s utility function from (possibly)

inconsistent behavior. Artificial Intelligence, 160(1–2):53–78, 2004.
[23] R. Noothigattu, S. S. Gaikwad, E. Awad, S. Dsouza, I. Rahwan, P. Ravikumar, and A. D.

Procaccia. A voting-based system for ethical decision making. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI), pages 1587–1594, 2018.

[24] A. D. Procaccia. Cake cutting: Not just child’s play. Communications of the ACM, 56(7):78–87,
2013.

[25] J. M. Robertson and W. A. Webb. Cake Cutting Algorithms: Be Fair If You Can. A. K. Peters,
1998.

[26] G. N. Rothblum and G. Yona. Probably approximately metric-fair learning. arXiv:1803.03242,
2018.

[27] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge University Press, 2014.

[28] F. E. Su. Rental harmony: Sperner’s lemma in fair division. American Mathematical Monthly,
106(10):930–942, 1999.

[29] L. Sweeney. Discrimination in online ad delivery. Communications of the ACM, 56(5):44–54,
2013.

[30] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

[31] H. Varian. Equity, envy and efficiency. Journal of Economic Theory, 9:63–91, 1974.
[32] B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro. Learning non-discriminatory

predictors. In Proceedings of the 30th Conference on Computational Learning Theory (COLT),
pages 1920–1953, 2017.

[33] A. C. Yao. Probabilistic computations: Towards a unified measure of complexity. In Proceedings
of the 17th Symposium on Foundations of Computer Science (FOCS), pages 222–227, 1977.

[34] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, K. P. Gummadi, and A. Weller. From parity
to preference-based notions of fairness in classification. In Proceedings of the 31st Annual
Conference on Neural Information Processing Systems (NIPS), pages 228–238, 2017.

[35] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair representations. In
Proceedings of the 30th International Conference on Machine Learning (ICML), pages 325–333,
2013.

11

Appendix: Envy-Free Classification

A Natarajan Dimension Primer

We briefly present the Natarajan dimension. For more details, we refer the reader to [27].

We say that a family G multi-class shatters a set of points x1, . . . , xn if there exist labels y1, . . . yn
and y′1, . . . , y

′
n such that for every i ∈ [n] we have yi 6= y′i, and for any subset C ⊂ [n] there exists

g ∈ G such that g(xi) = yi if i ∈ C and g(xi) = y′i otherwise. The Natarajan dimension of a family
G is the cardinality of the largest set of points that can be multi-class shattered by G.

For example, suppose we have a feature map Ψ : X × Y → Rq that maps each individual-outcome
pair to a q-dimensional feature vector, and consider the family of functions that can be written as
g(x) = arg maxy∈Yw

>Ψ(x, y) for weight vectors w ∈ Rq. This family has Natarajan dimension at
most q.

For a set S ⊂ X of points, we let G
∣∣
S

denote the restriction of G to S, which is any subset of G of
minimal size such that for every g ∈ G there exists g′ ∈ G

∣∣
S

such that g(x) = g′(x) for all x ∈ S.
The size of G

∣∣
S

is the number of different labelings of the sample S achievable by functions in G.
The following Lemma is the analogue of Sauer’s lemma for binary classification.
Lemma 1 (Natarajan). For a family G of Natarajan dimension d and any subset S ⊂ X , we have∣∣G∣∣

S

∣∣ ≤ |S|d|Y|2d.

Classes of low Natarajan dimension also enjoy the following uniform convergence guarantee.
Lemma 2. Let G have Natarajan dimension d and fix a loss function ` : G × X → [0, 1]. For any
distribution P over X , if S is an i.i.d. sample drawn from P of size O(1

ε2 (d log |Y|+ log 1
δ)), then

with probability at least 1− δ we have supg∈G
∣∣Ex∼P [`(g, x)]− 1

n

∑
x∈S `(g, x)

∣∣ ≤ ε.
B Appendix for Section 3

Theorem 1. Let d be a metric on X , P be a distribution on X , and u be an L-Lipschitz utility
function. Let S be a set of individuals such that there exists X̂ ⊂ X with P (X̂) ≥ 1 − α and
supx∈X̂ d(x,NNS(x)) ≤ β/(2L). Then for any classifier h : S → ∆(Y) that is EF on S, the
extension h : X → ∆(Y) given by h(x) = h(NNS(x)) is (α, β)-EF on P .

Proof. Let h : S → ∆(Y) be any EF classifier on S and h : X → ∆(Y) be the nearest neighbor
extension. Sample x and x′ from P . Then, x belongs to the subset X̂ with probability at least
1 − α. When this occurs, x has a neighbor within distance β/(2L) in the sample. Using the
Lipschitz continuity of u, we have |u(x, h(x)) − u(NNS(x), h(NNS(x)))| ≤ β/2. Similarly,
|u(x, h(x′)) − u(NNS(x), h(NNS(x′)))| ≤ β/2. Finally, since NNS(x) does not envy NNS(x′)
under h, it follows that x does not envy x′ by more than β under h.

Lemma 3. Suppose X ⊂ Rq , d(x, x′) = ‖x−x′‖2, and letD = supx,x′∈X d(x, x′) be the diameter
of X . For any distribution P over X , β > 0, α > 0, and δ > 0 there exists X̂ ⊂ X such that P (X̂) ≥
1− α and, if S is an i.i.d. sample drawn from P of size |S| = O(1

α (
LD
√
q

β)q(d log
LD
√
q

β + log 1
δ)),

then with probability at least 1− δ, supx∈X̂ d(x,NNS(x)) ≤ β/(2L).

Proof. Let C be the smallest cube containing X . Since the diameter of X is D, the side-length of C
is at most D. Let s = β/(2L

√
q) be the side-length such that a cube with side-length s has diameter

β/(2L). It takes at most m = dD/seq cubes of side-length s to cover C. Let C1, . . . , Cm be such a
covering, where each Ci has side-length s.

Let Ci be any cube in the cover for which P (Ci) > α/m. The probability that a sample of
size n drawn from P does not contain a sample in Ci is at most (1 − α/m)n ≤ e−nα/m. Let

12

I = {i ∈ [m] : P (Ci) ≥ α/m}. By the union bound, the probability that there exists i ∈ I such
that Ci does not contain a sample is at most me−nα/m. Setting

n =
m

α
ln
m

δ

= O

(
1

α

(
LD
√
q

β

)q(
q log

LD
√
q

β
+ log

1

δ

))
results in this upper bound being δ. For the remainder of the proof, assume this high probability event
occurs.

Now let X̂ =
⋃
i∈I Ci. For each j 6∈ I , we know that P (Cj) < α/m. Since there at most m such

cubes, their total probability mass is at most α. It follows that P (X̂) ≥ 1− α. Moreover, every point
x ∈ X̂ belongs to one of the cubes Ci with i ∈ I , which also contains a sample point. Since the
diameter of the cubes in our cover is β/(2L), it follows that dist(x,NNS(x)) ≤ β/(2L) for every
x ∈ X̂ , as required.

Theorem 2. There exists a space of individuals X ⊂ Rq, and a distribution P over X such
that, for every randomized algorithm A that extends classifiers on a sample to X , there exists an
L-Lipschitz utility function u such that, when a sample of individuals S of size n = 4q/2 is drawn
from P without replacement, there exists an EF classifier on S for which, with probability at least
1− 2 exp(−4q/100)− exp(−4q/200) jointly over the randomness of A and S, its extension by A is
not (α, β)-EF with respect to P for any α < 1/25 and β < L/8.

Proof. Let the space of individuals be X = [0, 1]q and the outcomes be Y = {0, 1}. We partition the
space X into cubes of side length s = 1/4. So, the total number of cubes is m = (1/s)

q
= 4q. Let

these cubes be denoted by c1, c2, . . . cm, and let their centers be denoted by µ1, µ2, . . . µm. Next, let
P be the uniform distribution over the centers µ1, µ2, . . . µm. For brevity, whenever we say “utility
function” in the rest of the proof, we mean “L-Lipschitz utility function.”

To prove the theorem, we use Yao’s minimax principle [33]. Specifically, consider the following
two-player zero sum game. Player 1 chooses a deterministic algorithm D that extends classifiers on
a sample to X , and player 2 chooses a utility function u on X . For any subset S ⊂ X , define the
classifier hu,S : S → Y by assigning each individual in S to his favorite outcome with respect to the
utility function u, i.e. hu,S(x) = arg maxy∈Yu(x, y) for each x ∈ S, breaking ties lexicographically.
Define the cost of playing algorithm D against utility function u as the probability over the sample S
(of size m/2 drawn from P without replacement) that the extension of hu,S by D is not (α, β)-EF
with respect to P for any α < 1/25 and β < L/8. Yao’s minimax principle implies that for any
randomized algorithm A, its expected cost with respect to the worst-case utility function u is at
least as high as the expected cost of any distribution over utility functions that is played against
the best deterministic algorithm D (which is tailored for that distribution). Therefore, we establish
the desired lower bound by choosing a specific distribution over utility functions, and showing that
the best deterministic algorithm against it has an expected cost of at least 1 − 2 exp(−m/100) −
exp(−m/200).

To define this distribution over utility functions, we first sample outcomes y1, y2, . . . , ym i.i.d. from
Bernoulli(1/2). Then, we associate each cube center µi with the outcome yi, and refer to this outcome
as the favorite of µi. For brevity, let ¬y denote the outcome other than y, i.e. ¬y = (1− y). For any
x ∈ X , we define the utility function as follows. Letting cj be the cube that x belongs to,

u(x, yj) = L
[s

2
− ‖x− µj‖∞

]
; u(x,¬yj) = 0. (6)

See Figure 5 for an illustration.

We claim that the utility function of Equation (6) is indeed L-Lipschitz with respect to any Lp norm.
This is because for any cube ci, and for any x, x′ ∈ ci, we have

|u(x, yi)− u(x′, yi)| = L |‖x− µi‖∞ − ‖x′ − µi‖∞|
≤ L‖x− x′‖∞ ≤ L‖x− x′‖p.

Moreover, for the other outcome, we have u(x,¬yi) = u(x′,¬yi) = 0. It follows that u is L-
Lipschitz within every cube. At the boundary of the cubes, the utility for any outcome is 0, and hence

13

Figure 5: Illustration of X and an example utility function u for d = 2. Red shows preference for 1,
blue shows preference for 0, and darker shades correspond to more intense preference. (The gradients
are rectangular to match the L∞ norm, so, strangely enough, the misleading X pattern is an optical
illusion.)

u is also continuous throughout X . Because it is piecewise Lipschitz and continuous, u must be
L-Lipschitz throughout X , with respect to any Lp norm.

Next, let D be an arbitrary deterministic algorithm that extends classifiers on a sample to X . We draw
the sample S of size m/2 from P without replacement. Consider the distribution over favorites of in-
dividuals in S. Each individual in S has a favorite that is sampled independently from Bernoulli(1/2).
Hence, by Hoeffding’s inequality, the fraction of individuals in S with a favorite of 0 is between
1
2 − ε and 1

2 + ε with probability at least 1− 2 exp(−mε2). The same holds simultaneously for the
fraction of individuals with favorite 1.

Given the sample S and the utility function u on the sample (defined by the instantiation of their
favorites), consider the classifier hu,S , which maps each individual µi in the sample S to his favorite
yi. This classifier is clearly EF on the sample. Consider the extension hDu,S of hu,S to the whole of X
as defined by algorithm D. Define two sets Z0 and Z1 by letting Zy = {µj /∈ S | hDu,S(µj) = y},
and let y∗ denote an outcome that is assigned to at least half of the out-of-sample centers, i.e., an
outcome for which |Zy∗ | ≥ |Z¬y∗ |. Furthermore, let θ denote the fraction of out-of-sample centers
assigned to y∗. Note that, since |S| = m/2, the number of out-of-sample centers is also exactly m/2.
This gives us |Zy∗ | = θm2 , where θ ≥ 1

2 .

Consider the distribution of favorites in Zy∗ (these are independent from the ones in the sample
since Zy∗ is disjoint from S). Each individual in this set has a favorite sampled independently from
Bernoulli(1/2). Hence, by Hoeffding’s inequality, the fraction of individuals in Zy∗ whose favorite is
¬y∗ is at least 1

2 − ε with probability at least 1− exp(−m2 ε
2). We conclude that with a probability at

least 1− 2 exp(−mε2)− exp(−m2 ε
2), the sample S and favorites (which define the utility function

u) are such that: (i) the fraction of individuals in S whose favorite is y ∈ {0, 1} is between 1
2 − ε and

1
2 + ε, and (ii) the fraction of individuals in Zy∗ whose favorite is ¬y∗ is at least 1

2 − ε.

We now show that for such a sample S and utility function u, hDu,S cannot be (α, β)-EF with respect
to P for any α < 1/25 and β < L/8. To this end, sample x and x′ from P . One scenario where x
envies x′ occurs when (i) the favorite of x is ¬y∗, (ii) x is assigned to y∗, and (iii) x′ is assigned to
¬y∗. Conditions (i) and (ii) are satisfied when x is in Zy∗ and his favorite is ¬y∗. We know that at
least a 1

2 − ε fraction of the individuals in Zy∗ have the favorite ¬y∗. Hence, the probability that
conditions (i) and (ii) are satisfied by x is at least (1

2 − ε)|Zy∗ |
1
m = (1

2 − ε)
θ
2 . Condition (iii) is

satisfied when x′ is in S and has favorite ¬y∗ (and hence assigned ¬y∗), or, if x′ is in Z¬y∗ . We
know that at least a

(
1
2 − ε

)
fraction of the individuals in S have the favorite ¬y∗. Moreover, the size

of Z¬y∗ is (1− θ)m2 . So, the probability that condition (iii) is satisfied by x′ is at least(
1
2 − ε

)
|S|+ |Z¬y∗ |
m

=
1

2

(
1

2
− ε
)

+
1

2
(1− θ).

14

Since x and x′ are sampled independently, the probability that all three conditions are satisfied is at
least (

1

2
− ε
)
θ

2
·
[

1

2

(
1

2
− ε
)

+
1

2
(1− θ)

]
.

This expression is a quadratic function in θ, that attains its minimum at θ = 1 irrespective of the
value of ε. Hence, irrespective of D, this probability is at least

[
1
2

(
1
2 − ε

)]2
. For concreteness, let

us choose ε to be 1/10 (although it can be set to be much smaller). On doing so, we have that the
three conditions are satisfied with probability at least 1/25. And when these conditions are satisfied,
we have u(x, hDu,S(x)) = 0 and u(x, hDu,S(x′)) = Ls/2, i.e., x envies x′ by Ls/2 = L/8. This
shows that, when x and x′ are sampled from P , with probability at least 1/25, x envies x′ by L/8.
We conclude that with probability at least 1 − 2 exp(−m/100) − exp(−m/200) jointly over the
selection of the utility function u and the sample S, the extension of hu,S by D is not (α, β)-EF with
respect to P for any α < 1/25 and β < L/8.

To convert the joint probability into expected cost in the game, note that for two discrete, independent
random variables X and Y , and for a Boolean function E(X,Y), it holds that

PrX,Y (E(X,Y) = 1) = EX [PrY (E(X,Y) = 1)] . (7)

Given sample S and utility function u, let E(u, S) be the Boolean function that equals 1 if and only
if the extension of hu,S by D is not (α, β)-EF with respect to P for any α < 1/25 and β < L/8.
From Equation (7), Pru,S(E(u, S) = 1) is equal to Eu [PrS(E(u, S) = 1)]. The latter term is exactly
the expected value of the cost, where the expectation is taken over the randomness of u. It follows
that the expected cost of (any) D with respect to the chosen distribution over utilities is at least
1− 2 exp(−m/100)− exp(−m/200).

C Appendix for Section 4

This section is devoted to proving our main result:

Theorem 3. Suppose G is a family of deterministic classifiers of Natarajan dimension d, and let
H = H(G,m) for m ∈ N. For any distribution P over X , γ > 0, and δ > 0, if S = {(xi, x′i)}ni=1 is
an i.i.d. sample of pairs drawn from P of size

n ≥ O
(

1

γ2

(
dm2 log

dm|Y| log(m|Y|/γ)

γ
+ log

1

γ

))
,

then with probability at least 1− δ, every classifier h ∈ H that is (α, β)-pairwise-EF on S is also
(α+ 7γ, β + 4γ)-EF on P .

We start with an observation that will be required later.
Lemma 4. Let G = {g : X → Y} have Natarajan dimension d. For g1, g2 ∈ G, let (g1, g2) : X →
Y2 denote the function given by (g1, g2)(x) = (g1(x), g2(x)) and let G2 = {(g1, g2) : g1, g2 ∈ G}.
Then the Natarajan dimension of G2 is at most 2d.

Proof. Let D be the Natarajan dimension of G2. Then we know that there exists a collection of points
x1, . . . , xD ∈ X that is shattered by G2, which means there are two sequences q1, . . . , qn ∈ Y2 and
q′1, . . . , q

′
n ∈ Y2 such that for all i we have qi 6= q′i and for any subset C ⊂ [D] of indices, there

exists (g1, g2) ∈ G2 such that (g1, g2)(xi) = qi if i ∈ C and (g1, g2)(xi) = q′i otherwise.

Let n1 =
∑D
i=1 I{qi1 6= q′i1} and n2 =

∑D
i=1 I{qi2 6= q′i2} be the number of pairs on which the

first and second labels of qi and q′i disagree, respectively. Since none of the n pairs are equal, we
know that n1 + n2 ≥ D, which implies that at at least one of n1 or n2 must be ≥ D/2. Assume
without loss of generality that n1 ≥ D/2 and that qi1 6= q′i1 for i = 1, . . . , n1. Now consider any
subset of indices C ⊂ [n1]. We know there exists a pair of functions (g1, g2) ∈ G2 with (g1, g2)(xi)
evaluating to qi if i ∈ C and q′i if i 6∈ C. But then we have g1(xi) = qi1 if i ∈ C and g1(xi) = q′i1 if
i 6∈ C, and qi1 6= q′i1 for all i ∈ [n1]. It follows that G shatters x1, . . . , xn1

, which consists of at least
D/2 points. Therefore, the Natarajan dimension of G2 is at most 2d, as required.

We now turn two the theorem’s two main steps, presented in the following two lemmas.

15

Lemma 5. Let H ⊂ {h : X → ∆(Y)} be a finite family of classifiers. For any γ > 0, δ > 0,
and β ≥ 0 if S = {(xi, x′i)}ni=1 is an i.i.d. sample of pairs from P of size n ≥ 1

2γ2 ln |H|δ , then
with probability at least 1 − δ, every h ∈ H that is (α, β)-pairwise-EF on S (for any α) is also
(α+ γ, β)-EF on P .

Proof. Let f(x, x′, h) = I{u(x, h(x)) < u(x, h(x′))− β} be the indicator that x is envious of x′ by
at least β under classifier h. Then f(xi, x

′
i, h) is a Bernoulli random variable with success probability

Ex,x′∼P [f(x, x′, h)]. Applying Hoeffding’s inequality to any fixed hypothesis h ∈ H guarantees that
PrS(Ex,x′∼P [f(x, x′, h)] ≥ 1

n

∑n
i=1 f(xi, x

′
i, h) + γ) ≤ exp(−2nγ2). Therefore, if h is (α, β)-EF

on S, then it is also (α + γ, β)-EF on P with probability at least 1 − exp(−2nγ2). Applying the
union bound over all h ∈ H and using the lower bound on n completes the proof.

Next, we show thatH(G,m) can be covered by a finite subset. Since each classifier inH is determined
by the choice of m functions from G and mixing weights η ∈ ∆m, we will construct finite covers
of G and ∆m. Our covers Ĝ and ∆̂m will guarantee that for every g ∈ G, there exists ĝ ∈ Ĝ such
that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m. Similarly, for any mixing weights η ∈ ∆m, there exists η̂ ∈ ∆m

such that ‖η − η̂‖1 ≤ γ. If h ∈ H(G,m) is the mixture of g1, . . . , gm with weights η, we let ĥ be
the mixture of ĝ1, . . . , ĝm with weights η̂. This approximation has two sources of error: first, for
a random individual x ∼ P , there is probability up to γ that at least one gi(x) will disagree with
ĝi(x), in which case h and ĥ may assign completely different outcome distributions. Second, even in
the high-probability event that gi(x) = ĝi(x) for all i ∈ [m], the mixing weights are not identical,
resulting in a small perturbation of the outcome distribution assigned to x.

Lemma 6. Let G be a family of deterministic classifiers with Natarajan dimension d, and let
H = H(G,m) for some m ∈ N. For any γ > 0, there exists a subset Ĥ ⊂ H of size
O
((dm|Y|2 log(m|Y|/γ))dm

γ(d+1)m

)
such that for every h ∈ H there exists ĥ ∈ H satisfying:

1. Prx∼P (‖h(x)− ĥ(x)‖1 > γ) ≤ γ.

2. If S is an i.i.d. sample of individuals of size O(m
2

γ2 (d log |Y|+ log 1
δ)) then w.p. ≥ 1− δ,

we have ‖h(x)− ĥ(x)‖1 ≤ γ for all but a 2γ-fraction of x ∈ S.

Proof. As described above, we begin by constructing finite covers of ∆m and G. First, let ∆̂m ⊂ ∆m

be the set of distributions over [m] where each coordinate is a multiple of γ/m. Then we have
|∆̂m| = O((mγ)m) and for every p ∈ ∆m, there exists q ∈ ∆̂m such that ‖p− q‖1 ≤ γ.

In order to find a small cover of G, we use the fact that it has low Natarajan dimension. This implies
that the number of effective functions in G when restricted to a sample S′ grows only polynomially
in the size of S′. At the same time, if two functions in G agree on a large sample, they will also agree
with high probability on the distribution.

Formally, let S′ be an i.i.d. sample drawn from P of size O(m
2

γ2 d log |Y|), and let Ĝ = G
∣∣
S′

be any
minimal subset of G that realizes all possible labelings of S′ by functions in G. We now argue that with
probability 0.99, for every g ∈ G there exists ĝ ∈ Ĝ such that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m. For any
pair of functions g, g′ ∈ G, let (g, g′) : X → Y2 be the function given by (g, g′)(x) = (g(x), g′(x)),
and let G2 = {(g, g′) : g, g′ ∈ G}. The Natarajan dimension of G2 is at most 2d by Lemma 4.
Moreover, consider the loss c : G2 ×X → {0, 1} given by c(g, g′, x) = I{g(x) 6= g′(x)}. Applying
Lemma 2 with the chosen size of |S′| ensures that with probability at least 0.99 every pair (g, g′) ∈ G2

satisfies ∣∣∣∣∣ E
x∼P

[c(g, g′, x)]− 1

|S′|
∑
x∈S′

c(g, g′, x)

∣∣∣∣∣ ≤ γ

m
.

By the definition of Ĝ, for every g ∈ G, there exists ĝ ∈ Ĝ for which c(g, ĝ, x) = 0 for all x ∈ S′,
which implies that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m.

16

Using Lemma 1 to bound the size of Ĝ, we have that

|Ĝ| ≤ |S′|d|Y|2d = O

((
m2

γ2
d|Y|2 log |Y|

)d)
.

Since this construction succeeds with non-zero probability, we are guaranteed that such a set Ĝ exists.
Finally, by an identical uniform convergence argument, it follows that if S is a fresh i.i.d. sample of
the size given in Item 2 of the lemma’s statement, then, with probability at least 1− δ, every g and ĝ
will disagree on at most a 2γ/m-fraction of S, since they disagree with probability at most γ/m on
P .

Next, let Ĥ = {h~g,η : ~g ∈ Ĝm, η ∈ ∆̂m} be the same family as H, except restricted to choosing
functions from Ĝ and mixing weights from ∆̂m. Using the size bounds above and the fact that(
N
m

)
= O((Nm)m), we have that

|Ĥ| =
(
|Ĝ|
m

)
· |∆̂m| = O

(
(dm2|Y|2 log(m|Y|/γ))dm

γ(2d+1)m

)
.

Suppose that h is the mixture of g1, . . . , gm ∈ G with weights η ∈ ∆m. Let ĝi be the approximation
to gi for each i, let η̂ ∈ ∆̂m be such that ‖η− η̂‖1 ≤ γ, and let ĥ be the random mixture of ĝ1, . . . , ĝm
with weights η̂. For an individual x drawn from P , we have gi(x) 6= ĝi(x) with probability at most
γ/m, and therefore they all agree with probability at least 1− γ. When this event occurs, we have
‖h(x)− ĥ(x)‖1 ≤ ‖η − η̂‖1 ≤ γ.

The second part of the claim follows by similar reasoning, using the fact that for the given sample size
|S|, with probability at least 1− δ, every g ∈ G disagrees with its approximation ĝ ∈ Ĝ on at most a
2γ/m-fraction of S. This means that ĝi(x) = gi(x) for all i ∈ [m] on at least a (1− 2γ)-fraction of
the individuals x in S. For these individuals, ‖h(x)− ĥ(x)‖1 ≤ ‖η − η̂‖1 ≤ γ.

Combining the generalization guarantee for finite families given in Lemma 5 with the finite approxi-
mation given in Lemma 6, we are able to show that envy-freeness also generalizes forH(G,m).

Proof of Theorem 3. Let Ĥ be the finite approximation toH constructed in Lemma 6. If the sample is
of size |S| = O(1

γ2 (dm log(dm|Y| log |Y|/γ) + log 1
δ)), we can apply Lemma 5 to this finite family,

which implies that for any β′ ≥ 0, with probability at least 1 − δ/2 every ĥ ∈ Ĥ that is (α′, β′)-
pairwise-EF on S (for any α′) is also (α′ + γ, β′)-EF on P . We apply this lemma with β′ = β + 2γ.
Moreover, from Lemma 6, we know that if |S| = O(m

2

γ2 (d log |Y|+ log 1
δ)), then with probability at

least 1− δ/2, for every h ∈ H, there exists ĥ ∈ Ĥ satisfying ‖h(x)− ĥ(x)‖1 ≤ γ for all but a 2γ-
fraction of the individuals in S. This implies that on all but at most a 4γ-fraction of the pairs in S, h and
ĥ satisfy this inequality for both individuals in the pair. Assume these high probability events occur.
Finally, from Item 1 of the lemma we have that Prx1,x2∼P (maxi=1,2 ‖h(xi)− ĥ(xi)‖1 > γ) ≤ 2γ.

Now let h ∈ H be any classifier that is (α, β)-pairwise-EF on S. Since the utilities are in [0, 1]

and maxx=xi,x′i
‖h(x) − ĥ(x)‖1 ≤ γ for all but a 4γ-fraction of the pairs in S, we know that ĥ is

(α+ 4γ, β + 2γ)-pairwise-EF on S. Applying the envy-freeness generalization guarantee (Lemma 5)
for Ĥ, it follows that ĥ is also (α+ 5γ, β + 2γ)-EF on P . Finally, using the fact that

Pr
x1,x2∼P

(
max
i=1,2

‖h(xi)− ĥ(xi)‖1 > γ

)
≤ 2γ,

it follows that h is (α+ 7γ, β + 4γ)-EF on P .

It is worth noting that the (exponentially large) approximation Ĥ is only used in the generalization
analysis; importantly, an ERM algorithm need not construct it.

17

D Appendix for Section 5

Here we describe details of the transformation of the optimization problem from (2) to (4). Firstly,
softening constraints of (2) with slack variables, we obtain

min
gk∈G,ξ∈Rn×n

≥0

n∑
i=1

L(xi, gk(xi)) + λ
∑
i 6=j

ξij

s.t. USF
(k−1)
ii + η̃ku(xi, gk(xi)) ≥ USF (k−1)

ij + η̃ku(xi, gk(xj))− ξij ∀(i, j).

Here, ξij basically captures how much i envies j under the selected assignments (note that, ξij is 0
if the pair is non-envious, so that the algorithm does not go increasing negative envy at the cost of
positive envy for someone else). Plugging in optimal values of the slack variables, we obtain

min
gk∈G

n∑
i=1

L(xi, gk(xi))

+ λ
∑
i 6=j

max
(
USF

(k−1)
ij + η̃ku(xi, gk(xj))− USF (k−1)

ii − η̃ku(xi, gk(xi)), 0
)
. (8)

Next, we perform convex relaxation of different components of this objective function. For this, let’s
observe the term L(xi, gk(xi)). And, let ~w denote the parameters of gk. By definition, we have

w>gk(xi)
xi ≥ w>y′xi

for any y′ ∈ Y . This implies that

L(xi, gk(xi)) ≤ L(xi, gk(xi)) + w>gk(xi)
xi − w>y′xi

≤ max
y∈Y

{
L(xi, y) + w>y xi − w>y′xi

}
,

giving us a convex upper bound on the loss L(xi, gk(xi)). As this holds for any y′ ∈ Y , we choose
y′ = yi as defined in the main body, since it leads to the lowest achievable loss value. Therefore, we
have

L(xi, gk(xi)) ≤ max
y∈Y

{
L(xi, y) + w>y xi − w>yixi

}
.

This right hand side is basically an upper bound which apart from encouraging ~w to have the highest
dot product with xi at yi, also penalizes if the margin by which this is higher is not enough (where the
margin depends on other losses L(xi, y)). This surrogate loss is very similar to multi-class support
vector machines. We perform similar relaxations for the other two components of the objective
function. In particular, for the u(xi, gk(xi)) term, we have

−u(xi, gk(xi)) ≤ max
y∈Y

{
−u(xi, y) + w>y xi − w>bixi

}
,

where bi is as defined in the main body. Finally, for the remaining term, we have

u(xi, gk(xj)) ≤ max
y∈Y

{
u(xi, y) + w>y xj − w>sixj

}
,

where si is as defined in the main body5. On plugging in the convex surrogates of all three terms in
Equation (8), we obtain the optimization problem (4).

5Note that, instead of using si, an alternative to use in this equation is bj . In particular, for a pair (i, j), using
si encourages the assignment to give i their favorite outcome while j the outcome that i likes the least (and
hence causing i to envy j as less as possible), while using bj encourages the assignment to give both i and j
their favorite outcomes (pushing the assignment to just give everyone their favorite outcomes).

18

	Introduction
	Our Results
	Related Work

	The Model
	Envy-Freeness
	Optimization and Learning

	Arbitrary Classifiers
	Low-Complexity Families of Classifiers
	Implementation and Empirical Validation
	Algorithm
	Methodology
	Results

	Conclusion
	Natarajan Dimension Primer
	Appendix for Section 3
	Appendix for Section 4
	Appendix for Section 5

