
Higher-Order and Symbolic Computation manuscript No.
(will be inserted by the editor)

Logical approximation for program analysis

Robert J. Simmons · Frank Pfenning

Received: March 2, 2010 / Revised: November 7, 2010 / Accepted: January 10, 2011

Abstract The abstract interpretation of programs relates the exact semantics of a

programming language to a finite approximation of those semantics. In this article,

we describe an approach to abstract interpretation that is based in logic and logic

programming.

Our approach consists of faithfully representing a transition system within logic

and then manipulating this initial specification to create a logical approximation of

the original specification. The objective is to derive a logical approximation that can

be interpreted as a terminating forward-chaining logic program; this ensures that the

approximation is finite and that, furthermore, an appropriate logic programming in-

terpreter can implement the derived approximation.

We are particularly interested in the specification of the operational semantics of

programming languages in ordered logic, a technique we call substructural operational

semantics (SSOS). We show that manifestly sound control flow and alias analyses

can be derived as logical approximations of the substructural operational semantics of

relevant languages.

1 Introduction

A central goal of logical frameworks is to specify the operational semantics of evolv-

ing systems (in particular, the operational semantics of programming languages) in a

framework that is logically motivated and that allows specifications to be as simple as

possible. A secondary goal, which is the focus of this paper, is to develop sufficiently

precise approximations of the systems we specify. In particular, we would like to be

able to construct program analyses for the programming languages we consider.

This work was supported by the Fundação para a Ciência e a Tecnologia (Portuguese Founda-
tion for Science and Technology) through the Carnegie Mellon Portugal Program under Grant
NGN-44, and by a National Science Foundation Graduate Resource Fellowship for the first
author.

Carnegie Mellon University
Pittsburgh, PA
E-mail: {rjsimmon,fp}@cmu.edu

2

A general recipe for constructing a sound program analysis is to (1) specify the

operational semantics of the underlying programming language via an interpreter, and

(2) specify a terminating approximation of the interpreter itself. This is the basic idea

behind abstract interpretation [13] which provides techniques for constructing approxi-

mations (for example, by exhibiting a Galois connection between concrete and abstract

domains). The correctness proof establishes the appropriate relationship between the

concrete and abstract computations, and shows termination. We need to vary both the

specification of the operational semantics and the form of the approximation in order

to obtain various kinds of program analyses, sometimes with considerable ingenuity.

In this paper we propose a new class of instances of the general schema of abstract

interpretation. We encode the transition rules of an evolving system in a specification

framework based on ordered linear logic. We then apply logically justified techniques

for manipulating and approximating the specification to yield approximations that are

correct by construction. Furthermore, these approximations have the form of forward-

chaining (or “bottom-up”) logic programs which can be run to saturation, generalizing

proposals by McAllester and Ganzinger [21,14] with certain higher-order features.

Our particular interest is in the representation and static analysis of programming

languages; we illustrate our approach by deriving control flow and alias analyses by

logical approximation. Defining these specific approximations requires insight, but the

correctness proofs do not, because they follow from a general metatheorem justify-

ing the kinds of approximations we make, together with straightforward termination

arguments.

1.1 A simple example

Many interesting stateful systems have a natural notion of ordering that is fundamental

to their behavior. Consider a push-down automaton (PDA) that reads a string of

symbols left-to-right while maintaining and manipulating a separate stack of symbols.

We can represent any configuration of the PDA as a string with three regions:

[the stack] [the head] [the string being read]

where the symbols closest to the head are the top of the stack and the symbol waiting

to be read from the string. If we represent the head as a token hd, we can describe

the behavior of a single-state push-down automaton for checking that a string has

matching angle braces by using two rewriting rules:

hd < < hd (push)

< hd > hd (pop)

The distinguishing feature of these rewriting rules is that they are local – they do not

mention the entire stack or the entire string, just the relevant fragment of the beginning

of the string and the top of the stack. Execution of the PDA on a particular string of

tokens then consists of (1) appending the token hd to the beginning of the string, (2)

repeatedly performing rewritings until no more rewrites are possible, and (3) checking

to see if only a single token hd remains. This is one possible series of transitions:

3

hd < < > < < > > >
< hd < > < < > > >
< < hd > < < > > >

< hd < < > > >
< < hd < > > >
< < < hd > > >

< < hd > >
< hd >

hd

We will use this simple example to give an overview of our approach, which has

three steps: first, we represent the system in ordered linear logic; second, we translate

the representation into linear logic; and third, we find an approximation of the system

that can be interpreted as a forward-chaining logic program.

1.1.1 Representation in ordered linear logic

Because our goal is to use a framework that is both simple and logically motivated, we

turn to ordered logic (originally presented by Lambek [19]), a logic where hypotheses

have an intrinsic notion of order. Such logics are called substructural because they omit

some or all of the structural properties of exchange, weakening and contraction.

The rewriting rules we considered above can be expressed as propositions in ordered

logic, where the tokens hd, >, and < are all treated as atomic propositions. The symbol

• (pronounced “fuse”) is the binary connective for ordered conjunction (i.e. concate-

nation); it binds more tightly than �, a binary connective for ordered implication.

hd • < � < • hd (push1)

< • hd • > � hd (pop1)

We call collections of rules like this specifications. In this paper, we use a variant of

ordered linear logic [37], a generalization of both Lambek’s ordered logic and dual

intuitionistic linear logic [4]. This logic is first-order, which lets us generalize the speci-

fication above to an arbitrary collection of left and right brackets – the string “[<>()]”

could be represented by the following sequence of ordered atomic propositions:

(left square) (left angle) (right angle) (left paren) (right paren) (right square) (1)

The following rules describe the more general push-down automaton (following common

convention, the upper-case X is implicitly universally quantified):

hd • leftX � stackX • hd (push2)

stackX • hd • rightX � hd (pop2)

Note that we follow a common convention in this example: while we use the fuse

connective to indicate adjacent tokens in the rules above, we do not use any marker to

indicate adjacent tokens in the sequence (1) above. Sequences of atomic propositions

like the one above will be subsequently referred to as ordered contexts.

The encoding of state transitions as implications in substructural logics in this way

is a powerful and general technique; we discuss some related work in the conclusion.

The particular rewriting interpretation of the ordered linear logic that we will use, an

extension of the one introduced in [34], is outlined in Section 2.

4

1.1.2 Translation into linear logic

After we represent the transitions of our system as propositions in ordered linear logic,

the next step of our methodology is to translate our rules from ordered linear logic into

linear logic. In linear logic, we deal not with sequences of atomic propositions but with

multisets of atomic propositions – there is no inherent notion of order. Therefore, the

translation adds two arguments, called destinations, to every ordered atomic proposi-

tion. These destinations represent the proposition’s “left-hand side” and “right-hand

side,” and together they describe what position the atomic proposition would have in

the ordered context. The ordered context labeled (1) above looks something like this

under the destination-adding translation:

(left square d1 d2) (left angle d2 d3) (right angle d3 d4) (left paren d4 d5) . . . (2)

In Section 3, we present the destination-adding translation from ordered linear logic

to linear logic and show that it is sound. When this translation is applied to the rules

describing our push-down automaton, we get the following:

hdLM ⊗ leftXM R (∃m. stackX Lm ⊗ hdmR (push3)

stackX LM1 ⊗ hdM1M2 ⊗ rightXM2R (hdLR (pop3)

Note the ∃m in the conclusion of rule push3. Existential quantification in the conclusion

of a rule represents the creation of a fresh new parameter – in fact, there are no

constants (like paren or angle) or term constructors for destinations; they are always

represented by parameters. By using the rule push3 we can therefore transition from

a state containing the linear atomic propositions (hd d0 d1) and (left square d1 d2) to a

state containing the linear atomic propositions (stack square d0 d
′) and (hd d′ d2), where

d′ is a freshly generated parameter. The former state has the parameters d0, d1, and

d2 free, and the latter state has the parameters d0, d′, and d2 free.

1.1.3 Approximation as a logic program

After the destination-adding translation, we next take the step of “forgetting” about

linearity, which produces the following two rules in a standard first-order intuitionistic

logic (A ⊃ B is the way we write “A implies B”):

hdLM ∧ leftXM R ⊃ ∃m. stackX Lm ∧ hdmR (push4)

stackX LM1 ∧ hdM1M2 ∧ rightXM2R ⊃ hdLR (pop4)

Forgetting about linearity produces an approximation – the resulting sepecification is

sound, but not complete, with respect to the original specification. It is a slight digres-

sion, but it is worth mentioning that there is a class of logical specifications with two

important properties: (1) the resulting logical specification is sound and complete with

respect to the linear (and ordered) logical specifications, and (2) the resulting logical

specification can be effectively interpreted as a forward-chaining (or “bottom-up”) logic

program. An interpreter for a forward-chaining logic program takes a collection of facts

and exhaustively derives new facts until no new facts can be derived, at which point

the program is said to reach saturation. These specifications are of particular interest

to the natural language processing community, as described in Shieber, Schabes, and

Pereira’s classic work on deductive parsing [43].

5

In our setting, the two properties that deductive parsing relies on do not hold in

general. Our running example illustrates this: the rules above cannot be executed as a

forward-chaining logic program because of the existential quantifier in the conclusion

of rule push4. This existential quantifier can always be used to generate a distinct new

parameter and, therefore, two distinct new facts, so that a näıve attempt at saturation

might look like this:

Start with the facts: (hd d0 d1), (left angle d1 d2), and (right angle d2 d3)
From push4, add the facts: (stack angle d0 d′) and (hd d′ d1) (d′ is fresh)
From push4, add the facts: (stack angle d0 d′′) and (hd d′′ d1) (d′′ is fresh)
From push4, add the facts: (stack angle d0 d′′′) and (hd d′′′ d1) (d′′′ is fresh)

· · · · · · · · ·

However, we can approximate this specification by taking the existential quantifier

in the conclusion of push4 and equating the stray parameter it generates to some

concrete term. For instance, if we set m equal to M , we get the following rule:

hdLM ∧ leftXM R ⊃ stackX LM ∧ hdM R (push4M)

In this case, switching out push4 for push4M actually yields a precise approximation

that exactly captures the behavior of the original specification, which is not possible

in general. On the other hand, if we set m equal to L, we get the following rule:

hdLM ∧ leftXM R ⊃ stackX LL ∧ hdLR (push4L)

If the initial collection of facts contains a single atomic proposition (hd d0 d1) in addition

to all the left and right facts, then both push4L and pop4 maintain the invariant that,

as new facts are derived, the first argument of hd and the second and third arguments

of stack are equal to d0. These arguments are therefore uninteresting, and we can just

remove them from the approximate specification, resulting in this specification:

hdM ∧ leftXM R ⊃ stackX ∧ hdR (push5)

stackX ∧ hdM2 ∧ rightXM2R ⊃ hdR (pop5)

This logical approximation of the original specification accepts every string where, for

every form of bracket X, at least one left X appears before any of the right X, so

the string “[]]](()” would be accepted but the string “][[]” would not, as the right

bracket appears before any left bracket.

Section 4 covers strategies for approximating logical specifications and the meta-

approximation theorem that ensures the correctness of these strategies.

1.2 Substructural operational semantics

The preceding example explained our methodology, but we are not primarily interested

in representing things like PDAs, and we are not at all interested in deriving overly

generous parenthesis checking algorithms. What we are interested in is the representa-

tion of the operational semantics of programming languages. We represent operational

semantics in our ordered linear logical framework using a style known as substructural

6

operational semantics (SSOS).1 SSOS is a synthesis of structural operational seman-

tics, abstract machines, and logical specifications where machine states are represented

by collections of atomic propositions.

A distinguishing feature of substructural operational semantics in ordered logic

is the treatment of control stacks. Abstract machine specifications of programming

language semantics are traditionally specified with states of the form (K B E), repre-

senting an expression E evaluating on the control stack K (where K is a series of frames

F1, . . . , Fn), and (KCV), representing a value V being returned to K. In SSOS speci-

fications we represent the stack K not as a single syntactic object but as a sequence of

ordered atomic propositions comp(F), each of which contains a single stack frame. The

name “comp” was chosen because we think of the atomic proposition as representing

a suspended computation. An expression E being evaluated on a stack is represented

by an atomic proposition eval(E), and the state (F1, . . . , FnBE) is represented by the

sequence of ordered atomic propositions (comp(F1) . . . comp(Fn) eval(E)). Similarly,

a value V being returned to a stack (the V in K C V) is represented by an ordered

atomic proposition retn(V).

Our running example will be a call-by-value operational semantics for an untyped

lambda calculus; we will eventually derive a control flow analysis from this specification.

The syntax of the lambda calculus is represented using higher-order abstract syntax [32],

so we represent a lambda term as lam(λx.E0 x). The evaluation of a lambda expression

is simple: the expression is already a value, so we return it.

eval(lam(λx.E0 x)) � retn(lam(λx.E0 x)) (e/lam)

The evaluation of an application appE1E2 requires us to generate a new stack frame

(app1 E2) that suspends the function argument E2 while E1 is being evaluated to a

value.

eval(appE1E2) � comp(app1E2) • eval(E1) (e/app)

When a value is returned to a waiting app1 frame, we switch to evaluating the function

argument while storing the returned value V1 on the stack. The value V1 had better

be a function lam(λx.E0 x), but we don’t actually assert this.

comp(app1E2) • retn(V1) � comp(app2 V1) • eval(E2) (e/app1)

Finally, when an evaluated function argument is returned to a waiting app2 frame, we

substitute the value into the body of the lambda expression and evaluate the result.

As usual in higher-order abstract syntax representations, substitution is performed by

application – E0 V2 can be understood as E0[V2/x].

comp(app2(lam(λx.E0 x))) • retn(V2) � eval(E0 V2) (e/app2)

These four rules constitute a substructural operational semantics specification of

the call-by-value lambda calculus; an example of the evaluation of an expression to

a value under this specification is given in Figure 1. As before, each machine state

is represented by an ordered context, so the “fuse” connective that appears in the

1 The term substructural operational semantics merges structural operational semantics [35],
which we seek to generalize, and substructural logic, which we use as our specification frame-
work.

7

eval(app (lam(λx.x)) (app (lam(λy.y)) (lam(λz.e))))

comp(app1(app (lam(λy.y)) (lam(λz.e)))) eval(lam(λx.x))

comp(app1(app (lam(λy.y)) (lam(λz.e)))) retn(lam(λx.x))

comp(app2(lam(λx.x))) eval(app (lam(λy.y)) (lam(λz.e)))

comp(app2(lam(λx.x))) comp(app1(lam(λz.e))) eval(lam(λy.y))

comp(app2(lam(λx.x))) comp(app1(lam(λz.e))) retn(lam(λy.y))

comp(app2(lam(λx.x))) comp(app2(lam(λy.y))) eval(lam(λz.e))

comp(app2(lam(λx.x))) comp(app2(lam(λy.y))) retn(lam(λz.e))

comp(app2(lam(λx.x))) eval(lam(λz.e))

comp(app2(lam(λx.x))) retn(lam(λz.e))

eval(lam(λz.e))

retn(lam(λz.e))

Fig. 1 A trace of the intermediate steps in a call-by-value evaluation of the untyped lambda
calculus term (λx.x)((λy.y)(λz.e)) under the SSOS specification given in Section 1.2.

rules e/app, e/app1, and e/app2 does not appear in Figure 1. SSOS specifications in

ordered logic are conceptually simple, notationally clean, and provide a modular basis

for the specification of many stateful and concurrent programming language features,

as discussed in [34].

1.3 Outline

The outline of this paper mirrors the discussion in Section 1.1. In Section 2 we will

revisit the use of ordered linear logic as a specification framework, and in Section 3 we

discuss the translation from ordered linear logic into linear logic. In Section 4 we discuss

approximation of ordered linear logical specifications, as well as the conditions under

which those approximations can be run as saturating, forward-chaining logic programs.

Throughout the paper we show how a control flow analysis can be derived from the

previous SSOS specification of the call-by-value lambda calculus, and in Section 5 we

apply the same techniques to derive an alias analysis by logical approximation.

2 Representation in ordered linear logic

As we described in the introduction, we are interested in using propositions in ordered

linear logic, such as (< • hd • > � hd), to represent transitions in systems such as

the push-down automaton that we specified in Section 1.1. In order to explain the

logical interpretation of propositions in ordered logic, we need to give the proof rules

for ordered logic; a relevant subset of these rules is given in Figure 2. Sequents have

the form (Γ ;Ω ` C) where Ω is a sequence of hypotheses that must be used exactly

once in the specified order and Γ is a set of valid or persistent hypotheses that may be

used any number of times in any order.

In Figure 3 we can see the logical interpretation of the two push-down automaton

transitions < hd < > > < < hd > > < hd > using the proof rules in Figure 2. (We as-

sume Γ contains the two rules pop1 and push1 from Section 1.1.) We read the PDA

transitions off of these two derivations by examining them from the bottom to the top:

8

Γ ;ΩA ` B
Γ ;Ω ` A� B

�R
Γ ;ΩA ` A Γ ;ΩLBΩR ` C
Γ ;ΩL(A� B)ΩAΩR ` C

�L

Γ ;ΩL ` A Γ ;ΩR ` B
Γ ;ΩLΩR ` A •B

•R
Γ ;ΩL ABΩR ` C
Γ ;ΩL(A •B)ΩR ` C

•L

Γ ;Q ` Q init
A ∈ Γ Γ ;ΩL AΩR ` C

Γ ;ΩLΩR ` C
copy

Fig. 2 A subset of the sequent calculus rules for ordered logic. The metavariable Q in the
init rule stands for an arbitrary atomic proposition.

(< • hd • >� hd) ∈ Γ

Γ ; < ` <
init

Γ ; hd ` hd
init

Γ ; > ` >
init

Γ ; hd > ` hd • >
•R

Γ ; < hd > ` < • hd • >
•R

Γ ; < hd > ` C
Γ ; < (< • hd • >� hd) < hd > > ` C

�L

Γ ; < < hd > > ` C
copy

...

(hd • <� < • hd) ∈ Γ

Γ ; hd ` hd
init

Γ ; < ` <
init

Γ ; hd < ` hd • <
•R

...
Γ ; < < hd > > ` C

Γ ; < (< • hd) > > ` C
•L

Γ ; < (hd • <� < • hd) hd < > > ` C
�L

Γ ; < hd < > > ` C
copy

Fig. 3 A derivation in ordered logic (split up into two parts) that represents the push-down
automaton transitions < hd < > > < < hd > > (bottom) and < < hd > > < hd > (top). The open
leaf of the lower tree is the same as the root of the upper tree, so the two derivations could be
fused.

the first state of the PDA, < hd < > >, is encoded in the sequent (Γ ; < hd < > > ` C) at

the base of the derivation, the second state < < hd > > is encoded in the middle sequent

(Γ ; < < hd > > ` C), and the third state < hd > is encoded in the sequent (Γ ; < hd > ` C)

in the upper-right portion of Figure 3. This last sequent does not have a derivation to

prove it, so the derivation in Figure 3 is “open” or incomplete.

The sequent calculus in Figure 2 does a perfectly good job of defining a logic.

However, we are interested in using logic to represent transition systems, and the rules

in Figure 2 do not quite serve this purpose. The particular derivation presented in

Figure 3 cleanly separates the parts that belong to the two different PDA transitions.

However, the logic presented in Figure 2 does not enforce this clean separation. For

instance, we can alter the derivation by moving the “upper” use of the copy proof rule

down, so that derivation begins with two applications of the copy proof rule, and we

can similarly move the application of the •L proof rule in the bottom derivation up to

the top derivation, perhaps into the branch where the conclusion is < • hd • >.

In order to introduce a well-defined notion of transition, we instead base our spec-

ification framework on a restricted form of sequent calculus with a notion of focus.

Focusing, introduced by Andreoli [2], classifies propositions as either positive or neg-

ative. A positive proposition S, which can be an atomic proposition Q or ordered

conjunction (S1 • S2), can be put in right focus in a sequent (Γ ;Ω ⇒ [S]). The only

9

way we can prove such a sequent is by applying a proof rule that breaks down S. The

following are the right focus rules for the focused version of the logic in Figure 2:

Γ ;ΩL ⇒ [S1] Γ ;ΩR ⇒ [S2]

Γ ;ΩLΩR ⇒ [S1 • S2]
•R

Γ ;Q⇒ [Q]
init

When we are focused on the right, it is not possible to apply left rules; therefore, the

only way a sequent (Γ ;Ω ⇒ [< • hd • >]) will be provable is if Ω = < hd >. Left focus,

written as (Γ ;ΩL[A]ΩR ⇒ C), has a similar role for negative propositions A – the only

negative proposition A we have considered so far is S1 � S2.2 Left focus prevents the

copy rule from being applied twice in a row, because we can only apply the copy-like

rule (now called focusL) when we are not in focus, and then the copied proposition

goes into focus:

A ∈ Γ Γ ;ΩL[A]ΩR ⇒ C

Γ ;ΩLΩR ⇒ C
focusL

Γ ;Ω1 ⇒ [S1] Γ ;ΩL S2ΩR ⇒ C

Γ ;ΩL[S1 � S2]Ω1ΩR ⇒ C
�L

An important property of the focused system is that it is both sound and complete

with respect to an unfocused sequent calculus, which means that there is a derivation

of (Γ ;Ω ` A) under proof rules like those in Figure 2 if and only if a focused derivation

of (Γ ;Ω ⇒ A) exists. This result follows from the internal soundness and completeness

of the focused proof system, which we verify by proving the admissibility of cut and

identity principles. A full discussion of this point would take us too far afield; we refer

the interested reader to [34,47] for details.

2.1 Ordered logical specifications

The previous discussion was intended to motivate the design of a logical framework

based on propositional ordered logic. In this section, we will present the full specification

framework, which is based on first-order ordered linear logic [37]. This framework is a

slight generalization of the ordered logical framework previously presented in [34]. In

Section 2.3 we give a state transition interpretation of ordered logic programming using

this system; this interpretation defines a notion of transition that exactly corresponds

to the notion of transition in the push-down automata and programming languages we

are representing.

As discussed, we categorize propositions in the focused framework as either negative

propositions A (which we call rules) or as positive propositions S. Atomic propositions

Q are first-order and so can can contain terms t.

Atomic Propositions Q,Ql, Qp ::= p t1 . . . tn

Negative Propositions A,B ::= ∀x.A | S1 � S2

Positive Propositions S ::= Q | ¡Ql | !Qp | S1 • S2 | ∃x.S | 1 | t
.
= s

2 The most general form of right ordered implication is S � A; the rule �L would, in
this case, remain focused on A in the second premise, and there would be a second rule blur
with premise (Γ ;ΩL S ΩR ⇒ C) and conclusion (Γ ;ΩL[S]ΩR ⇒ C). Our definition of �L
consolidates the more general �L and blur rules in a manner suitable for our framework.

10

Initial Rules

Γ ; ·;Q⇒Σ [Q]
init

Γ ;Ql; · ⇒Σ [¡Ql]
init¡

Qp ∈ Γ
Γ ; ·; · ⇒Σ [!Qp]

init!

Focusing Rules

A ∈ Γ Γ ;∆;ΩL[A]ΩR ⇒Σ C

Γ ;∆;ΩLΩR ⇒Σ C
focusL

Γ ;∆;Ω ⇒Σ [S]

Γ ;∆;Ω ⇒Σ S
focusR

Ordered Implication

Γ ;∆;Ω S1 ⇒Σ S2

Γ ;∆;Ω ⇒Σ S1 � S2
�R

Γ ;∆1;Ω1 ⇒Σ [S1] Γ ;∆2;ΩLS2ΩR ⇒Σ C

Γ ;∆1∆2;ΩL[S1 � S2]Ω1ΩR ⇒Σ C
�L

Conjunction

Γ ;∆1;ΩL ⇒Σ [S1] Γ ;∆2;ΩR ⇒Σ [S2]

Γ ;∆1∆2;ΩLΩR ⇒Σ [S1 • S2]
•R

Γ ;∆;ΩLS1S2ΩR ⇒Σ C

Γ ;∆;ΩL(S1 • S2)ΩR ⇒Σ C
•L

Γ ; ·; · ⇒Σ [1]
1R

Γ ;∆;ΩLΩR ⇒Σ C

Γ ;∆;ΩL(1)ΩR ⇒Σ C
1L

Modalities
ΓQ;∆;ΩLΩR ⇒Σ C

Γ ;∆;ΩL(!Q)ΩR ⇒Σ C
!L

Γ ;∆Q;ΩLΩR ⇒Σ C

Γ ;∆;ΩL(¡Q)ΩR ⇒Σ C
¡L

Quantifiers

Γ ;∆;Ω ⇒Σ,a A[a/x]

Γ ;∆;Ω ⇒Σ ∀x.A
∀aR

Γ ;∆;ΩL[A[t/x]]ΩR ⇒Σ C

Γ ;∆;ΩL[∀x.A]ΩR ⇒Σ C
∀L

Γ ;∆;Ω ⇒Σ [S[t/x]]

Γ ;∆;Ω ⇒Σ [∃x.S]
∃R

Γ ;∆;ΩL(S[a/x])ΩR ⇒Σ,a C

Γ ;∆;ΩL(∃x.S)ΩR ⇒Σ C
∃aL

Equality

Γ ; ·; · ⇒Σ [t
.
= t]

.
=R

θΓ ; θ∆; θΩL θΩR ⇒Σ′ θS for all Σ′ ` θ : Σ s.t. θt = θs

Γ ;∆;ΩL(t
.
= s)ΩR ⇒Σ S

.
=L

Fig. 4 A weakly focused sequent calculus for the fragment of ordered linear logic that makes
up the basis of ordered logical specifications. Order matters for the context Ω; all other contexts
are treated as equivalent up to reordering.

We also define the structure of contexts.

Persistent contexts Γ ::= · | A | Qp | Γ Γ ′

Linear contexts ∆ ::= · | Ql | ∆∆′

Ordered contexts Ω ::= · | S | ΩΩ′

Parameter contexts Σ ::= · | x | ΣΣ′

Persistent, linear, and parameter contexts are treated as equivalent up to reordering

(with “·” representing an empty context), but order matters in ordered contexts – when

representing our PDA example in an ordered context, it would not do to treat (hd < >)

and (hd > <) as equivalent contexts! Additionally, all the parameters in a context Σ are

required to be distinct.

We have seen examples of ordered implication S1 � S2 (where we call S1 the

premise and S2 the conclusion), ordered conjunction S1 • S2, and ordered atomic

propositions Q. Our specification framework also includes 1, the unit of ordered con-

junction, existential quantification ∃x.S, and universal quantification ∀x.S. In addition

11

to ordered atomic propositions we have linear atomic propositions ¡Ql and persistent

atomic propositions !Qp. These atomic propositions are treated as syntactically dis-

tinct from one another, so that (for example) a persistent atomic proposition is always

preceded by a ! and an ordered atomic proposition never is. This restriction, elsewhere

referred to as separation [45,34], has an interpretation in the proof theory of ordered

linear logic [47].

Persistent atomic propositions act like normal mathematical facts – when we assert

a persistent atomic proposition in the conclusion of a rule, it stays true for the rest of

the evolution of the system, so when we match against a persistent fact in the premise

of a rule, the application of the rule does not remove that fact from the relevant set of

facts.3 Linear atomic propositions, on the other hand, act like consumable resources but

are not ordered: while the rules (Q1 •Q2 � S) and (Q2 •Q1 � S) are not equivalent,

the rules (¡Q1 • ¡Q2 � S) and (¡Q2 • ¡Q1 � S) are. This is a direct consequence of the

aforementioned fact that we treat linear contexts ∆ as equivalent up to reordering but

do not treat ordered contexts Ω the same way.

The logic is defined in terms of the three kinds of sequents: unfocused sequents

(Γ ;∆;Ω ⇒Σ C), left-focused sequents (Γ ;∆;ΩL[A]ΩR ⇒Σ C), and right-focused

sequents (Γ ;∆;Ω ⇒Σ [S]) – the metavariable C can stand for either a positive or a

negative proposition. The rules of focused ordered linear logic are given in Figure 4.

As usual for first-order sequent calculi, we stipulate that all contexts and propositions

in a sequent are well-defined only if all the free parameters are bound in Σ; the proof

rules ∃aL and ∀aR bind new parameters a that must not be free in the conclusion.

The one addition to our logic relative to the framework of ordered logical speci-

fications described in previous work [34] is a proposition (t
.
= s) describing equality

between terms. The notation Σ′ ` θ : Σ means that θ, a substitution, acts like a func-

tion that can take terms, propositions and contexts well-defined under the parameters

Σ to terms, propositions, and contexts well-defined under the parameters in Σ′ by

replacing all parameters in Σ uniformly with terms well-defined in Σ′. A substitution

θ is a unifier of the terms t and s if θt is identical to θs (up to renaming of bound

variables). The left rule
.
=L uses unifiers and is infinitary – there is a premise for every

unifier of the terms t and s, potentially infinitely many. This presentation of
.
=L is a

variant of the standard presentation, which involves complete sets of unifiers [15,40].

There are well-know conditions, such as the restriction to first-order terms or to the

pattern fragment [25], under which terms are known to always have either no unifiers

or a most general unifier, a unifier with the property that, for any other unifier σ,

σ = σ′ ◦ θ for some substitution σ′. If we syntactically restrict unification in this

way, the infinitary rule can be replaced by the two rules below while retaining the

completeness of the logic:

t and s have no unifier

Γ ;∆;ΩL(t
.
= s)ΩR ⇒Σ S

6 .=L
Σ′ ` θ : Σ = mgu(t, s) θΓ ; θ∆; θΩL θΩR ⇒Σ′ θS

′

Γ ;∆;ΩL(t
.
= s)ΩR ⇒Σ S

.
=
′
L

In our case, we can make syntactic restrictions that ensure that most general unifiers

are always defined, which means that the logic is complete even without the 6 .=L rule.

We use equality only in two restricted ways, both of which straightforwardly ensure

3 A more standard terminology is to call these propositions “intuitionistic” rather than
“persistent,” but this is inappropriate for our setting because the ordered linear logic we are
using is also an intuitionistic logic. We will therefore consistently use the word “persistent” to
describe propositions that act like normal (intuitionistic) mathematical truth.

12

Γ ; (link d1d2); · ⇒d1d2
[¡(link d1d2)]

init¡
Γ ; (a d) (a d); · ⇒d C

Γ ; (a d1) (a d2); d1
.
= d2 ⇒d1d2

C

.
=
′
L

Γ ; (a d1) (link d1d2) (a d2); [¡(link d1d2)� d1
.
= d2]⇒d1d2

C
�L

Γ ; (a d1) (link d1d2) (a d2); [∀D′. ¡(link d1D′)� d1
.
= D′]⇒d1d2 C

∀L

Γ ; (a d1) (link d1d2) (a d2); [∀D. ∀D′. ¡(linkDD′)� D
.
= D′]⇒d1d2

C
∀L

Γ ; (a d1) (link d1d2) (a d2); · ⇒d1d2
C

focusL

Fig. 5 Sequential derivation representing the transition from (a d1) (link d1d2) (a d2) to
(a d) (a d) using the rule (¡(linkDD′) � D

.
= D′) – the implicit quantification of D and

D′ is made explicit in the derivation.

the existence of most general unifiers. One situation is for definitions like (∃x. x .
= t) in

which x was introduced locally and so must be a parameter. The other is in situations

where we are equating two destinations D and D′ that are syntactically known to

always parameters (recall from the introduction that we said there were no constants

or constructors for destinations). Two parameters in Σ are always trivially unifiable.

One reason we want this notion of equality is to express the unification of distinct

parameters. Say we have a linear context (a d1) (link d1 d2) (a d2) containing three linear

atomic propositions, where d1 and d2 are distinct parameters. We can apply a rule

(¡(linkDD′) � D
.
= D′) to remove the link and unify the parameters d1 and d2,

resulting in the context (a d) (a d). This transition is represented by the derivation in

Figure 5. In order to fit the derivation horizontally on the page, we omitted the first

premise of focusL (which is (∀D.∀D′. ¡(linkDD′) � D
.
= D′) ∈ Γ) and the first

premise of
.
=
′
L (which is (d ` (d/d1, d/d2) : d1d2) = mgu(d1, d2)).

A discussion of the standard metatheoretic results for this framework is outside the

scope of this article but treated elsewhere [47]. Proposition 1 presents some of these

metatheoretic results.

Proposition 1 (Metatheory) Given the complete definition of non-focused ordered

linear logic with equality in [47], the following hold:

1. Cut+ – Γ ;∆;Ω ⇒Σ [S] and Γ ;∆′;ΩL S ΩR ⇒Σ C imply Γ ;∆∆′;ΩLΩΩR ⇒Σ C.

2. Cut− – Γ ;∆;Ω ⇒Σ A and Γ ;∆′;ΩL[A]ΩR ⇒Σ C imply Γ ;∆∆′;ΩLΩΩR ⇒Σ C.

3. Identity+ – Γ ; ·;S ⇒Σ S.

4. Identity− – Γ,A; ·; · ⇒Σ A.

5. Soundness & completeness of focusing – Γ ;∆;Ω ⇒Σ C if and only if Γ ;∆;Ω `Σ C,

where Γ ;∆;Ω `Σ C is provability in “normal” (i.e. unfocused) ordered linear logic.

2.2 An environment semantics for SSOS specifications

Persistent atomic propositions and existential quantification in our framework allow

us to give an alternate specification of the call-by-value lambda calculus presented in

Section 1.2. In rule e/app2 from our original SSOS specification, when a value was

ready to be applied to a function we substituted the value into the function:

comp(app2(lam(λx.E0 x))) • retn(V2) � eval(E0 V2) (e/app2)

13

eval(X) • !bindX V � retn(V) (env/var)

eval(lam(λx.E0 x)) � retn(lam(λx.E0 x)) (env/lam)

eval(app E1 E2) � comp(app1 E2) • eval(E1) (env/app)

comp(app1 E2) • retn(V1) � comp(app2 V1) • eval(E2) (env/app1)

comp(app2(lam(λx.E0 x))) • retn(V2) � ∃y. comp(call) • eval(E0 y) • !bind y V2 (env/app2)

comp(call) • retn(V) � retn(V) (env/call)

Fig. 6 An SSOS environment semantics for the call-by-value lambda calculus.

Using existential quantification we can instead generate a new parameter y, substitute

that for the bound variable in E0, and then generate a persistent fact !bind y V2 that

permanently associates the parameter with the argument V2.

comp(app2(lam(λx.E0 x))) • retn(V2) � ∃y.eval(E0 y) • !bind y V2 (env/app2
′)

A second rule (env/var) ensures that when we come across one of these parameters in

the course of evaluation, we can “look up” the associated value by finding the persistent

proposition !bindX V ; our use of existential quantification ensures that there is at most

one such atomic proposition for every parameter.

The complete specification, shown in Figure 6, has one other change – we introduce

a stack frame comp(call) in rule env/app2. Because call has no arguments (unlike app1
and app2) this rule is not operationally meaningful. The only effect this rule has is

to leave a token on the control stack that says “a function call started here,” and

that token is later consumed by rule env/call when the function returns a value. We

introduce this additional stack frame and rule here because marking the point where

a function returns is critical to the control flow analysis we derive later on.

This style of specification was called an “environment semantics” for SSOS spec-

ifications in previous work – the persistent context acts as a global environment con-

taining the values of all function arguments. Many other extensions are possible and

are discussed in [34], for instance a call-by-need specification that uses linear resources

to represent a suspended computation and persistent resources (in the style of this

environment semantics) to contain the memoized result of evaluating a suspended

computation.

2.3 Transitions in ordered logical specifications

We have defined a sequent calculus for ordered linear logic that is well-behaved (at

least under the condition that equality t
.
= s only arises in situations where t and s

have a most general unifier). In this section, we discuss a few other conditions that will

allow us to treat closed negative propositions as something like rewriting instructions.

We have been calling closed negative proposition rules; we call collections of rules

specifications if each rule (∀x1. . .∀xn. S1 � S2) obeys the following two conditions:

– Range restriction. Each universally bound variable xi, as well as each existentially

bound variable in S1, must have one strict occurrence in the premise S1 [33]. This

ensures that higher-order matching is unitary and decidable so that we can always

decide whether a particular rule may be applied [41].

14

– Rule separation: A rule with ordered atomic propositions in the conclusion S2 must

have at least one ordered atomic proposition in the premise S1, and a rule with

linear atomic propositions in the conclusion must have at least one ordered or linear

atomic proposition in the premise.

Range restriction is necessary in order for logical specifications to have an operational

interpretation as forward-chaining logic programs (and rule separation is helpful [45]).

Rule separation is a necessary precondition for the translation of ordered logical spec-

ifications into linear logical specifications that we consider in the next section.

The operational interpretation of ordered logical algorithms is derived from the

focused sequent calculus. If we look at the derivations given in Figures 3 and 5, they

have a particular form: a rule is copied into the context, and focused rules are applied

as far as possible, at which point unfocused rules are applied as far as possible. A fully

focused sequent calculus would enforce both of these steps, but the sequent calculus

presented in Figure 4 is only weakly focused: it forces focused rules, but not unfocused

rules, to be applied as far as possible. The transition semantics that we define presently

will enforce the eager application of unfocused left rules as well.

Definition 1 A state is an unfocused sequent (ΓPΓ ;∆;Ω ⇒Σ S) where the contexts

Γ , ∆, and Ω contain only (persistent, linear, and ordered, respectively) atomic propo-

sitions, ΓP is a specification, and the conclusion S is a closed positive proposition. We

use S as a metavariable for states.

We write (ΓPΓ ;∆;Ω ⇒Σ S) →| if there is a complete derivation of the following

form:

D
ΓPΓ ;∆;Ω ⇒Σ [S]

This derivation necessarily stays entirely within right-focused sequents. In fact, it is

decidable if (ΓPΓ ;∆;Ω ⇒Σ S) →| holds because the required higher-order matching

is decidable.

We write (ΓPΓ ;∆;Ω ⇒Σ S)
−+−→ (ΓPΓ

′;∆′;Ω′ ⇒Σ′ S) (or S1
−+−→ S2) if there is

a sequential derivation of the following form:

ΓPΓ
′;∆′;Ω′ ⇒Σ′ S

D
ΓPΓ ;∆;Ω ⇒Σ S

A sequential derivation (a phase in focusing terminology) is an application of focusL
followed by a series of focused rules (init, init¡, init!, �L, •R, 1R, ∀L, ∃R, and

.
=R)

which are then followed by a series of unfocused left rules (•L, 1L, !L, ¡L, ∃L, and
.
=
′
L),

leaving exactly one unproven sequent at the “top” that is also a state. We additionally

require that every unfocused left rule in a sequential derivation be applied to the

leftmost non-atomic proposition in Ω.

According to the rules in Figure 4, every focusing phase has exactly one leaf. This

would not be the case if we introduced a broader family of connectives (such as additive

disjunction) or if we relaxed our restrictions on the use of equality. It is, in fact, the

need for focusing phases to generally be sequential derivations that largely determined

the fragment of ordered logic used for our framework.

15

2.3.1 Adequacy of transitions

We have now defined S −+−→ S′, a logically-defined notion of transition. We also have a

notion of transition in our parenthesis-checking push-down automaton and a notion of

transition in our SSOS specification that we used to give the example trace in Figure 1.

We say that a specification adequately represents a transition system (such as a PDA

or a programming language) if

1. There is a state SX = (Γ ;∆;Ω ⇒Σ S) in the framework for every state X in the

transition system,

2. X = Y if and only if SX = SY ,

3. SX
−+−→ S′ if and only if X Y in the transition system and S′ = SY , and

4. If the transition system has a notion of halting state, then X halts if and only if

SX →|.

The first three conditions can be satisfied for the push-down automaton if we fix any

S and let a PDA state like (hd < >) be represented by the state (ΓP ; ·; hd < > ⇒ S). If

we want to represent the “accepting” behavior of the PDA, we can let S = hd, because

obviously (ΓP ; ·; hd ⇒ hd) →|. We are not always concerned about capturing the

termination behavior of a system; often we are satisfied to capture just its transitions.

In the PDA example we could set S = 1 even though, under that definition, there is

no PDA state X where SX
−+−→ . . .

−+−→ S→|. This definition still adequately captures

the transition behavior, though not the termination behavior, of the PDA.

We say that a rule A gives rise to the transition S −+−→ S′ if we can build a sequential

derivation from S′ to S by focusing on A; verifying the adequacy of transitions is a

matter of examining the different sequential derivations that the specification gives rise

to. Adequacy then allows us to think of two rules as equivalent if they give rise to the

same sequential derivations. For instance, the fact that the linear contexts (∆Q1Q2)

and (∆Q2Q1) are treated as equivalent is the reason that we were justified earlier

in saying that (¡Q1 • ¡Q2 � S) and (¡Q2 • ¡Q1 � S) were equivalent rules. We will

frequently leverage this notion when dealing with conclusions about equality: we can

say that the rule (a(X) � ∃z. b(z) • X .
= z) is equivalent to a rule (a(X) � b(X))

because both rules give rise to the same sequential derivations.

2.3.2 Logical correctness of transitions

The connection between the rules of weakly focused ordered linear logic and the tran-

sitions in our framework of ordered logical specifications is established by Theorem 1.

Proposition 1 together with Theorem 1 then establishes the connection between (non-

focused) ordered linear logic and the framework of ordered logical specifications.

Definition 2 A sequence of states S1
−+−→ . . .

−+−→ Sn is called a trace (or a partial

trace; if Sn →| it is called a complete trace.

Theorem 1 (Nondeterministic completeness) If (ΓPΓ ;∆;Ω ⇒Σ S) is a state,

then there is a derivation of (ΓPΓ ;∆;Ω ⇒Σ S) if and only if there exists a complete

trace (ΓPΓ ;∆;Ω ⇒Σ S) = S0
−+−→ S1

−+−→ . . .
−+−→ Sn →|.

Proof The reverse direction, that given a series of transitions there exists a derivation, is

immediate from the fact that the steps-to relation S −+−→ S′ was defined according to the

16

proof rules of weakly-focused ordered linear logic given in Figure 4. The complication

of the forward direction comes because the proof rules in Figure 4 do not require that

non-focused left rules be applied exhaustively, much less in a left-to-right order.

In order to establish the forward direction, we first need a lemma that all the

unfocused left rules are invertible. That is, given a derivation of (ΓPΓ ;∆;ΩLSΩR ⇒Σ

S′),

1. if S = S1•S2, then there is a smaller derivation ending in Γ ;∆;ΩLS1S2ΩR ⇒Σ S
′,

2. if S = ¡Q, then there is a smaller derivation ending in Γ ;∆Q;ΩLΩR ⇒Σ S
′,

3. if S = !Q, then there is a smaller derivation ending in ΓQ;∆;ΩLΩR ⇒Σ S
′,

4. if S = ∃x.S, then there is a smaller derivation ending in Γ ;∆;ΩLS[a/x]ΩR ⇒Σa S
′,

5. if S = 1, then there is a smaller derivation ending in Γ ;∆;ΩLΩR ⇒Σ S
′, and

6. if S = (t
.
= s) and Σ′ ` θ : Σ is the most general unifier of t and s, then there is a

smaller derivation ending in θΓ ; θ∆; θΩLθΩR ⇒Σ′ θS
′

Each of the above statements depends on a general lemma that, for any non-atomic S,

there is no derivation of (Γ ;∆;ΩLSΩR ⇒Σ [S′]), and the proof of each of the above

statements is also mutually inductive with the proof of an analogous statement for left-

focused sequents. The “smaller” part is critical, as in the proof below we induct over

the size of derivations and pass the result of the invertibility lemma to the induction

hypothesis.

To prove the forward direction of Theorem 1, we are given a derivation of some

state S = (ΓPΓ ;∆;Ω ⇒Σ S) and we must show that S −+−→ . . .
−+−→ Sn → |. If

the last rule in the derivation is focusR, then S →| and we are done. Otherwise,

the last rule can only be focusL. It will suffice to construct a smaller derivation of

S′ = (ΓPΓ
′;∆′;Ω′ ⇒Σ′ S) and a sequential derivation from S′ to S; if we can do

this, then by the induction hypothesis S′ −+−→ . . .
−+−→ Sn →| and by the existence of a

sequential derivation S −+−→ S′.
We have assumed the last rule in the derivation of S was focusL, so the derivation

of S consists of zero or more instances of the ∀L rule followed by the rule �L, which

has as its second premise a sub-derivation of (ΓPΓ ;∆′′;ΩLS
′′ΩR ⇒Σ S). Using the

invertibility lemma, we can then break down the left-most non-atomic proposition in

the context until there are only atomic propositions in the ordered context. Once we

have done so, we have a smaller derivation of S′ and a sequential derivation from S′ to

S, so we are done. ut

2.4 Linear and persistent logical specifications

Throughout the paper, we will frequently be interested in the sub-framework of linear

logical specifications in which specifications contain no ordered atomic propositions as

well as persistent logical specifications in which specifications contain neither ordered

nor linear atomic propositions.

Because writing (edgeX Y ∧ pathY Z ⊃ pathX Z) is a bit more familiar and less

cluttered than writing (!edgeX Y • !pathY Z � !pathX Z), we obey a convention

that if we are unambiguously talking about a persistent logical specification we will

use ∧ instead of •, ⊃ instead of �, and Q instead of !Q. Similarly, when we are

unambiguously talking about a linear logical specification, we will use ⊗ instead of

•, (instead of �, and Q instead of ¡Q. We claim that a similarly-defined transition

semantics for a framework of linear or persistent logical specifications would correspond

17

J∀x.AK = ∀x.JAK JS1 • S2KdLdR = ∃dM .JS1KdLdM ⊗ JS2KdMdR
JS1 � S2K = ∀dL.∀dR.JS1KdLdR (JS2KdLdR J∃x.SKdLdR = ∃x.JSKdLdR

JSK = ∃dL.∃dR.JSKdLdR J1KdLdR = dL
.
= dR

JQKdLdR = QdL dR Jt .= sKdLdR = t
.
= s⊗ dL

.
= dR

J¡QKdLdR = Q⊗ dL
.
= dR

J!QKdLdR = !Q⊗ dL
.
= dR

JΓPΓ ;∆;Ω ⇒Σ SK = (JΓPKΓ ;∆JΩKd0dn ; · ⇒Σd0...dn JSK)

JΓPΓ ;∆;Ω ⇒Σ SK+ = (JΓPKΓ ;∆JΩKd0dn ; · ⇒ΣΣwd0...dn
JSK)

Fig. 7 Translation of propositions and states from ordered logic into the linear fragment.

exactly to the semantics that we get by expanding the definitions into the framework

of ordered logical specifications. However, to avoid reprising the development in the

previous section (twice!) we will not address that claim here.

3 Translation into linear logic

As we mentioned in the Section 2.4, for the purposes of this paper we define linear

logical specifications in terms of ordered logical specifications, but it is a straightforward

result that ordered logical specifications can “implement” linear logical specifications in

this way. The more interesting result, which we now consider, is that we can faithfully

translate ordered logical specifications into linear logical specifications. In this section,

we present a “destination-adding translation” from ordered logical specifications to

linear logical specifications.

The translation, which was used informally in the introduction but is given explic-

itly in Figure 7, makes ordered atomic propositions into linear atomic propositions and

then adds two arguments to those propositions to make the lost adjacency information

explicit – JhdKdd′ = hd d d′ in our PDA example, and JleftXKdd′ = leftX dd′. We write

the translation of a state S into the linear fragment as JSK. Translated specifications

may generate spurious extra parameters, so we write JSK+ to describe the translation

of a state S that also includes free parameters that do not appear in S or JSK. We

translate ordered contexts Ω = S1 . . . Sn by introducing n + 1 distinct parameters:

JΩKd0dn = JS1Kd0d1 . . . JSnKdn−1

dn
; therefore when we write JΩKd0dn , d0 is the same as dn

exactly when (Ω = ·).
Similar translations of the Lambek calculus into ordered logic, all of which are to

some degree reflections of van Benthem’s relational models of ordered logic [5], have

been explored previously [30,29]. However, previous work has only used the proposi-

tional Lambek calculus without linear or persistent atomic propositions and without

the unit of ordered conjunction 1, and the addition of these propositions complicates

matters significantly. Without the restrictions we made on propositions, and without

the requirement of rule separation, translated specifications would not behave the same

way as untranslated specifications. For example, the rule 1� Q, which does not obey

18

rule separation, translates as (∀dL.∀dR. (dL
.
= dR)(QdL dR). Therefore, a translated

specification can transition from a state where ∆ = JQ1Q2Kd0d2 = (Q1 d0 d1) (Q2 d1 d2)

to a state where ∆′ = (Q1 d0 d1) (Qd1 d1) (Q2 d1 d2). This new state is not equal to

any translated context: there are not 4 distinct parameters for the 3 propositions. Rule

separation prevents this problem.

We have now defined everything except for the translation of specifications JΓPK. A

rule A that mentions ordered atomic propositions needs to be translated to JAK, but a

rule such as (¡Q1 � ¡Q2) that does not mention ordered atomic propositions can either

be translated as J¡Q1 � ¡Q2K = (∀dL.∀dR. Q1 ⊗ (dL
.
= dR) (Q2 ⊗ (dL

.
= dR)), or

else it can be left in the specification unchanged. It simplifies the proof of correctness

if we leave a rule like (¡Q1 � ¡Q2) in the specification unchanged, so we define the

translation of JΓPK to be a new specification where all the rules A mentioning ordered

atomic propositions have been replaced by JAK and where all the rules not mentioning

ordered atomic proposition remain unchanged. This has the added nice property that

the translation of specifications is idempotent: JJΓPKK = JΓPK.
The application of the translation defined in Figure 7 to the PDA specification

given by the rules push2 and pop2 yields the following specification:

(∃dm. ¡hdDl dm • ¡leftX dmDr) � (∃d′m. ¡stackXDl d
′
m • ¡hd dmDr)

(∃dm1. ¡stackXDl dm1 • (∃dm2. ¡hd dm1 dm2 • ¡rightX dm2Dr)) � ¡hdDlDr

This specification is equivalent (in the sense of giving rise to the same sequential deriva-

tions) to the rules pop3 and push3 given in the introduction.

3.1 Correctness of translation

Having given the translation of propositions, states, and specifications from the ordered

logical framework into the linear logical sub-framework, we can state the correctness

criteria. The proof of Theorem 2, which is somewhat tedious, appears in Appendix A.

Theorem 2 (Correctness of translation) For any three states

– S = (ΓPΓ ;∆;Ω ⇒Σ S),

– So = (ΓPΓo;∆o;Ωo ⇒Σo S), and

– Sl = (ΓPΓl;∆l; · ⇒Σl
S),

we have that

– JSK −+−→ Sl if and only if S −+−→ So and Sl = JSoK+,

– JSK→| if and only if S→|.

The critical point to observe about Theorem 2 is that it can almost be composed

with criteria of adequacy (for both complete and partial traces) that we discussed in

Section 2.3.1: if an ordered logical specification adequately represents some transition

system, then the translation of that specification into a linear logical specification also

adequately represents the transition system. The only thing standing in the way is the

fact that we have Sl = JSoK+ instead of Sl = JSoK because the translation may introduce

spurious extra parameters. If we relax our definition of adequacy to ignore parameters

that are not present in any of the contexts, however, then what Theorem 2 gives us is

precisely that an adequate ordered logical specification of a system is translated into

an adequate linear logical specification of the same system.

19

(∃d1. evalXDd1 ⊗ !bindX V ⊗ d1
.
= D′)(retnV DD′

eval (lam(λx.E x))DD′ (retn (lam(λx.E x))DD′

eval (appE1 E2)DD′ (∃d1. comp (app1 E2)Dd1 ⊗ evalE1 d1D
′

(∃d1. comp (app1 E2)Dd1 ⊗ retnV1 d1D
′)(∃d2. comp (app2 V1)Dd2 ⊗ evalE2 d2D

′

(∃d2. comp (app2(lam(λx.E0 x)))Dd2 ⊗ retnV2 d2D
′)

(∃y.∃d0. comp callDd0 ⊗ (∃d. eval (E0 y) d0 d⊗ !bind y V2 ⊗ d
.
= D′)

(∃d0. comp callDd0 ⊗ retnV0 d0D
′)(retnV0DD′

Fig. 8 Result of translating the environment semantics from Figure 6.

evalXDD′ ⊗ !bindX V (retnV DD′

eval (lam(λx.E x))DD′ (retn (lam(λx.E x))DD′

eval (appE1 E2)DD′ (∃d1. comp (app1 E2)Dd1 ⊗ evalE1 d1D
′

comp (app1 E2)DD1 ⊗ retnV1D1D
′ (∃d2. comp (app2 V1)Dd2 ⊗ evalE2 d2D

′

comp (app2(lam(λx.E0 x)))DD2 ⊗ retnV2D2D
′

(∃y.∃d0. comp callDd0 ⊗ eval (E0 y) d0D
′ ⊗ !bind y V2

comp callDD0 ⊗ retnV0D0D
′ (retnV0DD′

Fig. 9 Simplified specification equivalent to the specification in Figure 8.

evalXD ⊗ !bindX V (retnV D (d/var)

eval (lam(λx.E x))D(retn (lam(λx.E x))D (d/lam)

eval (appE1 E2)D(∃d1. comp (app1 E2)Dd1 ⊗ evalE1 d1 (d/app)

comp (app1 E2)DD1 ⊗ retnV1D1 (∃d2. comp (app2 V1)Dd2 ⊗ evalE2 d2 (d/app1)

comp (app2(lam(λx.E0 x)))DD2 ⊗ retnV2D2 (d/app2)

(∃y.∃d0. comp callDd0 ⊗ eval (E0 y) d0 ⊗ !bind y V2

comp callDD0 ⊗ retnV0D0 (retnV0D (d/call)

Fig. 10 Modification of Figure 9 with the vestigial D′ argument removed from eval and retn.

3.2 Linear destination-passing style

We will conclude by returning to the call-by-value lambda calculus example in order

to make an observation about the result of passing it (and other SSOS specifications)

through the translation we have described. If we translate the environment semantics

given in Figure 6, the result is the specification in Figure 8, which is somewhat more

complicated than necessary. As before with the translation of the PDA specification,

whenever we translate a rule we always want to eliminate equalities like d
.
= D′ by

replacing d with D′. We also always want to turn variables that are existentially quanti-

fied in a premise into variables that are implicitly universally quantified over the whole

rule. The resulting specification, which in this case is shown in Figure 9, is always

equivalent (again, in the sense of giving rise to the same sequential derivations) to the

original specification. In the future, when we translate ordered logical specifications

20

we will just skip the step shown in Figure 8 and go straight to the version shown in

Figure 9.

In the case of the specification in Figure 9, one additional simplification can be

made. The last argument to evalEDD′ in Figure 9 is not operationally significant

– if we start out with a linear atomic proposition evalE d0 d1, every eval and retn

proposition will have that same parameter d1 as its last argument, as the parameter

is always passed on intact from the premise the conclusion. This simply reflects the

fact that our control stack grows out to the left, and we are never concerned with

what is to the right of an eval or retn atomic proposition. By removing the vestigial D′

parameter, we can rewrite this specification to obtain the specification in Figure 10.

This specification is significant because it is an example of a linear SSOS specification

using linear destination-passing style – the parameters introduced by the translation

are called destinations because we think of D in evalED as the eventual destination of

the result of evaluating E. (This analogy is why the translation to linear logic we have

defined is referred to as a destination-adding translation.) Linear destination-passing

style was the original form of substructural operational semantics specifications before

ordered logic was considered as a framework [31,11].

The fact that linear destination-passing style arises naturally from the destination-

adding translation is a new observation, and is interesting in its own right.4 For the

purposes of our current discussion, the translation to destination-passing style is im-

portant primarily because the destinations make control flow information explicit. As

we will see, this explicit representation of control flow is what will make it possible to

derive program approximations that are sensitive to control flow.

4 Approximation as a logic program

In this section, we describe an approximation strategy in which we can approximate

ordered and linear logical specifications as persistent logical specifications and then

interpret these persistent logical specifications as logic programs. We have already

shown how a logical specification can be interpreted as a state transition system; such

a transition system can also be naturally given an operational interpretation as a

forward-chaining or “bottom-up” logic programming language.

For ordered and linear logical specifications, the most obvious forward-chaining

logic programming interpretation is based on committed choice (at each step, the in-

terpreter arbitrarily picks one transition and does not reconsider that choice) and qui-

escence (the interpreter stops when there are no more transitions possible). This style

of giving a forward-chaining operational semantics to substructural logic specifications

4 One way to interpret this formal relationship between ordered SSOS specifications and lin-
ear SSOS specifications using destination-passing style is to think of the linear specifications
as primary and the ordered SSOS specifications as a convenient syntax for them. However, one
of the goals of SSOS specification is to classify programming language features by the sub-
structural properties needed to encode them: ordered logic is in some sense the most restrictive
variant, naturally providing specifications of features like ambient state and parallelism but
not features like first-class continuations for which destination-passing appears to be critical
[34]. An intriguing direction for future work is to see whether this formal connection can be
used to modularly combine ordered SSOS specifications with linear SSOS specifications of fea-
tures (such as first-class continuations) that seem to only be amenable to SSOS specifications
in destination-passing style.

21

has a long history [10,12,20,26,34,45], and there is an implementation of a committed-

choice logic programming language based on our ordered logical framework.5 However,

committed choice and quiescence are bad foundations for a logic programming inter-

pretation of persistent logical specifications. The use of a persistent proposition in the

premise of a rule does not remove that persistent proposition from the context when

that rule is applied, so if we make a given transition once, we can make it again, deriv-

ing a new redundant copy of all the facts in the conclusion. This means that quiescence

is a bad criteria for termination, as whenever any transitions are possible an infinite

sequence of transitions is possible. It also means that transitions don’t imply any sort

of commitment, so committed choice is not a meaningful concept.

A forward-chaining semantics that instead makes transitions only to derive new per-

sistent atomic propositions until no new persistent atomic propositions can be derived is

said to be be based on saturation as opposed to quiescence. This forward-chaining logic

programming interpretation of persistent logic is extremely common; in fact it is what

is commonly meant by “forward-chaining logic programming.” Just as we introduced

the term persistent logic to distinguish what is classically referred to as intuitionistic

logic from intuitionistic ordered and linear logic, we will introduce the term saturat-

ing logic programming to distinguish what is classically referred to as forward-chaining

logic programming from the forward-chaining logic programming interpretation that

makes sense for ordered and linear logical specifications.

We do not wish to consider the details of implementing saturating logic programs

here, though we will touch on the topic in the conclusion. However, we will be concerned

in this section with the termination of saturating logic programs. We can reason about

termination in terms of an idealized interpreter that only allows transitions which de-

rive new facts or equalities (t
.
= s) that were not immediately provable before the

transition. Any saturating logic program that can derive only finitely many distinct

facts from any finite initial state will then necessarily terminate in this idealized inter-

preter. As discussed in the introduction, a specification with a rule like (a ⊃ ∃x. b(x))

will not terminate when interpreted as a saturating logic program because we can al-

ways productively apply the rule to create a new parameter along with a new fact

containing that parameter.

4.1 Approximation and the meta-approximation theorem

Our approximation strategy is simple: a rule (∀x1. . .∀xn. S1 � S2) in an ordered or

linear logical specification can be approximated by making all atomic propositions per-

sistent, removing premises from S1, and adding conclusions to S2. Of particular practi-

cal importance are added conclusions that equate parameters introduced by existential

quantification with terms: all parameters introduced by existential quantification must

be dealt with as a necessary condition for interpreting a persistent specification as a

saturating logic program.

First, we define what it means for a specification to be an approximate version of

another specification.

Definition 3 A specification Γa is an approximate version of another specification ΓP
if Γa is in the persistent fragment, and if, for every rule (∀x1. . .∀xn. S1 � S2) in ΓP
there is a corresponding rule in (∀x1. . .∀xn. S′1 � S′2) in Γa such that:

5 http://ollibot.hyperkind.org/

22

1. The existential parameters in S1 and S2 are identical to the existential parameters

in S′1 and S′2 (respectively),

2. For each premise !Q in S′1, there is a premise Q, ¡Q, or !Q in S1 (and similarly for

premises of the form t
.
= s), and

3. For each conclusion Q, ¡Q, or !Q in S2, there is a conclusion !Q in S′2 (and similarly

for conclusions of the form t
.
= s).

Next, we give a definition of what it means for a state to be an approximate version

(we use the word “generalization”) of another state or of a family of states. We use S! to

represent a straightforward operation of turning ordered and linear atomic propositions

into persistent ones: if S = Q1 • ¡Q2 • !Q3, then S! = !Q1 • !Q2 • !Q3.

Definition 4 If Γa is an approximate version of ΓP , then the state (ΓaΓg; ·; · ⇒Σg S!)

is a generalization of the state (ΓPΓ ;∆;Ω ⇒Σ S) if there is a substitution Σg ` θ : Σ

such that, for all ordered, linear, and persistent atomic propositions Q ∈ Γ,∆,Ω, there

exists a persistent proposition Qg ∈ Γg such that θQ = Qg.

Since generalizations always have the form (ΓaΓg; ·; · ⇒Σg S!), we will just write

(ΓaΓg ⇒Σg S!) for the sake of brevity. One thing we might prove about the relationship

between states and their generalizations is that, if Sg is a generalization of S and

if there is a complete trace S −+−→ . . .
−+−→ S′ → | then there is a complete trace

Sg −+−→ . . .
−+−→ S′g →| – this is a corollary of Lemma 7 (Simulation) in Appendix B.

The idea that we actually want to capture is quite a bit stronger, and is expressed by

the following definition:

Definition 5 A state Sa is an abstraction of S0 if, for any trace S0
−+−→ . . .

−+−→ S′, Sa
is a generalization of S′.

An abstraction of a state S0 is therefore a single state that essentially captures

all possible future behaviors of the state S0, because, for any atomic proposition Q

that may be derived by applying transitions to S0, there is a substitution θ such that

θQ is already present in the abstraction. The meta-approximation theorem relates this

definition of abstraction to the concept of approximate versions of programs as specified

by Definition 3.

Theorem 3 (Meta-approximation) If Γa is an approximate version of ΓP , if there

is a state S0 = (ΓPΓ0;∆0;Ω0 ⇒Σ0
S), and if for some Σ′0 ` θ : Σ0 there is a trace

(Γa(θΓ0)(θ∆0)(θΩ0) ⇒Σ′0
S!)

−+−→ . . .
−+−→ Sa such that Sa is saturated, then Sa is an

abstraction of S0.

The meaning of the meta-approximation theorem is that if (1) we can approximate

a specification and an initial state, and (2) we can obtain a saturated state from

that approximate specification and approximate initial state, then the saturated state

captures all possible future behaviors of the (non-approximate) initial state. The proof

is given in Appendix B.

4.2 Termination and Skolemization

The meta-approximation theorem guarantees that we can generate an abstraction of

a program if the approximate specification can be interpreted as a terminating logic

23

program; therefore, we are interested in approximating specifications in such a way

that the approximate specifications are terminating when interpreted as saturating

logic programs.6

Recall the non-terminating approximate PDA specification that we considered in

the introduction. The rule push4 was the one that caused trouble with regards to

termination:

hdLM ∧ leftXM R ⊃ ∃m. stackX Lm ∧ hdmR (push4)

In the introduction, we considered equating m with both L and M . But if we’re going

to equate m with anything, the most general starting point is to apply Skolemization to

the rule. By moving the existential quantifier for m in front of the implicitly quantified

X, L, M , and R, we get a resulting Skolem function (fmX LM R) that takes four

arguments.

hdLM ∧ leftXM R ⊃ stackX L (fmX LM R) ∧ hd (fmX LM R)R (push4sk)

The rule push4sk is not actually an approximate version of the rule push4 according to

Definition 3, but the equivalent rule push4sk′ is.

hdLM ∧ leftXM R ⊃ ∃m. stackX Lm ∧ hdmR ∧ m
.
= (fmX LM R)

(push4sk′)

Skolem functions therefore provide a natural starting point for approximations,

even though the Skolem constant that arises directly from Skolemization is usually

more precise than we want. From this starting point, we can define approximations

simply by approximating the Skolem function. The two approximations of push4 that

we considered in the introduction can actually be viewed as particular definitions of

the Skolem function fm. The approximation equating m and M is what results if we

define fm to be (λX. λL. λM. λR.M), and the approximation equating m and L is what

results if we define fm to be (λX. λL. λM. λR.L).

Skolemization is a general strategy for equating all parameters introduced by ex-

istential quantification with terms; this is a necessary but not a sufficient condition

for the termination of a saturating logic program. A sufficient condition, as we dis-

cussed above, is a finite bound on the number of derivable propositions. In the PDA

approximation from the introduction, when we equated the parameter m in rule push4
with either L or M , it ensured that we could derive, at most, one fact (leftXM R)

for every token X and destination M and R in the initial program, and the same goes

for (rightXM R), (stackXM R), and (hdM R). Therefore, if we start with an initial

state containing n tokens and m destinations, we can derive no more than 3nm2 +m2

distinct facts. With a little more work we could give a much better bound, but that

does not matter for our current purposes. The bound we gave is finite, which means

that if we only consider transitions that derive new facts, we will reach a state that is

saturated in only a finite number of steps.

24

evalXD ∧ bindX V ⊃ retnV D

eval (lam(λx.E x))D ⊃ retn (lam(λx.E x))D

eval (appE1 E2)D ⊃ ∃d1. comp (app1 E2)Dd1 ∧ evalE1 d1

comp (app1 E2)DD1 ∧ retnV1D1 ⊃ ∃d2. comp (app2 V1)Dd2 ∧ evalE2 d2

comp (app2(lam(λx.E0 x)))DD2 ∧ retnV2D2

⊃ ∃y.∃d0. comp callDd0 ∧ eval (E0 y) d0 ∧ bind y V2

comp callDD0 ∧ retnV0D0 ⊃ retnV0D

Fig. 11 First-cut approximation of Figure 10; forgetting linearity.

4.3 A control flow analysis from a SSOS specification

Figure 11 is just the linear destination-passing style SSOS specification from Figure 10

converted into a persistent logical specification. In order for us to approximate this

program to derive the finite control flow analysis in Figure 12, our first step is to

equate the parameter y that we introduced as part of the environment semantics with

var(λx.E0 x). The constructor var is a greatly simplified Skolem function for y that only

mentions the higher-order term (λx.E0 x) – the most general Skolem function in this

setting would have also been dependent on V , D, and D2. Adding (y
.
= var(λx.E0 x))

effectively causes us to associate all parameters ever passed into a function with the

function into which that parameter was passed.

The pattern above turns out to be a fairly common pattern in the approximation of

specifications that use higher-order abstract syntax, because it is a simple way of getting

a notion of the “subterms” of a higher-order term. When given a term (a (b c c)), it is

clear that there are three distinct subterms: the entire term, (b c c), and c. Therefore,

it’s meaningful to bound the size of a database by some function which depends on the

number of subterms of the original term. But what are the subterms of lam(λx. appxx)?

Because we ensure that we only substitute terms var(λx.E x) into function λx.E x we

can actually answer this question: there are three distinct subterms of lam(λx. appxx):

the entire term, (app (var(λx.E x)) (var(λx.E x))), and var(λx.E x). The subterms of

any closed term E in our untyped lambda calculus can be enumerated by running this

saturating logic program starting with the fact (subtermsE):

subterms(lam(λx.E x)) ⊃ subterms(E(var(λx.E x)))

subterms(appE1E2) ⊃ subtermsE1 ∧ subtermsE2

subterms(var(λx.E x)) ⊃ subterms(E(var(λx.E x)))

The last rule is redundant: if we ever derive a fact (subterms(var(λx.E x)), we know

that we previously derived (subterms(lam(λx.E x))) and therefore by the first rule we

can already derive (subterms(E(var(λx.E x)))).

In order to continue approximating Figure 11 to obtain Figure 12, we need to have in

mind the question that we intend to answer with this control flow analysis. The primary

question that a flow analysis is intended to answer is, “for any given call site in the

6 Important classes of programs are known to terminate in all cases, such as those in the
so-called “Datalog fragment” where the only terms in the program are variables and constants.
The approximations we consider do not fall into these fragments.

25

evalXD ∧ bindX V ⊃ retnV D

eval (lam(λx.E x))D ⊃ retn (lam(λx.E x))D

eval (app E1 E2)D ⊃ ∃d1. comp (app1 E2)Dd1 ∧ evalE1 d1 ∧ (d1
.
= E1)

comp (app1 E2)DD1 ∧ retn V1D1

⊃ ∃d2. comp (app2 V1)Dd2 ∧ eval E2 d2 ∧ (d2
.
= E2)

comp (app2(lam(λx.E0 x))DD2 ∧ retn V2D2

⊃ ∃y.∃d0 comp callDd0 ∧ eval (E0 y)D ∧ bind y V2 ∧ (y
.
= var(λx.E0 x)) ∧ (d0

.
= E0 y)

comp callDD0 ∧ retnV0D0 ⊃ retnV0D

Fig. 12 A control flow analysis derived from Figure 11.

evalX ∧ bindX V ⊃ retnV X (cfa/var)

eval (lam(λx.E x)) ⊃ retn (lam(λx.E x)) (lam(λx.E x)) (cfa/lam)

eval (app E1 E2) ⊃ comp (app1 E2) (app E1 E2)E1 ∧ evalE1 (cfa/app)

comp (app1 E2)EE1 ∧ retn V1 E1 ⊃ comp (app2 V1)EE2 ∧ eval E2 (cfa/app1)

comp (app2(lam(λx.E0 x))EE2 ∧ retn V2 E2 (cfa/app2)

⊃ ∃y. comp callE (E0 y) ∧ eval (E0 y) ∧ bind y V2 ∧ (y
.
= var(λx.E0 x))

comp callEE0 ∧ retnV0 E0 ⊃ retnV0 E (cfa/call)

Fig. 13 A simplified version of Figure 12 that eliminates the now-redundant argument to eval.

source program, what are the functions that may be invoked at that location?”7 Call

sites correspond to expressions of the form (appE1E2) and functions are expressions of

the form lam(λx.E x); therefore, our next step is to equate the destinations introduced

in the app rules with the expressions we are evaluating at those points. The resulting

specification (Figure 12) is terminating because the rules only break expressions E

and values V into their “subexpressions” in the sense we have described above. If the

expressions in the original state of a program have n subterms, the program can derive

no more than n2 new “eval” facts, n2 new “retn” facts, and 2n3 + 1 new “comp” facts.

This analysis combined with the meta-approximation theorem ensures that we have

derived some sort of program analysis, but to discuss what kind of program analysis

it is, it will be helpful to simplify Figure 12 a bit. We have now made the second

argument to eval uninteresting – when we derive a new fact of the form (evalE d) in

Figure 12, we always add a conclusion of the form (d
.
= E), so we might as well drop

the second argument to eval because it is the same as the first argument. The result

of this simplification is shown in Figure 13. In this figure, we can see that the second

argument E to (compF E E′) is always a term (appE1E2) – that is, a call site. The

rule cfa/app2 starts evaluating the function lam(λx.E0x) and stores the stack frame

comp callE (E0(var(λx.E0 x))). This means that the function lam(λx.E0 x) may be

called from call site E only if (comp callE (E0(var(λx.E0 x)))) appears in the saturated

database.

7 This kind of “may-” analysis, where the intention is to over-approximate the events that
might happen, is the kind of analysis (as opposed to a “must-” analysis) that maps easily onto
the meta-approximation theorem.

26

There is one important caveat to this analysis. If for some value V we consider the

program (app (app (lam(λx.x)) (lam(λy.y)))V), we might expect a reasonable control

flow analysis to notice that only lam(λy.y) is passed to the function lam(λx.x) and that

only V is passed to the function lam(λy.y). Because of our use of higher-order abstract

syntax, however, lam(λx.x) and lam(λy.y) are syntactically identical (names of bound

variables don’t matter). This is not a problem with correctness, but it means that

our analysis may be less precise than expected. One solution would be to add distinct

labels to terms. Adding a label on the inside of every lambda-abstraction would seem to

suffice, and in any real example labels would already be present in the form of source-

code positions or line numbers. The alias analysis presented in Section 5 discusses the

use of these labels.

5 Approximating SSOS specifications for alias analysis

So far, we have discussed four stages: ordered logical specifications and substructural

operational semantics (Section 2), the destination-adding translation from ordered logi-

cal specifications to linear logical specifications (Section 3), the approximation of logical

specifications by persistent logical specifications (Section 4.1), and obtaining saturating

logic programs which always terminate by equating parameters with their Skolem func-

tions and then approximating the Skolem functions (Section 4.2). We have also worked

through these stages to take an SSOS-style environment semantics for the lambda

calculus and derive a control flow analysis. In this section, we will take an SSOS spec-

ification of a monadic functional language with Lisp-like mutable cons cells and derive

an interprocedural alias analysis. The resulting approximation bears a strong resem-

blance to the object-oriented alias analysis presented as a logic program in [1, Chapter

12.4].

The language has the following syntax:

E ::= returnLX | letLM (λx.E x)

M ::= fun (λx.E0 x) | callF X | newpair | projX C | setX C Y

C ::= fst | snd

Expressions E should be thought of as sequences of let-bindings (let x = M in E) that

bind the result of a command M in the remainder of a program. Commands are either

procedure definitions (fun (λx.E0 x)), procedure calls (callF X calls the procedure F

with the argument X), pair allocations (newpair), projections from the first or second

component of a pair (projX C), or assignments to the first or second component of a

pair (setX C Y). Finally, each return statement or command is given a label L, which

we can think of as a line number from the original program.

The rules for functions are unsurprising; as in the previous section, we use desti-

nations for binding. We have comp and eval predicates as before, though we can do

27

eval (letL (fun (λx0.E0 x0)) (λx.E x))D (9)

⊃ ∃y. eval (E y)D ∧ bind y (lam(λx0.E0 x0))) ∧ (y
.
= var(λx.E x))

eval (letL (callF X) (λx.E x))D ∧ bindF (lam(λx0.E0 x0)) ∧ bindX V (10)

⊃ ∃y.∃d0. comp (call1(λx.E x))Dd0 ∧ eval (E0 y) d0 ∧ bind y V ∧ (y
.
= d0

.
= var(λx0.E0 x0))

comp (call1(λx.E x))DD0 ∧ eval (returnLX)D0 ∧ bindX V (11)

⊃ ∃y. eval (E y)D ∧ bind y V ∧ (y
.
= var(λx.E x))

eval (letL newpair (λx.E x))D (12)

⊃ ∃y.∃d. eval (E y)D ∧ bind y (loc d) ∧ cell d fst null ∧ cell d snd null ∧ (y
.
= d

.
= var(λx.E x))

eval (letL (projX C) (λx.E x))D ∧ bindX (locDX) ∧ cellDX C V (13)

⊃ ∃y. eval (E y)D ∧ bind y V ∧ cellDX C V ∧ (y
.
= var(λx.E x))

eval (letL (setX C Y) (λx.E x))D ∧ bindX (locDX) ∧ bindY V (14)

⊃ ∃y. eval (E y)D ∧ bind y null ∧ cellDX C V ∧ (y
.
= var(λx.E x))

Fig. 14 Approximating the monadic language with mutable references by uniformly equat-
ing every parameter introduced existential quantification with a simplified Skolem function
dependent only on the higher-order term in the rule.

without retn.8

eval(letL (fun (λx0.E0 x0)) (λx.E x))� ∃y. eval(E y) • !bind y (lam(λx0.E0 x0))) (3)

eval(letL (callF X) (λx.E x)) • !bindF (lam(λx0.E0 x0)) • !bindX V (4)

� ∃y. comp(call1(λx.E x)) • eval(E0 y) • !bind y V

comp(call1(λx.E x)) • eval(returnLX) • !bindX V � ∃y. eval(E y) • !bind y V (5)

The rules for mutable pairs are the first use in this paper of linear atomic propositions

in an ordered logical specification, though we hinted at their use in call-by-need specifi-

cations in Section 2.2. Each destination D created by a newpair command is associated

with two linear atomic propositions: ¡cellD fstV1 contains the first projection V1, and

¡cellD sndV2 contains the second projection V2, both of which are initially set to null.

eval(letL newpair (λx.E x)) (6)

� ∃y.∃d. eval(E y) • !bind y (loc d) • ¡cell d fst null • ¡cell d snd null

eval(letL (projX C) (λx.E x)) • !bindX (locD) • ¡cellDC V (7)

� ∃y. eval(E y) • !bind y V • ¡cellDC V

eval(letL (setX C Y) (λx.E x)) • !bindX (locD) • !bindY V • ¡cellDC V ′ (8)

� ∃y. eval(E y) • !bind y null • ¡cellDC V

When we approximate the specification in rules 3-8, we force our hand almost

entirely if we follow the pattern of equating every existential y with a simplified Skolem

function that is dependent only on the higher-order term it is being substituted into.

Once we do so, there are only two existentially generated parameters left to consider:

8 Doing away with retn simplifies our presentation, but it is out of line with previous work
[34] where we discuss a classification of predicates in SSOS specifications as active, passive, or
latent. Because of rule 5 we cannot classify eval this way. This could be corrected by splitting
rule 5 into two rules, one which generates a retn and another which mentions comp.

28

eval (letL newpair (λx.E x))D (15)

⊃ eval (E L)D ∧ bindL (locL) ∧ cellL fst null ∧ cellL snd null

eval (letL (projX C) (λx.E x))D ∧ bindX (locLX) ∧ cellLX C V (16)

⊃ eval (E L)D ∧ bindLV ∧ cellLX C V

eval (letL (setX C Y) (λx.E x))D ∧ bindX (locLX) ∧ bindY V (17)

⊃ eval (E L)D ∧ bindL null ∧ cellLX C V

Fig. 15 A version of Figure 14 using labels directly instead of simplified Skolem functions,
and where equivalent versions of the rules that do not explicitly mention equality are used.

the destination generated when we create a new pair in (rule 6), and the destination

generated by the translation to linear destination-passing style in the rule handling

procedure calls (rule 4). One option is just equate the destinations with the simplified

Skolem function we are using in the same rule; the result of this choice is shown in

Figure 14. That figure also incorporates one additional simplification: the last premise

of rule 7, which served only to consume the linear resource ¡cellDC V ′, is removed in

the approximate version (as the meta-approximation theorem allows). The resulting

specification is terminating for the same reason the control flow analysis was – there

are only a finite number of “subterms” of the term that we start with.

Because the labels uniquely identify subterms of the original program, this alias

analysis is not subject to the same caveat as the control flow analysis we consid-

ered before. These labels allow us to consider an alternative to the pattern of equat-

ing parameters substituted into higher-order terms (λx.E x) with simplified Skolem

functions var(λx.E x). With one exception (the function call in rule 10) every use of

a simplified Skolem function of the form var(λx.E x) originates from an expression

(letLM (λx.E x)). In other words, each var(λx.E x) can be uniquely associated with a

label L, so we can think about using this label instead of var(λx.E x). In Figure 15 we

show a modified version of the rules for mutable state where labels are used instead of

Skolem functions.

One benefit of the use of labels is that it makes the answers to some of the primary

questions asked of an alias analysis much clearer. For instance:

– Might the first component of a pair created at label L1 ever reference a pair created at

label L2? Only if cellL1 fst (locL2) appears in the saturated database (and likewise

for the second component).

– Might the first component of a pair created at label L1 ever reference the same object

as the first component of a pair created at label L2? Only if there is some L′ such

that cellL1 fst (locL′) and cellL2 fst (locL′) both appear in the saturated database.

6 Conclusion

We have defined a framework of ordered, linear, and persistent atomic propositions

with higher-order terms and equality assertions; this framework extends the one in

previous work [34] with equality between terms. This framework is suitable for speci-

fying interpreters for programming languages in the style of substructural operational

semantics. These specifications in ordered logic can be automatically translated to lin-

ear logical specifications by adding destinations, which preserves the adequacy of those

29

specifications while exposing information about control flow that can be manipulated

by an eventual approximation. We presented a general criterion for determining when

one program was an approximate version of another (Definition 3) and for determining

when one state is an abstraction of another (Definition 5) and established a meta-

approximation theorem that ensures that approximations compute abstractions when

interpreted as saturating logic programs. The relative ease of encoding two rather dif-

ferent analyses, alias analysis and control flow analysis, suggests that our technique

can be used to derive other program analyses.

6.1 Related work

This article covers topics in programming language specification, proof theory, logi-

cal frameworks, logic programming, and program analysis. We conclude by giving a

(necessarily incomplete) survey of some of related work in these fields.

Approximation with equality. In this paper, we essentially presented only one method

of deriving a saturating logic program from a persistent logical specification: first, we

utilize Skolemization (done by adding equality constraints in order to fit the pattern

prescribed by Definition 5), and then we approximate the resulting Skolem function.

Another style of approximation, which is considered in the earlier conference version

of this paper, is to use explicit congruence rules such as allowing the term s(s(0))

to be equal to 0 in a non-contradictory way (and thereby only considering natural

numbers modulo 2). This technique is quite powerful: for instance, a constraint that

lists agreeing on their first k elements should be treated as equal is all that is needed

to derive a k-CFA analysis from an appropriately constructed exact interpreter [46].

There are two ways of thinking about equality in proof search and logic program-

ming. The one we have adopted in this work is based on unification and is usually

attributed to Girard and Schroeder-Heister [15,40]. Another view, which is closer to

the use of equality in the conference version of this article, is based on constraints

and has been explored by Virga and Saraswat et al. [50,17]. We did not consider

constraint-based or congruence-closure based equality in this paper because it is not

currently clear how these two notions of equality should interact in our setting.

Substructural logic programming. Considered as a logic programming language, the

ordered logical specification framework we have presented is unlike most previous work

in logic programming languages for substructural logics. Traditionally, substructural

logics have been treated as logic programming languages by giving a backward-chaining

(or “top-down”) operational semantics (in the style of Prolog) to the uniform fragment

of the language – essentially the propositions freely generated by all connectives with

invertible right rules [28]. Backward chaining operational semantics have been given to

the uniform fragment of linear logic [16], ordered logic [36,37], and bunched logic [3].

There is, however, a significant body of work in giving forward-chaining interpre-

tations to linear logic, including Forum [26] and Lollimon [20]. Other languages and

programming paradigms, such as multiset rewriting (MSR) and Gamma, are defined

independently of linear logic but can be partially or completely described in terms of

proof search in linear logic [12,10].

30

Approximation in linear logic. This work is similar to work by Bozzano et al. [7,8]

in both its goals and its methodology. They encode distributed systems and commu-

nication protocols in a framework that is roughly equivalent to the linear fragment

of our specification framework without equality. Abstractions of those programs are

then used to verify properties of concurrent protocols that were encoded in the logic

[6]. However, the style they use to encode protocols is significantly different from our

SSOS style of specification, and a general purpose approximation is used, in contrast to

our methodology of describing a whole class of approximations. Furthermore, Bozzano

et al.’s methods are designed to consider properties of systems as a whole, not static

analyses of individual inputs as is the case in our work.

A fundamentally different kind of approximation of linear logic programs via pred-

icate substitution has been described by Miller [27]. Miller’s approximations remain

linear, which we have ruled out so far in order to obtain a simple meta-approximation

theorem.

Implementation of saturating logic programs. We have not considered the implementa-

tion of a saturating logic programming language beyond the idealized interpreter which

we used to think about termination. However, there is a great deal of recent work in

using saturating logic programming to implement program analyses, such as Whaley

and Lam’s extremely successful BDDBDDB engine [18] and the Doop framework for

Java pointer analysis [9]. These lines of work are both premised on efficient, scalable

Datalog implementations. Our programs are not Datalog because of the presence of

function symbols, so the approximations we generate cannot directly be fed to these

efficient engines. However, the adaptation of standard techniques such as flattening [39]

to our uses of higher-order abstract syntax could be used to address this shortcoming.

Predating this work is work by McAllester on implementing saturating logic pro-

grams with provable asymptotic bounds on running times. Some of McAllester’s ex-

amples were drawn from program analysis [21]. In previous work we have examined a

extension of McAllester’s results to forward chaining in linear logic [45]; the translation

in Section 3 allows these results to be extended to reasoning about the complexity of

certain ordered logical specifications. However, all of this work takes place in a setting

with only first-order terms and without equality, and it is not obvious how the meta-

complexity theorems should be generalized to the full language of ordered, linear, or

persistent logical specifications.

Logical frameworks for specifying abstract machines. Throughout this article, we have

relied on an intuition of specifications in ordered logic as rewriting rules. In fact, there

is a significant line of work interested in directly specifying programming language

semantics as rewriting rules in a rewriting logic [22,42,38]. While rewriting logic lacks

a notion of higher-order syntax, the approach we have described in this article could

almost certainly be fruitfully applied in rewriting logic as well.

We used an ordered logical framework as the basis for our work instead of rewrit-

ing logic to connect it to a larger body of research on the substructural operational

semantics of programming languages. Previous work has shown that ordered logical

specifications can cleanly specify stateful and concurrent programming languages and

systems [34], and ongoing work (still in a preliminary stage) has demonstrated that it

is possible to establish properties such as language safety in an extension of the ordered

logical framework presented here [44].

31

Abstracting functional abstract machines. In recent work, Might and Van Horn intro-

duced an approach to program approximation with many parallels to the methodology

we have considered in this paper [24,23,49]. Their emphasis is on deriving a program

approximation by approximating a functional abstract interpreter for a programming

language’s operational semantics. Their methodology is similar to ours in large part

because we are doing the same thing in a different setting, deriving a program approx-

imation by approximating an ordered logical specification of a programming language’s

operational semantics.

Many of the steps that they suggest for approximating programs have close ana-

logues in our setting. For instance, their store-allocated bindings are analogous to the

SSOS environment semantics that we presented, and their store-allocated continua-

tions – which they motivate by analogy to implementation techniques for functional

languages like SML/NJ – are precisely the destinations that arise naturally from our

destination-adding translation. The first approximation step we take is forgetting about

linearity to obtain a (nonterminating) persistent logical specification (e.g. the rules

push4 and pop4 for the PDA approximation). This step is comparable to Might’s first

approximation step of “throwing hats on everything” (named after the convention in

abstract interpretation of denoting the abstract version of a state space Σ as Σ̂). The

“mysterious” introduction of power domains that this entails in Might’s setting is, in

our setting, a perfectly natural result of relaxing the requirement that there be at most

one fact !bindX V for every X. As a final point of comparison, the “abstract alloca-

tion strategy” discussed in [49] is quite similar to our strategy of introducing and then

approximating Skolem functions as a means of deriving a finite approximation. Our

current discussion of the approximation of Skolem functions in Section 4.2 is partially

inspired by the relationship between our use of Skolemization and the discussion of

abstract allocation in [49].

The independent discovery of a similar set of techniques for achieving similar goals

in such different settings (though both approaches were to some degree inspired by

Van Horn and Mairson’s investigations of the complexity of k-CFA [48]) is another

indication of the generality of both techniques, and the similarity also suggests that

that the wide variety of approximations considered in [49], as well as the approximations

of object-oriented programming languages in [24], can be adapted to our setting.

6.2 Acknowledgements

We would like to acknowledge Jonathan Aldrich, Roger Wolff, and the three anonymous

reviewers for their helpful comments on an earlier draft of this article.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and
Tools, Second Edition. Pearson Education, Inc (2007)

2. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation 2(3), 297–347 (1992)

3. Armeĺın, P., Pym, D.: Bunched logic programming. In: International Joint Conference
on Automated Reasoning. Lecture Notes in Computer Science, vol. 2083, pp. 289–304.
Springer, New York (2001)

4. Barber, A.: Dual intuitionistic linear logic. Tech. Rep. ECS-LFCS-96-347, Laboratory for
Foundations of Computer Sciences, University of Edinburgh (1996)

32

5. van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic, Studies
in Logic and the Foundations of Mathematics, vol. 130, chap. 16, pp. 225–250. North-
Holland, Amsterdam (1991)

6. Bozzano, M., Delzanno, G.: Automated protocol verification in linear logic. In: Inter-
national Conference on Principles and Practice of Declarative Programming, pp. 38–49.
ACM (2002)

7. Bozzano, M., Delzanno, G., Martelli, M.: An effective fixpoint semantics for linear logic
programs. Theory and Practice of Logic Programming 2(1), 85–122 (2002)

8. Bozzano, M., Delzanno, G., Martelli, M.: Model checking linear logic specifications. Theory
and Practice of Logic Programming 4(5–6), 573–619 (2004)

9. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated points-
to analyses. In: Object-Oriented Programming, Systems, Languages, and Applications, pp.
243–261. ACM (2009)

10. Bruscoli, P., Guglielmi, A.: A linear logic view of Gamma style computations as proof
searches. In: J.M. Andreoli, C. Hankin, D.L. Métayer (eds.) Coordination programming:
mechanisms, models and semantics, pp. 249–273. Imperial College Press, London, UK
(1996)

11. Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework II:
Examples and applications. Tech. Rep. CMU-CS-02-102, School of Computer Science,
Carnegie Mellon University (2002). Revised May 2003

12. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency through
linear logic. Information and Computation 207, 1044–1077 (2009)

13. Cousout, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: Symposium on Principles
of Programming Languages, pp. 238–252. ACM (1977)

14. Ganzinger, H., McAllester, D.A.: Logical algorithms. In: International Conference on Logic
Programming. Lecture Notes in Computer Science, vol. 2401, pp. 209–223. Springer, New
York (2002)

15. Girard, J.Y.: A fixpoint theorem in linear logic (1992). An email posting to the mailing
list linear@cs.stanford.edu.

16. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic.
Information and Computation 110(2), 327–365 (1994)

17. Jagadeesan, R., Nadathur, G., Saraswat, V.A.: Testing concurrent systems: An interpre-
tation of intuitionistic logic. In: Foundations of Software Technology and Theoretical
Computer Science. Lecture Notes in Computer Science, vol. 3821, pp. 517–528. Springer,
New York (2005)

18. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel, C.:
Context-sensitive program analysis as database queries. In: Principles of Database Sys-
tems, pp. 1–12. ACM (2005)

19. Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65,
363–386 (1958)

20. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic pro-
gramming. In: Principles and Practice of Declarative Programming, pp. 35–46. ACM
(2005)

21. McAllester, D.A.: On the complexity analysis of static analyses. Journal of the ACM
49(4), 512–537 (2002)

22. Meseguer, J., Roşu, G.: The rewriting logic semantics project. Theoretical Computer
Science 373, 213–237 (2007)

23. Might, M.: Abstract interpreters for free. In: Static Analysis Symposium. Lecture Notes
in Computer Science, vol. 6337, pp. 407–421. Springer, New York (2010)

24. Might, M., Smaragdakis, Y., Horn, D.V.: Resolving and exploiting the k-CFA paradox:
illuminating functional vs. object-oriented program analysis. In: Programming Language
Design and Implementation, pp. 305–315. ACM (2010)

25. Miller, D.: A logic programming language with lambda-abstraction, function variables,
and simple unification. Journal of Logic and Computation 1(4), 497–536 (1991)

26. Miller, D.: A multiple-conclusion meta-logic. Theoretical Computer Science 165(1), 201–
232 (1996)

27. Miller, D.: A proof-theoretic approach to the static analysis of logic programs. In: Rea-
soning in Simple Type Theory: Festschrift in Honor of Peter B. Andrews on His 70th
Birthday, Studies in Logic, vol. 17, pp. 423–442. College Publications, London, UK (2008)

33

28. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for
logic programming. Annals of Pure and Applied Logic 51(1-2), 125–157 (1991)

29. Moot, R., Piazza, M.: Linguistic applications of first order intuitionistic linear logic. Jour-
nal of Logic, Language and Information 10(2), 211–232 (2001)

30. Morrill, G.: Higher-order linear logic programming of categorial deduction. In: Proceedings
of the Meeting of the European Chapter of the Association for Computational Linguistics,
pp. 133–140. Morgan Kaufmann Publishers Inc. (1995)

31. Pfenning, F.: Substructural operational semantics and linear destination-passing style. In:
Asian Symposium on Programming Languages and Systems. Lecture Notes in Computer
Science, vol. 3302, p. 196. Springer, New York (2004). Abstract of invited talk

32. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Programming Language Design
and Implementation, pp. 199–208. ACM (1988)

33. Pfenning, F., Schürmann, C.: Algorithms for equality and unification in the presence of
notational definitions. In: Types for Proofs and Programs. Lecture Notes in Computer
Science, vol. 1657, pp. 179–193. Springer, New York (1998)

34. Pfenning, F., Simmons, R.J.: Substructural operational semantics as ordered logic pro-
gramming. In: Symposium on Logic in Computer Science, pp. 101–110. IEEE Computer
Society Press (2009)

35. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and
Algebraic Programming 60-61, 17–139 (2004). Reprinted with corrections from Aarhus
University technical report DAIMI FN-19.

36. Polakow, J.: Linear logic programming with an ordered context. In: International Confer-
ence on Principles and Practice of Declarative Programming, pp. 68–79. ACM (2000)

37. Polakow, J.: Ordered linear logic and applications. Ph.D. thesis, Carnegie Mellon Univer-
sity (2001). Available as technical report CMU-CS-01-152

38. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. Journal of Logic
and Algebraic Programming 79(6) (2010)

39. Rouveirol, C.: Flattening and saturation: Two representation changes for generalization.
Machine Learning 14, 219–232 (1994)

40. Schroeder-Heister, P.: Rules of definitional reflection. In: Symposium on Logic and Com-
puter Science, pp. 222–232. IEEE Computer Society Press (1993)

41. Schürmann, C.: Automating the meta theory of deductive systems. Ph.D. thesis, Carnegie
Mellon University (2000). Available as Technical Report CMU-CS-00-146

42. Şerbănuţă, T.F., Roşu, G.: K-Maude: A rewriting based tool for semantics of programming
languages. In: Rewriting Logic and its Applications. Lecture Notes in Computer Science,
vol. 6381, pp. 104–122. Springer, New York (2010)

43. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of deductive
parsing. Journal of Logic Programming 24(1–2), 3–36 (1995)

44. Simmons, R.J.: Type safety for substructural specifications: Preliminary results. Tech.
Rep. CMU-CS-10-134, School of Computer Science, Carnegie Mellon University (2010)

45. Simmons, R.J., Pfenning, F.: Linear logical algorithms. In: International Colloquium on
Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 5126,
pp. 336–345. Springer, New York (2008)

46. Simmons, R.J., Pfenning, F.: Linear logical approximations. In: Partial Evaluation and
Program Manipulation, pp. 9–20. ACM (2009)

47. Simmons, R.J., Pfenning, F.: Weak focusing for ordered linear logic. Tech. Rep. CMU-
CS-10-147, School of Computer Science, Carnegie Mellon University (2010)

48. Van Horn, D., Mairson, H.G.: Relating complexity and precision in control flow analysis.
In: International Conference on Functional Programming, pp. 85–96. ACM (2007)

49. Van Horn, D., Might, M.: Abstracting abstract machines. In: International Conference on
Functional Programming, pp. 51–62. ACM (2010)

50. Virga, R.: Higher-order rewriting with dependent types. Ph.D. thesis, Carnegie Mellon
University (1999)

A Proof of Theorem 2 (Correctness of translation)

In this section, we present the proof of Theorem 2, which (informally) ensures that if the
specification ΓP is an adequate representation of some transition system then JΓPK, the result

34

of the destination-adding translation on ΓP , is an adequate representation of the transition
system as well.

Previously, we defined a sequential derivation from S2 to S1, which we also write as S1
−+−→

S2, to be a single focusing phase of the form

S...
S′

where the invertible left rules are only ever applied to the left-most non-atomic proposition in
an ordered context. For the purposes of this section we will generalize this definition somewhat:
a sequential derivation always has a state as the unproven leaf at the top, but the bottom of
a sequential derivation can be either a left-focused sequent (Γ ;∆;ΩL[A]ΩR ⇒Σ S) or an
unfocused sequent (Γ ;∆;Ω ⇒Σ S). Note that, in this more general definition, a sequential
derivation cannot include the rule focusL unless the bottom-most sequent is a state.

A.1 Right focus

The first lemma establishes the “JSK →| if and only if S →|” portion of Theorem 2. The first
part of Lemma 1 is just that S→| implies JSK→|, and the second part of the lemma generalizes
the converse direction; the generalization is important in order to deal with the right-focused
sequents that arise from the �L rule.

Lemma 1 (Correctness of translation for right focus) For all contexts Γ , ∆, and Ω
containing only atomic propositions:
1. If there is a derivation of Γ ;∆;Ω ⇒Σ [S], then there is a derivation of JΓ ;∆;Ω ⇒Σ [S]KS.
2. If there is a derivation of Γ ;∆; · ⇒Σd0...dn [JSKts] and ∆ ⊂ ∆oJΩoK

d0
dn

,

then ∆ = ∆′JΩ′Kdjdk and there is a derivation of Γ ;∆′;Ω′ ⇒Σ S. Furthermore, if S

contains ordered atomic propositions then t = dj and s = dk, and if S contains no
ordered atomic propositions then t = s.

3. If there is a derivation of Γ ;∆;Ω ⇒Σ [S] and S contains no ordered atomic propositions,
then Ω = ·.

Proof Induction over the structure of right-focused derivations. ut

A.2 Weakening and strengthening

The next two lemmas express that we can always add or remove irrelevant parts of a sequential
derivation (and that we can do so without changing its structure). Lemma 2 establishes that
the only times that the rules (which are closed negative propositions in the persistent context)
matter for a sequential derivation is the initial application of focusL, and Lemma 3 indicating
that we can add or remove unmentioned parameters from a (sequential) derivation freely.

Lemma 2 (Weakening/strenghtening rules) If ΓP and ΓQ contain only closed nega-
tive propositions (i.e. rules), and there is a sequential derivation from ΓPΓ

′;∆′;Ω′ ⇒Σ S
to ΓPΓ ;∆;ΩL[A]ΩR ⇒Σ S, then there is a sequential derivation (of the same size) from
ΓQΓ

′;∆′;Ω′ ⇒Σ S to ΓQΓ ;∆;ΩL[A]ΩR ⇒Σ S.

Proof Straightforward induction on derivations; this theorem merely reflects that the only
time the rules are relevant is in the rule focusL, so if we do not use that rule we can remove
or replace the specification as it is convenient. ut

Lemma 3 (Weakening/strenghtening parameters) If Γ , ∆, and Ω contain atomic propo-
sitions that do not mention the parameters in Σ′ or Σ′′, then
1. if there is a derivation of Γ ;∆;Ω ⇒ΣΣ′ [S], then there is a derivation (of the same size)

of Γ ;∆;Ω ⇒ΣΣ′′ [S], and
2. if there is a sequential derivation consisting only of left invertible rules from Γ ′;∆′;Ω′ ⇒Σt

S to Γ ;∆;Ω ⇒ΣΣ′ S, then Σt = Σ′′′Σ′ and there is a sequential derivation (of the same
size) consisting only of left invertible rules from Γ ′;∆′;Ω′ ⇒Σ′′′Σ′′ S to Γ ;∆;Ω ⇒ΣΣ′′ S.

Proof Straightforward induction on derivations. ut

35

A.3 Correctness of inversion

The correctness of translation for sequential derivations consisting only of invertible left rules
can be separated from correctness in general. This part is where we take advantage of the
requirement that, in a sequential derivation, an invertible left rule is always applied to the
leftmost non-atomic proposition.

Lemma 4 (Completeness of translation for left inversion) If Γ , ∆, ΩL, and ΩR con-
tain only atomic propositions and S is a state, then

given
S
D

Γ ;∆;ΩLΩ1ΩR ⇒Σ S
there exists

JSK
E

Γ ;∆JΩLKd0dj JΩRKdkdn ; JΩ1Kdjdk ⇒ΣΣΩ
JSK

where ΣΩ = d0 . . . dj . . . dk . . . dn.

Proof Lexicographic induction: either the length of the derivation D gets smaller or stays the
same while the number of propositions in the ordered context Ω1 decreases. We proceed by
case analysis on the structure of Ω1. We give three representative cases:

If (Ω1 = ·), then the result is immediate (with Γ = Γ ′, ∆ = ∆′, and Ω′ = ΩLΩR).
If (Ω1 = (S1 •S2)Ω), then the requirement that left rules always be applied to the leftmost

non-atomic proposition ensures that the last rule in the derivation must be •L and that there
is a sub-derivation ending in (Γ ;∆;ΩLS1S2ΩΩR ⇒Σ S). We can get a transformed derivation
ending in:

1. Γ ;∆JΩLKd0dj JΩRKdkdn ; JS1S2ΩKdjdk ⇒ΣΣΩ
JSK by the induction hypothesis

2. Γ ;∆JΩLKd0dj JΩRKdkdn ; JS1Kdjdj+1
JS2Kdj+1

dj+2
JΩKdj+2

dk
⇒ΣΣΩ

JSK by the definition of JKdjdk
3. Γ ;∆JΩLKd0dj JΩRKdkdn ; (JS1Kdjdj+1

• JS2Kdj+1

dj+2
)JΩKdj+2

dk
⇒ΣΣΩ

JSK by •L
4. Γ ;∆JΩLKd0dj JΩRKdkdn ; (∃dj+1. JS1Kdjdj+1

• JS2Kdj+1

dj+2
)JΩKdj+2

dk
⇒ΣΣΩ

JSK by ∃L
5. Γ ;∆JΩLKd0dj JΩRKdkdn ; J(S1 • S2)ΩKdjdk ⇒ΣΣΩ

JSK by the definition of JKdjdk
This completes the case.

If (Ω1 = QΩ), then we use the induction hypothesis on the same derivation where (Ω′L =
ΩLQ) and (Ω′1 = Ω) – this is the case where we use the lexicographic induction, as the ordered
context gets smaller but the size of the derivation stays the same. We get a transformed
derivation ending in:

1. Γ ;∆JΩLQKd0dj JΩRKdkdn ; JΩKdjdk ⇒ΣΣΩ
JSK by the induction hypothesis

2. Γ ;∆JΩLKd0dj−1
(Qdj−1 dj)JΩRKdkdn ; JΩKdjdk ⇒ΣΣΩ

JSK by the definition of JKdjdk
3. Γ ;∆JΩLKd0dj−1

JΩRKdkdn ; (¡(Qdj−1, dj))JΩKdjdk ⇒ΣΣΩ
JSK by ¡L

4. Γ ;∆JΩLKd0dj−1
JΩRKdkdn ; JQΩKdj−1

dk
⇒ΣΣΩ

JSK by the definition of JKdjdk
This completes the case; the five other cases (S = ¡Q, !Q, ∃x.S,1, t .= s) are similar. ut
Lemma 5 (Soundness of translation for left inversion) For any contexts Γ ′, ∆′, Ω′,
Γ , ∆, ΩL, and ΩR containing only atomic propositions,

given

Γ ′;∆′; · ⇒Σ′ JSK
D

Γ ;∆JΩLKd0dj JΩRKdkdn ; JΩKdjdk ⇒ΣΣΩ
JSK

ΣΩ = d0 . . . dj . . . dk . . . dn

there exists

Γ ′;∆′′;Ω′′ ⇒Σ′′ S
E

Γ ;∆;ΩLΩΩR ⇒ΣΣΩ
S

∆′ = ∆′′JΩ′′Kd0dm
Σ′ = Σ′′d0 . . . dm

Proof Induction on the length of the derivation D, as in the proof of Lemma 4. ut
The use of d0 . . . dm in Lemma 5 and elsewhere is an acknowledgement of the fact that

the number of ordered propositions may change throughout a sequential derivation, which
effectively forces us to “re-number” the subscripts on the destinations. As an example, if
ΩL = Q1, ΩR = Q2, and Ω = 1 in the statement of Lemma 5, then ΩL will get translated
to Q1 d d′, Ω will get translated to d′

.
= d′′, and ΩR will get translated as Q2 d′′ d′′′. Because

the
.
=L rule will force us to unify d′ and d′′, we have n = 3, ΣΩ = d d′ d′′ d′′′ and m = 2,

Σ′ = Σ′′ d d′ d′′′.

36

A.4 Main proof of Theorem 2

We now have the facts we need to prove Theorem 2. To recall:

Theorem 2 (Correctness of translation) For any three states

– S = (ΓPΓ ;∆;Ω ⇒Σ S),
– So = (ΓPΓo;∆o;Ωo ⇒Σo S), and
– Sl = (ΓPΓl;∆l; · ⇒Σl

S),

we have that

– JSK −+−→ Sl if and only if S −+−→ So and Sl = JSoK+,
– JSK→| if and only if S→|.

Proof The second point is, as we already discussed, a straightforward consequence of Lemma 1,

so we will concentrate on the first case. The bottommost step in any transition S −+−→ S′ is an
application of focusL that picks out a rule A ∈ ΓP . Using Lemma 2 to avoid dealing with the
the program ΓP everywhere, it suffices to show:

Γ ′;∆l; · ⇒Σl
JSK

D
Γ ;∆JΩKd0dn ; [JAK]⇒Σd0...dn

JSK if and only if

Γ ′;∆o;Ωo ⇒Σo S
E

Γ ;∆;ΩL[A]ΩR ⇒Σ S

Ω = ΩLΩR
∆l = ∆oJΩoKd0dm

Σl = ΣoΣwd0 . . . dm

where both D and E are sequential derivations.

If A is in the persistent or linear fragment. In this case, JAK = A, and we can we generalize
the above “if and only if” statement by replacing A and JAK with γ, where γ is either a left
focus [A] where A contains no ordered atomic propositions or else a context Ω containing no
ordered atomic propositions. The proof proceeds by straightforward induction on the structure
of the sequential derivation.

If A contains ordered atomic propositions. By separation, this means that the premise of
A must contain ordered atomic propositions; the conclusion of the rule may or may not contain
ordered atomic propositions. First, we will consider the reverse direction (completeness):

Given
Γ ′;∆′;Ω′ ⇒Σ′ S

E
Γ ;∆;ΩL[A]ΩR ⇒Σ S

show

Γ ′;∆′JΩ′Kd0dm ; · ⇒Σ′Σwd0...dm
JSK

D
Γ ;∆JΩLΩRKd0dn ; [JAK]⇒Σd0...dn JSK

.

In the case that A = ∀x.A′ we use the induction hypothesis on the sub-derivation where the
focus is on A′[t/x]. In the case that A = S1 � S2, we have a derivation of this form:

E1
Γ ;∆1;Ω1 ⇒Σ [S1]

Γ ′;∆′;Ω′ ⇒Σ′ S
E2

Γ ;∆2;ΩLS2ΩR ⇒Σ S

Γ ;∆1∆2;ΩL[S1 � S2]Ω1ΩR ⇒Σ S
�L

By E1 and the correctness of right focus (Lemma 1) we know there is a derivation D1 of

Γ ;∆1JΩ1Kdjdk ; · ⇒Σdj...dk
[JS1Kdjdk]. By E2 and the completeness of left inversion (Lemma 4)

there is a sequential derivation D2:

Γ ;∆′JΩ′Kd0dm ; · ⇒Σ′d0...dm
JSK

D2

Γ ;∆2JΩLKd0dj JΩRKdkdn ; JS2Kdjdk ⇒Σd0...djdk...dn
JSK

37

We can weaken and rename the parameters in D1 and D2 (Lemma 3) to construct the following:

ES
Γ ;∆1JΩ1Kdjdk ; · ⇒ΣΣΩ

[JS1Kdjdk]

Γ ;∆′JΩ′Kd0dm ; · ⇒Σ′Σwd0...dm
JSK

E1
Γ ;∆2JΩLKd0dj JΩRKdkdn ; JS2Kdjdk ⇒ΣΣΩ

JSK

Γ ;∆1∆2JΩLΩ1ΩRKd0dn ; [JS1Kdjdk � JS2Kdjdk]⇒ΣΣΩ
JSK

�L

Γ ;∆1∆2JΩLΩ1ΩRKd0dn ; [∀dR.JS1KdjdR � JS2KdjdR]⇒ΣΣΩ
JSK

∀L

Γ ;∆1∆2JΩLΩ1ΩRKd0dn ; [∀dL.∀dR.JS1KdLdR � JS2KdLdR]⇒ΣΣΩ
JSK

∀L

where ΣΩ = Σwd0 . . . dj . . . dk . . . dn and Σw consists of the parameters used in the transla-

tion of Ω1 but not in the translation of ΩL or ΩR. Because ∀dL.∀dR.JS1KdLdR � JS2KdLdR =

JS1 � S2K, this completes the backward direction of the proof.
The forward direction (soundness) is the direction that would fail were it not for rule

separation:

Given

Γ ′;∆l; · ⇒Σl
JSK

D
Γ ;∆JΩKd0dn ; [JAK]⇒Σd0...dn JSK show

Γ ′;∆o;Ωo ⇒Σ′ S
E

Γ ;∆;ΩL[A]ΩR ⇒Σ S

Ω = ΩLΩR
∆l = ∆oJΩoKd0dm

Σl = Σ′Σwd0 . . . dm

In the case that A = ∀x.A′ we again use the induction hypothesis on the sub-derivation where

the focus is on A′[t/x]. In the case that A = S1 � S2, because JS1 � S2K = ∀dL.∀dR.JS1KdLdR �

JS2KdLdR , we have a derivation of this form:

D1

Γ ;∆1; · ⇒Σd0...dn JS1KtLtR

Γ ′;∆l; · ⇒Σl
JSKd0dm

D2

Γ ;∆2; JS2KtLtR ⇒Σd0...dn
JSK

Γ ;∆1∆2; [JS1KtLtR � JS2KtLtR]⇒Σd0...dn
JSK

�L

Γ ;∆1∆2; [∀dR.JS1KtLdR � JS2KtLdR]⇒Σd0...dn
JSK

∀L

Γ ;∆1∆2; [∀dL.∀dR.JS1KdLdR � JS2KdLdR]⇒Σd0...dn JSK
∀L

with the caveat that tL and tR are not known to be distinct and ∆1∆2 = ∆JΩKd0dn . Because

∆1 ⊂ ∆JΩKd0dn , the correctness of right focus (Lemma 1) and D1 means that ∆1 = ∆′1JΩ′1Kdjdk ,

tL = dj , tR = dk, and there is a derivation E1 of Γ ;∆′1;Ω′1 ⇒Σ S. Because all the linear

propositions that don’t end up in ∆1 must be in ∆2, we have ∆2 = ∆′2JΩ′LKd0dk JΩ′RKdkdn and

∆ = ∆′1∆
′
2. If we let ΩL = Ω′L and ΩR = Ω′1Ω

′
R, then we have Ω = ΩLΩR as required.

By the soundness of left inversion (Lemma 5), D2, and strengthening of parameters

(Lemma 3), we have ∆l = ∆oJΩoKd0dm , Σl = Σ′Σwd0 . . . dm (where Σw again contains all

the parameters used in the translation of Ω1 but not in the translation of ΩL or ΩR), and a
derivation E2:

Γ ′;∆o;Ωo ⇒Σ′ S
E2

Γ ;∆′2;Ω′LS2Ω′R ⇒Σ S

Using�L, E1, and E2 we obtain a sequential derivation ending in Γ ;∆;ΩL[S1 � S2]ΩR ⇒Σ

S, which completes the forward direction. ut

38

B Proof of Theorem 3 (Meta-approximation)

In this section, we present a proof of Theorem 3, which relies on four lemmas that are described
below. The first two lemmas establish that an approximate version of a program can simulate
the program it approximates, and next two formalize the notion that, in an approximate
version of a program, a saturated state captures all the “behaviors” of the state it evolved
from. These two facts in combination mean that all of the behaviors of a program are captured
by the saturated database at the conclusion of a complete trace of its approximate version.

Lemma 6 (One-step simulation) Let S = (ΓPΓ ;∆;Ω ⇒Σ S) and let Sa = (ΓaΓg ⇒Σg S!)

be a generalization of S. If S −+−→ S+ by focusing on the rule A ∈ ΓP , then by focusing on a

rule Aa ∈ Γa, Sg
−+−→ S+g such that S+g is a generalization of S+.

Proof We consider the sequential derivation representing the transition in the focused se-
quent calculus. We will show that if there is a sequential derivation from (ΓPΓ

′;∆′;Ω′ ⇒Σ′

S) to (ΓPΓ ;∆;ΩL[σA]ΩR ⇒Σ S), and if the state (ΓaΓg ⇒Σg S!) is a generalization of
(ΓPΓ ;∆;ΩLΩR ⇒Σ S) by way of the substitution Σg ` θ : Σ, then there is a sequential
derivation from (ΓaΓ ′g ⇒Σ′g

S!) to (ΓaΓg ; ·; [θ(σAa)] ⇒Σg S!) such that the former is a gen-

eralization of (ΓPΓ
′;∆′;Ω′ ⇒Σ′ S). The substitution σ just tracks what terms have been

substituted for the universally quantified variables in A.
The case where the last rule is ∀L is a fairly straightforward application of the induction

hypothesis, and the critical case is when the last rule is�L. In that case, we have the following:

D1

ΓPΓ ;∆1;Ω1 ⇒Σ [σS1]

ΓPΓ
′;∆′;Ω′ ⇒Σ′ S
D2

ΓPΓ ;∆2;ΩL(σS2)ΩR ⇒Σ S

ΓPΓ ;∆1∆2;ΩL[σS1 � σS2]Ω1ΩR ⇒Σ S
�L

The approximate version of S1 � S2 is S′1 � S′2, and we have E1, a derivation of (ΓaΓg ⇒Σg

[θ(σS1)]) by induction over the structure of S′1. All the components of S′1 also appear in S1,
and so in the base case we need to establish that (ΓaΓg ; ·; · ⇒Σg [!(θ(σQ))]) and we know that
D1 must contain a derivation of !(σQ), ¡(σQ), or (σQ). This means that (σQ) is somewhere in
the original state, and therefore θ(σQ) ∈ Γg , which completes the case. The cases where S′1 is
not an atomic proposition are similar.

What remains to be shown is that there is a sequential derivation E2 from (ΓaΓ ′g ⇒Σ′g
S!)

to (ΓaΓg ; ·; θ(σS′2)⇒Σg S!) such that the former is a generalization of (ΓPΓ
′;∆′;Ω′ ⇒Σ′ S)

– from this we can conclude with �L. We generalize the conclusions S2 and S′2 to contexts
Ω2 and Ω′2. The remaining proof obligation is that, given a sequential derivation D2 from
(ΓPΓ

′;∆′;Ω′ ⇒Σ′ S) to (ΓPΓ ;∆2;ΩL(σΩ2)ΩR ⇒Σ S), if (ΓaΓg ⇒Σg S!) is a generalization
of (ΓPΓ ;∆2;ΩLΩR ⇒Σ S) then there is a sequential derivation E2 from (ΓaΓ ′g ⇒Σ′g

S!) to

(ΓaΓg ; ·; θ(σΩ′2) ⇒Σg S) where (ΓaΓ ′g ⇒Σ′g
S!) is a generalization of (ΓPΓ

′;∆′;Ω′ ⇒Σ′ S).

The proof proceeds by lexicographic induction over first the structure of D2 and second the
structure of Ω′2, much as in Lemma 4.

The most interesting case is where Ω′2 is (t
.
= s)Ω′. We assume that we can compute

the most general unifier (Σ′g ` τ : Σg) of the terms θ(σt) and θ(σs). If the equality t
.
= s

appears only in the approximate version, then because (ΓaΓg ⇒Σg S!) is a generalization
of (ΓPΓ ;∆2;ΩLΩR ⇒Σ S), we have that (Γa(τΓg) ⇒Σ′g

S!) is also a generalization of

(ΓPΓ ;∆;ΩLΩR ⇒Σ S). Therefore, we can apply the induction hypothesis (D2 is the same
size and Ω′2 is smaller) to get E2 ending in (Γa(τΓg); ·; τ(θ(σΩ′))⇒Σ′g

τS), and we conclude by

applying
.
=
′
L. If, on the other hand, the equality t

.
= s appears in both the original and approx-

imate versions, then we have a second most general unifier (Σ′′ ` τ ′ : Σ) of σt and σs by inver-
sion on D2. To apply the induction hypothesis we must show that (Γa(τΓg)⇒Σ′g

S!) is a gen-

eralization of (ΓP (τ ′Γ); τ ′∆; τ ′Ω ⇒Σ′′ S), which amounts to showing that if A ∈ (Γ ∪∆∪Ω),
then θ(τ ′A) ∈ τΓg . We have that θA ∈ Γg because of the generalization that we started with,
so certainly τ(θA) ∈ τΓg . Because τ ′ is the mgu of two terms and τ is the mgu of θ applied
to those terms, θτ ′ = τθ so θ(τ ′A) = τ(θA) and the generalization holds. Therefore, we can
apply the induction hypothesis (D2 is smaller) and conclude as before. ut

39

Lemma 7 (Simulation) If (ΓPΓ0;∆0;Ω0 ⇒Σ0 S)
−+−→ . . .

−+−→ Sn is a trace, if Σ′0 ` θ : Σ0,
and if Γa is an approximate version of ΓP , then there is a generalization S′n of Sn such that

(ΓP (θΓ0)(θ∆0)(θΩ0)⇒Σ′0
S!)

−+−→ . . .
−+−→ S′n.

Proof By induction on the length of the program trace. The base case is immediate and the
inductive case follows from Lemma 6. ut

Lemma 8 (Monotonicity) If a program ΓP and a state S contain no linear or ordered

predicates, then if S −+−→ . . .
−+−→ S′, then S′ is a generalization of S.

Proof By induction on the length of the program trace. Because every step only adds new
facts and applies substitutions to existing facts, this amounts to the composition of those
substitutions. ut

Lemma 9 (Saturation) If the program ΓP contains no linear or ordered predicates and

there is a trace S0
−+−→ . . .

−+−→ Sa where Sa is saturated, then if S0
−+−→ . . .

−+−→ Sn, then Sa is
a generalization of Sn.

Proof By induction on the general trace S0, . . . , Sn. The base case follows from Lemma 8 – Sa
generalizes S0 because the latter evolved from the former.

In the inductive case, Sa is a generalization of Sn, and Sn evolves to Sn+1. We need to

show Sa is a generalization of Sn+1. By Lemma 6, Sa evolves to S+a , which is a generalization
of Sn+1. Because generalization is transitive, it suffices to show that Sa is a generalization of

S+a . But Sa is saturated, so every parameter or proposition in S+a is equal to a parameter or
proposition in Sa. ut

B.1 Main theorem

To recall:

Theorem 3 (Meta-approximation)
If Γa is an approximate version of ΓP , if there is a state S0 = (ΓPΓ0;∆0;Ω0 ⇒Σ0

S), and if

for some Σ′0 ` θ : Σ0 there is a trace (Γa(θΓ0)(θ∆0)(θΩ0)⇒Σ′0
S!)

−+−→ . . .
−+−→ Sa such that

Sa is saturated, then Sa is an abstraction of S0.

Proof Consider a trace (Γ0;∆0;Ω0 ⇒Σ0
S)

−+−→ . . .
−+−→ Sn of the original program. By

Lemma 7 (Simulation) there is a trace (Γaθ(Γ0∆0Ω0)⇒Σ0 S!)
−+−→ . . .

−+−→ S′n of the approx-
imate program such that S′n generalizes Sn. Then, by Lemma 9 (Saturation), we know that
the saturated state Sa is a generalization of S′n. Because generalization is transitive, Sa is a
generalization of Sn, which is what we needed to show. ut

