
Recitation 7:

Dynamic Typing and Refinements

15-312: Principles of Programming Languages

Wednesday, February 26, 2014

For this handout, we consider PCF without sums and products but with an additional failure construct fail

as the sole source of runtime errors (which are propogated as usual).

� ` fail : ⌧ fail err

We might want to use fail to handle cases like division by zero as a better alternative to nontermination or

returning a bogus answer:

fix div:nat * nat * nat is

fn (m:nat) fn (n:nat) ifz n {z) fail | s()) . . .}
We will use refinement types to exclude the possibility of failure. Under the refinement type system, we can

give div the refinement >nat * pos * >nat, which requires the second argument to be non-zero.

1 Refinements refine types

>⌧ E ⌧ zero E nat pos E nat odd E nat even E nat

'1 E ⌧1 '2 E ⌧2

'1 * '2 E ⌧1 * ⌧2

'1 E ⌧ '2 E ⌧

'1 ^ '2 E ⌧

2 Refinement entailment

Any nat that satisfies refinement zero also satisfies refinement even, any refinement that satisfies refine-

ment odd also satisfies refinment pos. This is captured by refinement entailment ' '

0
.

' E ⌧

' '

' E ⌧

' >⌧ zero even odd pos

'

0
1 '1 '2 '

0
2

'1 * '2 '

0
1 * '

0
2

'1 '

'1 ^ '2 '

'2 '

'1 ^ '2 '

' '1 ' '2

' '1 ^ '2

We want refinement entailment to be reflexive and transitive. We can either define these properties as rules

or we can just require them to hold as theorems (or admissible rules) of our system. The subrefinement

definition above has reflexivity as an explicit rule and has transivity as an admissible rule; the subrefinement

definition in the homework has both as admissible rules.

1

3 Refinement checking

By writing the judgement x1 2 '1, . . . , xn 2 'n ` e 2 ', we assert that we already know that x1 :
⌧1, . . . , xn : ⌧n ` e : ⌧ , where ' E ⌧ , '1 E ⌧1, . . . , and 'n E ⌧n.

The rules for variables, functions, and fixpoints just match the type system, because we don’t have any

interesting refinements directly applied to functions in this system.

⌃, x 2 '1 ` e 2 '2

⌃ ` fn (x:⌧) e 2 '1 * '2

⌃ ` e1 2 '

0
* ' ⌃ ` e2 2 '

0

⌃ ` e1 (e2) 2 '

⌃, x 2 ' ` e 2 '

⌃ ` fix x:⌧ is e 2 '

There are two rules specific to refinement systems: refinement entailment and conjunction. Note that we

do not have a rule allowing us to prove ⌃ ` e 2 >⌧ , because this would mean we couldn’t exclude bad

programs from our language.

⌃ ` e 2 '1 ⌃ ` e 2 '2

⌃ ` e 2 '1 ^ '2

⌃ ` e 2 '1 '1 '2

⌃ ` e 2 '2

The interesting bit of this particular refinement system is in the introduction and elimination forms for nat:

⌃ ` z 2 zero

⌃ ` e 2 >nat

⌃ ` s(e) 2 pos

⌃ ` e 2 even

⌃ ` s(e) 2 odd

⌃ ` e 2 odd

⌃ ` s(e) 2 even

⌃ ` e 2 zero ⌃ ` e0 2 '

⌃ ` ifz e {z) e0 | s(x)) e1} 2 '

⌃ ` e 2 pos ⌃, x 2 >nat ` e1 2 '

⌃ ` ifz e {z) e0 | s(x)) e1} 2 '

⌃ ` e 2 odd ⌃, x 2 even ` e1 2 '

⌃ ` ifz e {z) e0 | s(x)) e1} 2 '

⌃ ` e 2 even ⌃ ` e0 2 ' ⌃, x 2 odd ` e1 2 '

⌃ ` ifz e {z) e0 | s(x)) e1} 2 '

⌃ ` e 2 >nat ⌃ ` e0 2 ' ⌃, x 2 >nat ` e1 2 '

⌃ ` ifz e {z) e0 | s(x)) e1} 2 '

2

