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1 Inductive definitions and natural numbers

Inductive definitions are the basis for a lot of the work we will be doing this semester. Inductive definitions
take the following form:

J1 J2 J3 . . .
J

(R)

Where the meaning of this is “If I can prove J1, J2, . . . (the premises) then I can use rule (R) to prove J
(the conclusion).”

1.1 Natural numbers

Let’s begin with an inductive definition of natural numbers, which has two rules:

zero nat (Z)
n nat

succ(n) nat
(S)

The first rule can be read “zero is a natural number.” The second rule can be read “If n is a natural
number, then succ(n) is also a natural number.”

We often want to prove a property about all natural numbers, P(n). We can use rule induction to do
this. In the case of natural numbers, the induction principle is this:

In order to show P(n) whenever n nat, it suffices to show:

• Rule (Z): P(zero)
• Rule (S): P(succ(n)) assuming P(n)

1.2 The sum of two natural numbers

We can now give an inductive definition of plus(a, b, c), a judgment which means that a + b = c. There are,
again, two rules:

n nat
plus(zero, n, n)

(PZ)
plus(n, m, p)

plus(succ(n), m, succ(p))
(PS)

The first rule can be read “If n is a natural number, then 0 + n = n.” The second rule can be read “If
n + m = p, then (n + 1) + m = (p + 1).”
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1.3 Proofs with inductive definitions

Now, say we want to prove “If n nat, then plus(zero, n, n).” This is easy!

To show: If n nat then plus(zero, n, n)
Apply rule (PZ)
To show: n nat
n nat by assumption

On the other hand the statement “If n nat, then plus(n, zero, n),” while just as true intuitively, is not
possible to directly prove. We will prove the statement by a very simple induction! Take P(n) to be
“plus(n, zero, n).” Then, if we prove the two cases of the induction principle in Section ??, we will have
shown that plus(n, zero, n) whenever n nat, which is exactly what we need to show!

• Case (Z): Prove P(zero), i.e. prove plus(zero, zero, zero)

To show: plus(zero, zero, zero)
Apply rule (PZ).
To show: zero nat (the premise of rule (PZ))
Apply rule (Z).

• Case (S): ProveP(succ(n)) assumingP(n), i.e. prove plus(succ(n), zero, succ(n)) assuming plus(n, zero, n)
(the IH).

To show: plus(succ(n), zero, succ(n))
Apply rule (PS).
To show: plus(n, zero, n) (the premise of rule (PS))
Apply the IH.

1.4 Another proof

Inversion for zero: For all m and p, if plus(zero, m, p) , then m = p

Inversion for successor: For all n, m, p, if plus(succ(n), m, p), then there exists a p′ such that p = succ(p′)
and plus(n, m, p′).

Lemma 1. For all n, m, p, if plus(n, m, p) then plus(n, succ(m), succ(p))

Proof. Consider for arbitrary n.

The induction principle tells us that, in order to show P(n), for any P , it suffices to show

• P(zero)

• For every n′, if P(n′), then P(succ(n′))

We define the propertyP as follows,P(n) iff for all m and p, if plus(n, m, p) then plus(n, succ(m), succ(p))

We proceed by induction
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• P(zero)

To show:
Let m be arbitrary and fixed
Let p be arbitrary and fixed
1) Assume plus(zero, m, p)
Suffices to show:
2) m = p By inversion for zero and (1)
Suffices to show: plus(zero, succ(m), succ(m)) By (2)
3) plus(zero, succ(m), succ(p)) By rule (PZ)

• For every n′, if P(n′), then P(succ(n′))

Let n′ be arbitrary and fixed
1) For all m and p, if plus(n′, m, p) then plus(n′, succ(m), succ(p)) By
To show:
Let m be arbitrary and fixed
Let p be arbitrary and fixed
2) Assume plus(succ(n′), m, p)
Suffices to show:
3) Exists p′ such that p = succ(p′) and plus(n′, m, p′) By
Consider such a p′

Suffices to show: By (3)
4) plus(n′, m, p′)
5) By (1), substituting m for m and p′ for p, and (4)
6) plus(succ(n′), succ(m), succ(succ(p′))) By (PS) on (5)

Thus, we have established P(n), which is what we needed show

2 Proving that plus(n, m, p) is a function

We intended the inductively defined relation plus(n, m, p), to be a function from n and m to p, that means
“If n nat and m nat, there exists a unique p nat such that plus(n, m, p).” This, is actually shorthand for two
separate statements:

• Existence: If n nat and m nat, there exists p nat such that plus(n, m, p).

• Uniqueness: If n nat, m nat, p nat, p′ nat, plus(n, m, p), and plus(n, m, p′), then p = p′ nat.

We will consider each of these two proofs in turn.

2.1 Proving existence

We need to prove that if n nat and m nat, there exists p nat such that plus(n, m, p)
We proceed by induction on n nat. Our property of interest, P(n) is “If m nat, there exists p nat such

that plus(n, m, p).”
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• Case (Z): Prove P(zero), i.e. prove that if m nat, there exists p nat such that plus(zero, m, p).

To show: If m nat, there exists p nat such that plus(zero, m, p)
Take p = m.
To show: if m nat then p nat and plus(zero, m,m)
We took p = m, and m nat by assumption.
To show: If m nat, plus(zero, m,m).
Apply rule (PZ).
To show: a nat
By assumption.

• Case (S): Prove P(succ(n)) assuming P(n), i.e. prove that if m nat, then there exists p nat such that
plus(succ(n), m, p) assuming that if m nat, there exists p nat such that plus(n, m, p).

To show: If m nat, then there exists p nat such that plus(succ(n), m, p)
Let p′ be the p that exists by applying the IH
(which we can apply because m nat by assumption.)
Choose p = succ(p′).
To show: If m nat, then succ(p′) nat and plus(succ(n), m, succ(p′)).
We have succ(p′) nat by applying the (S) rule, knowing p′ nat by the IH as above.
To show: If m nat, then plus(succ(n), m, succ(p′)).
Apply rule (PS).
To show: If m nat, then plus(n, m, p′).
Apply the IH as above.

2.2 Proving uniqueness

. . . Later... . . .
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