15-122: Principles of Imperative Computation

Recitation Week 2 Josh Zimmerman, Nivedita Chopra

Big-O definition
The definition of big-O has a lot of mathematical symbols in it, and so can be very confusing at first.
Let's familiarize ourselves with the formal definition and get an intuition behind what it's saying.

O(g(n)) is a set of functions, where f(n) € O(g(n)) if and only if:

there is some

and some

such that for all ,

Big-O intuition

resources
(time, space, ...)

n

To the left of ng, the functions can do anything.
To its right, ¢ x g(n) is always greater than or equal to f(n).

There are actually infinitely many functions that are in O(g(n)): If f(n) € O(g(n)), then $f(n) €
O(g(n)) and 1 f(n) € O(g(n)) and 2f(n) € O(g(n)). In general, for any constant k, k* f(n) € O(g(n)).

Checkpoint 0

Rank these big-O sets from left to right such that every big-O is a subset of everything to the right of
it. (For instance, O(n) goes farther to the left than O(n!) because O(n) C O(n!).) If two sets are the
same, put them on top of each other.

O(n!) O(n) O(4) O(nlog(n)) O(4n+3) O(n*+20000n+3) O(1) O(n?) O(2")
O(log(n)) O(log*(n))  O(log(log(n)))

Checkpoint 1
Using the formal definition of big-O, prove that n3 + 300n? € O(n?).



Checkpoint 2
Using the formal definition of big-O, prove that if f(n) € O(g(n)), then k x f(n) € O(g(n)) for k > 0.

One interesting consequence of this is that O(log,;(n)) = O(log;(n)) for all i and j (as long as they're
both greater than 1), because of the change of base formula:

log:(n
log () = lgg(())

But m is just a constant! So, it doesn't matter what base we use for logarithms in big-O notation.
J

When we ask for the simplest, tightest bound in big-O, we'll usually take points off if you write, for
instance, O(logy n) instead of the simpler O(logn).

Simplest, tightest bounds
Something that will come up often with big-O is the idea of a tight bound on the runtime of a function.

It's technically correct to say that binary search, which takes around log(n) steps on an array of length
n, is O(n!), since n! > log(n) for all n > 0 but it's not very useful. If we ask for a tight bound, we want
the closest bound you can give. For binary search, O(log(n)) is a tight bound because no function that
grows more slowly than log(n) provides a correct upper bound for binary search.

Unless we specify otherwise, we want the simplest, tightest bound!

Checkpoint 3
Simplify the following big-O bounds without changing the sets the represent:

O(3n + 2) can be written more simply as

O(n2'5 + logy(n)) can be written more simply as

O(log;o(n) 4 logy(7n)) can be written more simply as

Checkpoint 4

Give the simplest, tightest bound for the following functions:

f(n) =16n2+5n+2¢

g(n,m) =nl® x 16m €

h(z,y, z) = max(z,y) + 210 €




