15-122: Principles of Imperative Computation
Lab Week A, Friday Nivedita Chopra, Rob Simmons

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab-c .
% cd lab-c

You should write your code in the new files hello.c and rollcall.c in the directory lab-c.
Grading: This is a self-paced lab and is not for credit.

We strongly recommend finishing these tasks during or after lab, as they will help you better understand
C and write code in it.

Hello, World!

Today's lab involves writing some code in C. Throughout this handout, please refer to the tutorial at
http://cO.typesafety.net/tutorial/From-CO-to-C:-Basics.html

(1.a) The first program to try out in any programming language is one that prints out “Hello World!" (or
any other string of your choice), so that you know that you are able to compile and run programs.

Create a file called hello.c and write some valid C code that prints out the string “Hello World!"
You can refer to the file hello. cO for the equivalent CO code. You'll need to use the stdio library
for printing.

Here's the CO version of the file you're rewriting:

1 #use <conio>

2 int main(){

3 print("Hello World!\n");
4 return 0;

5}

If your code works, you can compile it and test it as follows:

% gcc -Wall -Wextra -Werror -Wshadow -std=c99 -pedantic -g hello.c
% ./a.out

Hello World!

h

C programs won't print out the value returned from main() the way CO programs do.

Return of the roll call example

In this part, we're checking on the attendance records of various students. All the code you're writing in
C is provided in CO form in the file rollcall.cO, which you should refer to as you do these tasks.

(2.a) In a new file, rollcall.c, represent each student as a struct with fields andrew_id (a string),
attendance (a boolean array) and num_days (a size_t representing the length of the array).
Look at rollcall.cO for the CO version of the code this struct.

(2.b) Write a function student_new that takes in an andrew id and a string of letters (either “T" or ‘F’).
The function creates a new student struct, assigns the appropriate values, and returns the newly
created struct.


http://c0.typesafety.net/tutorial/From-C0-to-C:-Basics.html

(2.c) Write a function count_present to count the number of days that a given student was present.

(2.d) Translate the main function in rollcall.cO to valid C code in rollcall.c. Don't worry about
freeing allocated memory just yet.

You should now be able to compile and run your code:

% gcc -Wall -Wextra -Werror -Wshadow -std=c99 -pedantic -g xalloc.c rollcall.c
% ./a.out

foobar : 4/6
acarnegie : 3/3
cobot : 3/4
scotty : 2/5
bovik : 0/0

h

This looks good! But if you didn't free the memory you allocated, you'll see memory leaks (hopefully
not memory errors) when you run the code with valgrind:

% valgrind ./a.out

<many lines of mumbo-jumbo>

% valgrind --leak-check=full ./a.out
<even more lines of mumbo-jumbo>

(2.e) Try to match some of the line numbers reported by valgrind to lines in your C code. If you don't
see line numbers, make sure you added the -g flag when compiling with gcc.

(2.f) Free all the memory you've allocated right before the return 0 in main(). Re-compile and re-run
with valgrind to confirm that you got it right.

Valgrind will report “All heap blocks were freed — no leaks are possible” if you get it right. Don't worry
about leaks that are marked as “suppressed.”

Hashing C strings

Recall that the Java hash function is:

—

n—

h(s)=>sli]- 31"~

1=0

(3.a) If we were to store students in a hash table, we would need a hash function for each student.
Using the fact that strings in C are character arrays terminated by a ‘\0’ character, write a hash
function that performs the Java hash on an appropriate field in the student struct. Here is the
header for this function:

int hash(stux s);



