
15-122: Principles of Imperative Computation
Lab Week E Tom Cortina, Rob Simmons
Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.
These activities, like recitation, are meant to get you to review what we’ve learned, look at problems
from a different perspective and allow you to ask questions about topics you don’t understand. Feel free
to talk with your neighbors about the problems!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab-graphs .
% cd lab-graphs

You should add your code to the existing files graph.c, graph-search.c, graph-search.h, and
graph-test.c in the directory lab-graph.

Grading: You should finish (1.a), (1.b), and (1.c) for partial credit, and additionally finish (1.d) and
(1.e) for full credit.

Representing undirected graphs with an adjacency matrix
This lab involves implementing a graph using an adjacency matrix rather than an array of adjacency lists.
Graphs will be specified by the following C interface (as in graph.h):

1 typedef unsigned int vertex;
2 typedef ______* graph;
3
4 // New graph with numvert vertices
5 graph graph_new(unsigned int numvert);
6 //@ensures \result != NULL;
7
8 unsigned int graph_size(graph G);
9 //@requires G != NULL;

10
11 bool graph_hasedge(graph G, vertex v, vertex w);
12 //@requires G != NULL;
13 //@requires v < graph_size(G) && w < graph_size(G);
14
15 void graph_addedge(graph G, vertex v, vertex w);
16 //@requires G != NULL;
17 //@requires v != w && v < graph_size(G) && w < graph_size(G);
18 //@requires !graph_hasedge(G, v, w);
19
20 void graph_free(graph G);
21 //@requires G != NULL;

In class, we discussed the adjacency list implementation of graphs. In this lab, we’ll work through the
adjacency matrix implementation.

Recall that if a graph has n vertices, then its adjacency matrix adj is an n X n array of booleans such that
adj[i][j] is true if there is an edge from vertex i to vertex j (for valid i and j), false otherwise. Since
the graph is undirected, if adj[i][j] is true, then adj[j][i] should also be true, and if adj[i][j] is
false, then adj[j][i] should also be false. The graph should not have any self-loops (i.e. a vertex with



an edge to itself).

(1.a) Complete the data structure invariant function is_graph that returns true if G points to a valid
graph given the definition above, or false otherwise.

Make sure to capture the fact that the graph is undirected in your data structure invariant! Compare
notes with a neighbor before you move on.

(1.b) Complete the graph_new function that creates a new graph using a dynamically-allocated 2D array
of boolean for the adjacency matrix. Create the 2D array in two steps: first create a new 1D array
of type bool*, then for each array element, have it point to a new 1D array of type bool. You
can then access the array using the 2D notation (e.g. G->adj[0][1] = true).

Note: Don’t ever do this in practice! C has ways of supporting 2D arrays that don’t require an extra
array of pointers; you’ll learn about this more efficient way of doing things in later classes, like 15-213.

(1.c) Complete the graph_free function that frees any dynamically-allocated memory for the given
graph G.

Once you are done implementing the functions above, you should have a complete graph.c. Compile
your code and test it with the given DFS and BFS searches in graph-search.c and the given graphs in
graph-test.c:

% make graphtest
% ./graphtest

All tests should pass. (Look at the graphs in graph-test2.c to see why.) Be sure to use valgrind
also to make sure you have freed all memory you allocated!

(1.d) Write a function fully_connected(G) in graph-search.c that returns true if a graph G is fully
connected (i.e. there is a path from any vertex to any other vertex), false otherwise.

Hint: Perform a BFS and count the number of vertices visited. For a fully connected graph, the total
should be a specific value. Test your function on several graphs, fully connected and not fully connected.

(1.e) Update graph-search.h with the new function, and write at least two test cases in graph-test.c:
one where fully_connected returns true, and one where it returns false.


