
15-122: Principles of Imperative Computation
Lab Week C Rob Simmons
Unless arranged well in advance with an instructor, you may only attend the lab you’re registered for.

Collaboration: These activities, like recitation, are meant to get you to review what we’ve learned,
look at problems from a different perspective and allow you to ask questions about topics you don’t
understand. We encourage discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab-gsort .
% cd lab-gsort

Grading: Make an attempt at (1.1) for partial credit, and finish both tasks (1.1) and (1.2) for full credit.

Generic sort
Today we will explore the difference between void* in C0 and void* in C, and exploit that difference to
write a generic sort in C.

B57 B58 B59 B5A B5B B5C B5D B5E B5F B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 

48 65 6C 6C 6F 2C 20 65 76 65 72 79 6F 6E 65 00 

The image above shows a 16 byte allocation where each byte contains an 8-bit value. The actual size
of a byte in C is implementation-defined and so can be either 8 bytes or more, but you can pretty much
count on it being 8 bytes.

If we have a pointer A whose value is 0xB58, then the way we interpret that pointer depends on the type
of the pointer. As a char*, the pointer A points to the value 0x48 or ’H’, the first character in the NUL-
terminated string "Hello, everyone". As an int32_t*, the pointer A points to a signed integer, the
first element in an array of four integers. (According to the implementation-defined behavior we usually
expect, this array contains the four integers 1819043144, 1696607343, 2037540214, and 6647407.) If A
is a void*, then we know nothing about how to interpret, read from, or write to this block of memory.

In this lab, we will write a function that sorts arrays without knowing anything about how to interpret,
read from, or write to the memory addresses in that array. The client will tell us the count of how many
elements there are, tell us the size of an element elt_size, and also tell us how to interpret (with a
comparison function) and manipulate (with a swap function) individual elements of the array.

1 typedef void swap_fn(void *x, void *y)
2 /*@requires x != NULL && y != NULL; @*/ ;
3
4 // Compares the objects at memory locations x and y
5 typedef int compare_fn(void *x, void *y)
6 /*@requires x != NULL && y != NULL; @*/
7 /*@ensures −1 <= \result && \result <= 1; @*/ ;
8
9 void gsort(void *A, size_t count, size_t elt_size,

10 swap_fn *swp,
11 compare_fn *comapr)
12 /*@requires A != NULL && swp != NULL && compar != NULL; @*/
13 /* requires that A is an allocation of at least count * elt_size */ ;



The interface above is provided in lib/gsort.h. Your implementation in gsort.c is one of the very
small number of cases in C where it is acceptable to cast a void* to another pointer type without being
absolutely certain what type the void* originally was. (Remember that it was never acceptable to do
this in C1.)

If a client asks us to sort the 5 two-byte objects starting at the void pointer 0xB58, then we know that
the five elements in the array have the addresses 0xB58, 0xB5A, 0xB5C, 0xB5E, and 0xB60. We can
calculate the address of the array element that the client thinks of as A[3] by casting A to a char* and
then writing either (A + 6) or &A[6]. This makes sense because a char is always one byte and because
6 is the array offset (3) times the size of an array element in bytes (2).

All we need to do to sort is calculate the addresses where array elements begin and pass these addresses
to the client functions. It is the clients function that know how to compare and swap objects given the
addresses of those objects. Because we are writing the sorting algorithm without knowing what objects
are being stored, this is not something we can or should do.

(1.a) Write a generic sort in gsort.c according to the strategy described above. Make sure your gsort.c
includes "lib/gsort.h". A C0 version of insertion sort is given to you below and in sort.c0.
Don’t worry about translating the contracts. You can test your code by running:

% make
% ./a.out

(1.b) Modify gsort-test.c to sort arrays of frequency counts by both frequency and by word (according
to the string.h function strcmp).

Insertion sort in C0
1 void sort(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures is_sorted(A, 0, n);
4 {
5 for (int i = 0; i < n; i++)
6 //@loop_invariant 0 <= i && i <= n;
7 //@loop_invariant is_sorted(A, 0, i);
8 //@loop_invariant le_segs(A, 0, i, A, i, n);
9 {

10 int min = i;
11 for (int j = i + 1; j < n; j++)
12 //@loop_invariant i < j && j <= n;
13 //@loop_invariant i <= min && min < n;
14 //@loop_invariant le_seg(A[min], A, i, j);
15 {
16 if (A[j] < A[min]) {
17 min = j;
18 }
19 }
20 swap(A, i, min);
21 }
22 }


