
15-122: Principles of Imperative Computation
Lab Week 6 Nivedita Chopra, Rob Simmons
Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.
These activities, like recitation, are meant to get you to review what we’ve learned, look at problems
from a different perspective and allow you to ask questions about topics you don’t understand. Feel free
to talk with your neighbors about the problems!

Grading: For partial credit, you must pass all tests for (1.a). For full credit, you must additionally pass
all tests for (1.a) and one of (1.b) and (1.c). (Show your TA the autograder output, and they will check
you off).

Sorted Linked Lists
Today’s lab involves sorted linked lists of unique integers. This is an invariant that should be maintained
throughout the lab – all linked lists must be sorted and must not contain duplicates. Another thing
that’s different from the linked lists that you’ve seen in lecture and on homework is that there is no
“dummy node” at the end of the list. The end of the linked list is reached when the next pointer on a
node is NULL.

data	
   next	
  

-­‐2	
  
data	
   next	
  

6	
  
data	
   next	
  

12	
  

start	
  

data	
   next	
  

12	
  

Q

R	
  

S	
  

T	
  

U

start	
   start	
  

data	
   next	
  

6	
  
data	
   next	
  

6	
  
start	
  

data	
   next	
  

42	
  
data	
   next	
  

-­‐1	
  
start	
  

In the illustration above, Q is a sorted linked list containing no numbers, R contains just 12, and S
contains −2, 6, and 12. Neither T nor U is a valid sorted linked list (that is, is_sortedlist(T) and
is_sortedlist(U) will both return false).



Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab-sorted .
% cd lab-sorted

You should add your code to the existing file sortedlist.c0 in the directory lab-sorted. Definitions
of the structs and typedefs for list and sortedlist are in the file listlib.c0.

(1.a) Check if a given integer is in a sorted linked list, without modifying the list.

bool is_in(sortedlist* L, int n)
//@requires is_sortedlist(L);

Testing: The listlib.c0 file contains the following specification functions and helper functions, which
may be useful while testing:

bool is_segment(list* start, list* end);
bool is_sortedlist(sortedlist* L);
sortedlist* nil() /*@ensures \result != NULL; @*/;
sortedlist* cons(int i, sortedlist* S) /*@requires S != NULL; @*/;
string to_string(sortedlist* S) /*@requires S != NULL; @*/;

Running cons(-2, cons(6, cons(12, nil()))) creates the sorted linked list S from the example
above. You can test your code in Coin like this:

% coin -d listlib.c0 sortedlist.c0

You’ll be submitting the file sortedlist.c0, and only that file, to the ungraded Autolab autograder
created for this lab. This is the one called “Lab 6 Activity: Sorted Linked Lists” and not the one called
“Lab 6.” The autograder gives no feedback. Remember that you can review, debug, and test code with
your neighbors! Drawing diagrams might also prove useful.

(1.b) Insert an integer into a sorted linked list, while ensuring that the list remains sorted and that every
element occurs exactly once. The list should be unchanged if the integer is already in the list.

void insert(sortedlist* L, int n)
//@requires is_sortedlist(L);
//@ensures is_sortedlist(L);
//@ensures is_in(L, n);

(1.c) Delete an integer from a sorted linked list, while ensuring that the list remains sorted and that
every element occurs exactly once. The list should be unchanged if the integer isn’t in the list.

void delete(sortedlist* L, int n)
//@requires is_sortedlist(L);
//@ensures is_sortedlist(L);
//@ensures !is_in(L, n);


