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Privacy Preserving Data Mining Secure Multiparty Computation

Protocol For Regression

• Each party should only learns the regression 

estimates and whatever is implied by them.

• Ideally, the parties could trust a 3rd party with 

their data:

• Using cryptography, the parties perform a 

protocol, with the same impact on privacy as 

the ideal scenario [2,6].

• Intermediate quantities contain no information 

about the private data beyond that contained in 

the output.

• Several parties have data on a common set of 

entities, but each party’s data is incomplete:

• Each party’s data is private, and the parties are 

unwilling to share their data.

• We do regression on the unknown, full data 

matrix, without requiring the parties to reveal 

their private data. 

Implementation

• Implemented in C using GMP to handle 

operations on 1024 bit long numbers.

• Secure multiplications take ~0.1s.

• Much slower than non-secure methods.

• Appropriate for moderate size problems.

• May easily be parallelized to take advantage of 

multiple machines.

Ongoing Work

• Securely computing link functions of other GLMs.

• Investigating which goodness of fit statistics 

compromise privacy.

• Secure record linkage (when no unique ID for the 

records is known to all parties)

• Comparison with the alternative: transform each 

party’s data and share it [1].
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Main Ideas

• Any computation may be performed but the 

construction of [6] is inefficient.

• Computations consisting of addition and 

multiplication are efficient (see e.g., [5,7]).

• Compute regression parameters via Newton-

Raphson method:

• Matrix inversion reduces to sums and products 

(applying  Newton’s method):

• Logistic function may be approximated by 

Euler’s method:

Patient ID Tobacco Age Weight Heart Disease

0001 ? 36 170 ?

0002 N 26 150 ?

0003 N 45 165 ?

… … … … …

Patient ID Tobacco Age Weight Heart Disease

0001 Y ? 170 Y

0002 ? 26 150 N

0003 ? ? 165 N

… … … … …

Patient ID Tobacco Age Weight Heart Disease

0001 Y 36 170 Y

0002 N 26 150 N

0003 N 45 165 N

… … … … …

“Full data” (unknown)

Here are the 

results of the 

analysis…

Here are our 

data..

Matrix inversion Non-linear (logistic)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Multiple steps, 

per iteration

Gradient only involves 

sums and products.

Resulting 

approximation is 

arbitrarily good
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