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« Several parties have data on a common set of « Each party should only learns the regression
entities, but each party’s data is incomplete: estimates and whatever is implied by them.
 |deally, the parties could trust a 3" party with

their data:
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| | Kept “secret” from all
parties
 Each party’s data is private, and the parties are
unwilling to share their data. Outputs known by each party
. We do regression on the unknown, full data * Intermediate quantities contain no information
matrix, without requiring the parties to reveal about the private data beyond that contained In
their private data. the output.
Protocol For Regression
Main ldeas Implementation
* Any computation may be performed but the » Implemented in C using GMP to handle
construction of [6] Is inefficient. operations on 1024 bit long numbers.
« Computations consisting of addition and » Secure multiplications take ~0.1s.
multiplication are efficient (see e.g., [5,7]). «  Much slower than non-secure methods.
« Compute regression parameters via Newton- . Appropriate for moderate size problems.

Raphson method: . May easily be parallelized to take advantage of

Bii1 = /315—/@25)_1}6 A multiple machines.

Matrix inversion Non-linear (logistic)

— _ Ongoing Work
. I\/Iatr|x.|nver5|on re,duces to sums and products . Securely computing link functions of other GLMs.
(applying Newton's method): - Investigating which goodness of fit statistics

2 . .
Ag = €l At+1 — 24, — AtM compromise privacy.
« Securerecord linkage (when no unigue ID for the
» Logistic function may be approximated by records is known to all parties)
Euler's method: ey - Comparison with the alternative: transform each
. ey N ) .
Multiple steps, A esuiing - party’s data and share it [1].
oer iteration . < approximation Is
“Lt+1N  arbitrarily good
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