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Abstract

Differential privacy is a framework for releasing summaries of a dataset in a way that makes rigorous the
notion of privacy afforded to the data elements (e.g., when they are measurements of individuals). Previous
work has focused on the release of finite dimensional statistics where privacy is achieved via randomization. We
extend these methods to allow the release of infinite dimensional quantities in an RKHS, which leads to a new
technique for the privacy-preserving release of functions such as kernel machines.

1 Differential Privacy

Suppose we have database X € X™ and want to release a summary (e.g., a statistical analysis) without compromising
the privacy of individuals in the database. One framework for defining privacy rigorously in such problems is
Differential privacy [3,5]. We characterize a method for the data release by a family of probability distributions
{Px : X € X"} over (,.A), which specify the probabilities of the output w for each possible input database X.
We use the relation X ~ X’ to mean that X, X’ differ in one element (that is, there exists a permutation of X’
having hamming distance one from X). A randomized algorithm is called («, 8)-Differentially Private if, for all
X ~ X' € X" we have:

Px(A) SeaPX/(A)—i—ﬁ, VA € A. (1)

In essence this condition ensures that the output distribution does not change much when the input data changes
by one element, the implication being that it is very hard to distinguish between input databases on the basis of the
output (see [7]). The parameters «, § control the difficulty of inference about the input, and are used to tradeoff the
error due to noise against the strength of the privacy guarantee. Algorithms that fulfil differential privacy have been
developed for classification, logistic regression and many other learning tasks. See, for example, [2,6], and references
therein. In all these cases, the output are taken to be real vectors (e.g., regression coefficients). Techniques for the
release of functions have so far been limited to finite dimensional projections (see e.g., [6,7]), whereas we give a
technique which releases an infinite dimensional quantity. We also make use of the RKHS structure, which makes
the techniques more straightforward.

Finally we recall that the archetypal method for the release of a real vector vy = v(X) € R? is to add Gaussian
noise proportional to the “global sensitivity” of that function (see e.g., [4]).
Proposition 1.1. For some fized covariance matriz X, whenever

sup ||Z7Y2 (vx —vx/)

X~X7

L <A 2)

then it satisfies (o, 8)-DP to take each Px to be the multivariate normal distribution having mean vx, and covariance
matriz ¢(a, 8, A)X where we define ¢(a, 8, A) = 2log %A2/042.

2 Differential Privacy in an RKHS

Denote by H(K) the RKHS over RT (we restrict attention to the case of T = [0, 1]?) with the reproducing kernel K.
When the goal is to release a function fx = f(X,-) which depends on the data X, differential privacy is achieved
by the addition of an appropriate Gaussian process. We first give the analog of proposition 1.1 then give a proof
sketch.

Proposition 2.1. For a family of functions {fx : X € X"} C H(K) which satisfies

sup ||fx — fxrllwry < Du), (3)
XX

then it satisfies (o, B)-DP to take each Px to be the Gaussian process measure having mean function fx and
covariance function c(a, B, Ay x)) K, with ¢ defined as before.

In sketching the proof, we use the spectral representation of the RKHS, namely we write the kernel as K(z,y) =
Zizl Aigi(2)d;(y), where the ¢s form an orthonormal basis under the RKHS inner product which we denote



(s )2k~ Likewise a function f € H(K) may be uniquely written in terms of coordinates in the same basis

f= Zm(f)@(-), ni(f) = Xl f, Pi) (k)
i>1
Proof of proposition 2.1. Consider the Karhunen-Loeve expansion of the suggested Gaussian process as » ;< Z;;,
where each Z; is normal with mean 7;(fx) and variance c(a, 8, Agy(x))Ai. If we were to truncate this expansion
after m terms, we could interpret the value as a finite dimensional Gaussian vector. Denoting by % the diagonal
matrix with elements given by A;, we note that (3) implies that Ay (g is an upper bound as required in (2)
where vx; = 1;(fx), and so the truncation admits the differential privacy per proposition 2.1. To demonstrate
privacy of the full expansion, we we use a limiting argument. Denote an arbitrary measurable set of the infinite
sequence of coefficients by A = (1,5, A; where A; is a set of infinite sequences in R in which the it" is restricted
to lie in some measurable set. Since A is the limit of a decreasing sequence of sets B, = ﬂ;’;l A;, we have
Px(A) = Px(limy,—00 Bm) = limy,— 00 Px(Bm), and since differential privacy holds for each finite m, a simple
limiting argument leads to the requisite privacy of the Gaussian process. O

We remark that under the restriction that 7" be compact, the error incurred due to privacy, when measured in mean
Ly error, is given by the expectation of the square norm of the Gaussian process which is A(T)c(«, 8, A) sup, e K (2, x),
where we use A to mean the Lebesgue measure (namely A\(T') = 1 for T = [0,1]%).

3 Examples

A first example is kernel density estimation, where fx(x) = %22;1 K(z;,x), in which K is e.g., the isotropic
Gaussian kernel having standard deviation o (also called the “bandwidth” in the context of density estimation).
Since these functions are in the generating set of the RKHS it is easy to find that for X ~ X’

2 2
e < K(z,- = —— .
1 = fxllurey < 5 sup 1K (@) = s

Therefore we find that our proposed method adds error on the order of n=20~2% which is at a rate far faster than
—1/(144d)

that of the sampling error of 64 + n~'¢~?, and permits the optimal choice of o = n .
Another example is the release of a regularized loss minimization in an RKHS (namely a kernel machine). When

1 n
=arg min — O(f ) + M s
Ix gfe?—t(K)ni:ZI (fs @) HfH’H(K)
for some loss function ¢ and where X is a parameter used to control the regularization, then following [1] we find a
valid upper bound on the “sensitivity” to be % sup,cr K (x, ), in which L is the Lipschitz constant on ¢ (namely
L =1 for hinge loss). Thus once again the error due to the noise addition does not interfere with the optimal rate.
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