Secure Multiple Linear Regression Based on Homomorphic
Encryption

Rob Hall! Stephen E. Fienberg'and Yuval Nardi?

Abstract

We consider the problem of linear regression where the data are split up and held by differ-
ent parties. We conceptualize the existence of a single combined database containing all of the
information for the individuals in the separate databases and for the union of the variables. We
propose an approach that gives full statistical calculation on this combined database without
actually combining information sources. We focus on computing linear regression and ridge
regression estimates, as well as certain goodness of fit statistics. We make use of homomorphic
encryption in constructing a protocol for regression analysis which adheres to the definitions of
security laid out in the cryptography literature. Our approach provides only the final result of
the calculations compared with other methods that share intermediate values and thus present
an opportunity for compromise of privacy. We perform an experiment on a dataset extracted
from the Current Population Survey, with 51, 016 cases and 22 covariates, to show that our
approach is practical for moderate sized problems.

Keywords: Combining data sources; Confidentiality; Homomorphic encryption; Privacy-
preserving statistical calculation; Secure multi-party computation.

1 Introduction

Preserving the confidentiality of individually identifiable information in statistical databases has a
long statistical tradition, although within the world of official statistics efforts to do so have focused
on perturbing the data through some form of data masking in order to allow for the calculation of
simple summary statistics rather than on accurate statistical inference for more elaborate statistical
models. There is an active debate in the statistical literature on how to best achieve confidentiality
while also allowing for useful statistical analyses, e.g., see Duncan et al. [7].

Here we consider the problem of multiple regression calculations where the data are divided
among several parties, each of whom is unwilling to reveal their data. This problem occurs for
example where the data consist of health insurance billings and records, and the parties are health
insurance agencies. In this case, there are legal barriers which prevent the release of data, however a
regression performed on the union of the parties data may have better properties than a regression
on either (incomplete) data set. Similar problems arise when parties have done surveys on the same

!Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, U.S.A.
2Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
Acknowledgements This research was partially supported by Army contract DAAD19-02-1-3-0389 to Cylab,
and NSF Grant BCS0941518 to the Department of Statistics, both at Carnegie Mellon University.

set of individuals at different times, and wish to implement regressions on the union of variables in
the multiple surveys, but are unwilling to share the data.

It has long been argued that a superior way to protect the confidentiality of statistical data
is to restrict access to those data and to simply provide results from statistical modeling such as
regression coefficients and standard errors.® For recent examples of this line of work which also
include a focus on regression diagnostics, see O’Keefe and Good [28, 29, 30] and Reiter [32]. If we
deem the regression coefficients to be “too sensitive to release” then we can also consider output
perturbation in the spirit of the recent cryptographic literature on e-differential privacy, e.g., see
Dwork [12] and Nissim [27]. By and large, the cited literature has been focused more on privacy
protection and less on the utility and accuracy of the resulting statistical releases, or it treats the
resulting analysis problem far more generically as one of learning from noisy data e.g., see Chen et
al. [5].

Other approaches include the use of data masking such as the addition of normally distributed
noise to the underlying data, c¢f. Duncan and Pearson [9] and the recent review by Duncan and
Stokes [10]. This leads, in the case of regression analysis, to inference using measurement error
models that have a long history in statistics, eg., see Fuller [15]. Duncan et al. [8, 7], Trottini et al.
[35] discuss the risk-utility tradeoffs associated with such an approach. We contrast this focused
statistical use of masked data with suggestion in the datamining literature of a fundamentally dif-
ferent sort, e.g., Du et al. [6]. As an alternative to the traditional additive noise approach to data
masking, Ting et al. [34] suggest using a more subtle perturbation method for protecting confiden-
tial continuous microdata—Random Orthogonal Matrix Masking (ROMM)—which preserves the
sufficient statistics for multivariate normal distributions, and thus is statistically defensible, but
serves the function of more traditional data masking, and they illustrate ROMM in the context of
multiple regression analysis.

In this paper we consider a related but different problem in privacy protection, associated with
statistical calculations across multiple databases, studied in the context of regression analysis by
Karr et al. [see e.g., 22, 23, 24]. In our setting, there are two distinct issues of privacy—that of the
individuals whose data are in the different data bases and that of the owners of the databases. For
the former, if data are merged across sources, privacy protection for the linked individual files goes
well beyond the privacy issues that are considered with regard to the data within the individual
sources. Even if there were not an issue associated with individual privacy protection, the database
owners may not wish or be able to share their data with others directly.

There has been much recent work on the problem of securely estimating regression coefficients.
A survey of earlier techniques is found in Vaida et al. [36] (chapter 5). Those techniques hinge
on so-called secure matrix multiplication sub-protocols. Essentially since estimating regression
coefficients boils down to matrix products, a secure regression protocol can be made by composing
secure matrix products. However the protocols they give for computing the matrix products have
certain drawbacks which may limit their practicality. First, some rely on the existence of a trusted
third party (or at least a partially trusted third party). Such a trusted party may not exist in
practice. In fact the field of cryptographic protocols [17] was born to get around this difficulty.
The other matrix product protocols they give do not meet the requirements for security under the

3For example, see http://www.ssa.gov/policy/docs/rsnotes/rsn2009-01.html and
http://hrsonline.isr.umich.edu/index.php?p=resappguide

stringent but well accepted definitions from the cryptography literature, which we explain below in
section 2. These authors achieve a much weaker definition of security which may imply that more
private information is being leaked than is absolutely necessary. We note, however, that all of the
protocols they present are easy to implement and efficient to run. Therefore they are advantageous
if maintaining strict security is not part of the goal.

The method for secure regression due to Karr et al. [22, 23, 24] is based similarly on a method
for secure matrix products. These authors stop, however, after securely computing the full data
covariance matrix, at which point it is shared by all (as is the response vector). While this makes
the protocol computationally very attractive, and allows parties to locally compute a wide variety
of diagnostics, it also presents a compromise with respect to data privacy. Revealing the data
covariance matrix is not necessary for computing the coefficient vector, and hence causes the leakage
of more private information than is strictly necessary. For example, we explore the unavoidable
leakage due to computing the coefficients in Appendix A and find that in general the data covariance
matrix is not leaked.

Previous methods for privacy preserving data mining have focused on cases where the data
are split between the parties in a certain regular fashion. The two most common patterns are
“horizontal partitioning” where each party has a subset of the cases, and “vertical partitioning”
where each party has a subset of the features. We propose a protocol that will work irrespective
of the partitioning scheme, and may be used in the general case wherever parties hold interlocking
parts of the database. This is the situation which may occur when the parties are data warehouses.
Note that although our protocol is general and works for any partitioning scheme, certain regular
structures will allow for further optimizations, but we will not discuss them.

In Section 2, we outline the privacy guarantees that our protocol gives, and then, in Sections
3 and 4, we describe the protocol for two parties before showing, in Section 5, how to extend our
approach to multiple parties. We then perform a simulation of the protocol (and make the code
available) to show that it is fast enough to be useful in practice. We conclude by considering the
possible invasion of privacy which occurs from simply having the regression coeflicients, from the
perspective of statistical disclosure limitation.

2 Setting

We consider a setting where K > 2 parties each hold a part of the design matrix X € R"*P and
the response vector y € R™, and they are interested in analyzing the statistical regression model:

y=XB+e. (1)

Their goal is to compute the estimated regression coefficient vector or estimated ridge regression
vector:

B=(XTX)'xTy, (2)
Br=(XTX +AD)"'xTy. (3)

We first assume that there is no missing data, so that each entry in X and y is known to exactly
one party. If there is overlapping data then the parties must either agree to use one party’s data,

or securely compute a weighted average (e.g., as a measurement error). We proceed assuming the
former. We also assume that each case has a unique identifier which is known to every party.
Obtaining such identifiers when they do not naturally exist (e.g., social security numbers or ID
numbers) is the problem of record linkage, and is given a secure treatment in e.g., Scannapieco
[33]. Under these assumptions, each party may take whatever data is known to him, and assemble
it into a design matrix and response vector with missing values (where the missing values are the
data belonging to the other parties). Denote the input held by party ¢ as X; € R"*P y; € R™.
We suppose that each party replaces those elements unknown to him by zeroes. Then if the
matrices were “superimposed” (i.e., by summing them), we would obtain the full design matrix
and response vector. We make no further assumptions about the structure of the data. Note that
this is a relaxation of the requirements for the protocol of Karr et al. [24], which works when the
parties each hold complete columns of X.

We build up a protocol [see e.g., 17] for computing (2) and (3). The protocol is sequence of
steps which consist of parties doing local computations, and transmitting messages to other parties.
We aim for the cryptographic definition of security under a “semi-honest” model. This model of
security assumes that each party will follow the protocol and use their true input values, but will
also be curious about the other parties’ secret inputs. A protocol is secure so long as the messages
received by the parties during execution of the protocol do not leak information about the secret
inputs which belong to each party.

The requirement for security in this setting is that the transcript of messages received by a party
can be “simulated” based on nothing more than the input known to that party, and the output
of the protocol. Formally, this requires a probabilistic polynomial time algorithm (the simulator)
which takes the input of a party, the output, and the random seed that the party uses, and outputs
a transcript of messages which is computationally indistinguishable from a transcript generated
during a run of the protocol. Computational indistinguishability is defined formally in Goldreich
[17, 18] but for our purposes we note the following ways to achieve the requirement:

e Messages which are encryptions due to a semantically secure (See e.g, [17]) public key en-
cryption scheme may be simulated by encrypting any arbitrary value with the same public
key.

e Random samples from a distribution which depends only on the input and output may be sim-
ulated by drawing from that distribution (so long as the random number generator produces
draws computationally indistinguishable from the distribution).

e Random samples which depend on a secret value may be simulated so long as the distribution
is sufficiently close (e.g., in variation distance) to one with no dependence on the secret
value. Here sufficiently close means that the variation distance between the distributions is a
negligible function of some security parameter [18].

Intuitively, if the messages can be simulated in such a manner, then they can reveal no infor-
mation about the inputs belonging to other parties beyond that revealed by the output. An example
of a protocol which does not achieve this definition of security is one where all parties send their
data to party 1, who computes the estimate locally on the combined data and then sends it back to
all other parties. In this case the messages received by party 1 consist of the data of other parties,

in general it is impossible to simulate these messages given only the input and output belonging to
party 1. Likewise the protocol of Karr et al. [24] does not achieve this definition of security, since
the full data covariance matrix is shared between all parties, this reveals more information than
just the estimate B

This privacy definition makes no guarantees when faced with a party who is malicious, and is
willing to deliberately deviate from the protocol in an attempt to learn the other parties’ secret
inputs. We note however that a protocol which is secure in this semi-honest model may be “com-
piled” into a protocol secure against malicious parties [17] but may be too inefficient for practical
use.

A final point is that this security model simply ensures that the computation of the estimate
does not reveal more information than the parameter itself. As Lindel and Pinkas [25] point out, it
makes no statement about whether the estimate should be computed in the first place. For example
if there are two parties, one of whom holds a single case and another who holds many cases, the
latter may be able to compare the parameter output by the protocol to a parameter he computes
locally on his data only. This may reveal information about the case held by the first party. In
this paper, we presume that the parties have decided that the benefit of knowing B outweighs
whatever private information it leaks. We show in Appendix A that under the two most common
data partitioning (vertical and horizontal partitioning), it is rather difficult for either party to learn
anything about the other party’s data.

We can also transform the estimated parameter vector using a differential-privacy technique
such as that presented by Chaudhuri and Monteleoni [4] during the protocol, if the parties deem
such protection necessary. This is a relatively straightforward extension of the methodology we
describe in this paper.

3 A Two-Party Protocol for Computing Sums and Products

One of the earliest results in the field of cryptographic protocols, due to Yao [37], is that any
computation which can be encoded as a boolean circuit (i.e., a function on the field GF(2)) may
be computed securely by a reduction to “oblivious transfer” (see Goldreich [17] for more details).
Therefore one way to construct a protocol for (2) would be to construct a huge circuit to compute
all the sums and products and the matrix inverse, and have each party feed the individual bits of
their inputs into the circuit. While this would work, it may be too slow to use in practice, since
even the simplest operations, e.g., summing two numbers, would require a number of oblivious
transfers proportional to the size of the operands in bits. In this section, we will first describe a
trivial extension to Yao’s original idea, which computes on the integers where the operations are
multiplication and addition. We then describe how we may extend this technique to work for finite
precision real numbers. We focus on a two party protocol, then in a later section, we describe how
to extend the protocol to K > 2 parties.

Our protocol makes heavy use of a particular homomorphic encryption scheme due to Paillier
[31]. This is a public key cryptography scheme [17], that allows two important operations. First,
two values encrypted with the same public key may be multiplied together to give an encryption
of the sum of the values. Second, an encrypted value may be taken to some power, yielding an
encryption of the product of the values. If we use E,(a) to denote the encryption of a using the

public key n, then Pailliers cryptosystem has the properties:

E,(a)- E,(b) mod n = E,(a+0b), E,(a)°modn=EFE,(a-c)

Since the operations of modular multiplication and modular exponentiation are widely used in
modern cryptography, e.g., RSA encryption, they are implemented in a number of mathematical
packages such as GMP*.

A semantically secure system [17] implies that encryptions of different values are computation-
ally indistinguishable. Paillier’s cryptosystem requires a choice of the public key length, k, which
determines the hardness of breaking the encryption, as well as the length of the “ciphertexts” (the
encryptions themselves), and the range of values which may be encrypted. We recommend using
k = 1024 bits since this gives a good balance of security and efficiency in practice. The key length
k becomes the security parameter to our protocol.

We first note that in Yao’s original protocol [17, 37|, the main idea is to keep intermediate values
(i.e., the outputs of the intermediate layers of logic gates in the circuit) as “additive shares.” That
is, rather than a particular party holding an output bit o, it is “shared” between the two parties
in the sense that party ¢ holds a bit o; so that o1 @ 09 = o (where @ means “exclusive or”). This
way, since each party knows only his value, he learns nothing about the true value of . The final
output of the protocol is obtained by the parties combining their shares of the output to revealing
the value.

We can easily extend the idea to Z/nZ where n is the public key to an instantiation of Paillier’s
encryption scheme. Shares are now numbers in Z, = {0...n — 1} instead of bits, “exclusive or”
becomes “addition modulo n,” “and” becomes “multiplication modulo n.” We will refer to the
numbers a; € Z, so that ZZ a; = a mod n as an “n-sharing” of a. First note that an n-sharing
of the sum of two n-sharings may be computed locally by each party, by performing a modular
addition. Computing shares of products requires interaction between the parties. We can modify
the protocol of Goethals et al. [16] to obtain shares of the product (rather than the product itself).

In this paper, our first contribution is to extend the protocols for computation on Z/nZ to
approximate the same computations on real numbers by using a fixed precision arithmetic scheme.
We use a “2s complement” approach to represent negative numbers, and then a division by a
constant to represent real numbers to some fixed precision. The mapping from Z, to the fixed
precision real numbers is:

a a <

(4)

a—n a>

f:Z, =R, f(a):M—l{

0[S I3

In this way, we associate each element of Z,, with an element in R. The constant M determines
the balance between the range of values which may be represented, and the precision of the fractional
quantities which may be represented. A higher value for M yields numbers with greater precision
but with a smaller range. Note that we may not just naively apply the protocol for integers,
since multiplication of two numbers in this representation results in a stray factor of M (e.g.,
f(ab) = M f(a)f(b)). Unfortunately, we cannot simply alter the protocol to include a multiplication
by the multiplicative inverse of M (if it exists), since we would first need to round the encrypted

4www.gmplib.org

product to a multiple of M (which would require a sub-protocol in itself). Furthermore, we may
not simply construct an n-sharing of the product and then divide each share locally, since then
we may end up with results which are off by multiples of nM ~!. The reason for this is that the
shares may add up to a multiple of n more than the hidden value (due to their definition which
used modular addition).

Our proposed solution is to first assume an upper bound P exists for the magnitude of the
product. We then obtain n-shares of the product in a way so that they may be locally converted to
P-shares. Concretely, suppose we have the encryption E(Mab) where a, b are not integers but rather
these fixed point numbers, we first obtain shares mod P, choosing P to be a multiple of M, which we
write P = kM. Hence we obtain c¢; + co mod kM = Mab, we see that ¢ +co = Mab+ k'M. Then
since we have an encryption of the product as well as a P-sharing, we may obtain an encryption
of the difference between the sum of shares and the true value of the product (i.e., the multiple
of P which is removed by the modular addition). We therefore may obtain the encryption of
c1+ca— Mab = k'M. By choosing M to be a number with a multiplicative inverse in the ring mod
n, we may then securely divide this residual by M. Namely we may securely obtain M~ 'ME' = k'
With this in hand we first locally divide the shares c1,co by M, yielding a new sharing with an
error of k’. Then we may correct this error by sharing the value k' which was already securely
computed, and subtracting these shares locally. The protocol is presented in two parts, the first
part turns an encryption into a P-sharing (figure 1), and the second part turns an encryption and
its corresponding P-sharing, into an n-sharing of the floor of the product divided by M (figure 2).

Below we state the two required protocols. With them we can construct a simple protocol for
computing a sharing of a product of shares. The first step is to obtain the encryption of the product,
and then run the protocol of figure 2. To obtain the encryption of the product, the idea is for the
party who knows the private keys, to send encryption of his shares along with the encryption of
his product of shares to the other party. This way the other party may construct the encryption of
the product, using the homomorphic properties of Paillier’s encryption. Furthermore this complete
protocol is secure, since the messages being passed are encrypted values under a semantically secure
encryption scheme. Then security follows from the composition theorem (essentially using a secure
protocol as a subroutine will still yield a secure protocol) see e.g., Goldreich [17].

We first demonstrate that the protocol of figure 1 is correct. At step 2, we have that s +r =p
mod n and so s +r + £ :p—i—g mod n. Since s,r € Z, we have that 0 < s+ r < 2n, and so
either s +r + g =p+ % or s+r+ g =p+ g + n. Since in step 1 we constructed r to be greater
than P, which is greater than p + g, we see that the latter condition holds. Therefore the sum of
outputs mod P is:

5+r—nm0dP:5+r—n+§—§modP:p—i—n—n—l—g—gmodP:pmodP (5)
and so the protocol computes a P sharing of p.

To show that the protocol is secure in the face of semi-honest parties, we construct a simulator
for the view of each party during execution. The only message sent in this protocol is E(p — r)
in step 1. The decryption of this value is not uniform on Z, since the noise added was in the
interval {P,--- ,n}, so the value s is uniform on a subset of Z, which depends on the variable.
Nevertheless, since that subset consists of the overwhelming majority of Z,, the distribution is
computationally indistinguishable from a uniform distribution. Denoting the distribution of s as

e Input

Party 1 has the private key to an instance of Paillier’s encryption scheme, party 2 knows
the corresponding public key n, and has the encryption under n of a value p, denoted
E(p). Furthermore p is bounded so that 2|p| < P, or in other words p € {0...P/2} U
{n—P/2...n—1}.

e Step 1 Party 2 draws r uniformly at random from the set {P...n—1}. He then computes
E(p —r) by means of the homomorphic properties of the crypto system. This encrypted
value is sent to party 1.

e Step 2 Party 1 decrypts the value to obtain s = p — r mod n.

3

e Output Party 1 outputs s — n mod P and party 2 outputs r mod P, where “mod” in
this case means the operator which returns the remainder from integer division by P.

Figure 1: A protocol for generating a P-sharing of an encrypted value.

UF, and the uniform distribution on Z, by U, consider the variation distance:

n 2 2
U @)~ Ualw)| = ™ < o (©
=0
Since P is a constant, we have that the variation distance between the two distributions is bounded
above by a negligible function of the security parameter k£, which implies that the two distributions
are computationally indistinguishable (see [18] page 81). Therefore we may draw values from U,
to simulate the message received by party 1.

We now turn to the protocol of figure 2. We have that, in step 2, p is a multiple of P, which is
itself a multiple of M. The multiplicative inverse of M is ((n + 1)/2)™ mod n. Multiplying p by

this value then gives M ~'p = L%J The sum of the output is:

P12 rmodn= [P+ (21 | 2y modn = (P22 | Py = | 2) ey mod

Lpl
M M M M

il
where |e;] < M~ and |ea| < 2M ! are error terms resulting from taking the sum of the floors as
opposed to the floor of the sum.

The protocol is secure since all messages are either encrypted under a semantically secure
encryption scheme, or are distributed uniformly at random in the set {0...n — 1}. In the first
case, such messages may be simulated by encrypting a random value with the public key n. In the
latter case, messages may be simulated by drawing a number uniformly at random from the set
{0...n—1}.

We conclude this section by noting that with these constructions we have a means to compute
a function consisting of sums and products on the real numbers. There is approximation involved,
since only those real numbers which correspond to multiples of M~ may be represented exactly.
Using a large value for M such as 2% yields sufficient precision for our purposes.

e Input

Party 1 has the private key to an instance of Paillier’s encryption scheme, party 2 knows
the corresponding public key n, and has the encryption under n of a value p, denoted
E(p). Furthermore p is bounded so that 2|p| < P, or in other words p € {0...P/2} U
{n—P/2...n—1}. M =2" is a power of 2, and P is a multiple of M.

e Step 1 The parties run the protocol of figure 1, and obtain the P-sharing p1, ps of p.

e Step 2 Party 1 encrypts p; and sends E(p;) to party 2, who uses the homomorphic
properties to compute E(p; + p2) and then E(p) = E(p1 + p2 — p).

e Step 3 Party 2 uses the multiplicative inverse of M along with the homomorphic prop-
erties, to compute E(M~'p). Then he draws r uniformly from {0...n — 1} and sends
E(M~1p —r) to party 1.

e Step 4 Party 1 decrypts the message to obtain s = M ~'p — r mod n.

e Output Party 1 outputs [4;] — s mod n. Party 2 outputs |52] —r mod n.

Figure 2: A protocol for securely computing the floor of the division of an encrypted value by a
public constant M.

4 A Two Party Protocol For Secure Linear Regression

Using the tools of section 3 we may construct a secure protocol for evaluating (2) and (3). First, us-
ing the constructions for sums and products we may compute additive shares of the data covariance
matrix X7 X, and the vector X7y. All that remains is to securely invert the covariance matrix. We
use a technique explored by Guo and Higham [20] which reduces the problem of inverting a matrix
to the problem of computing sums and products of matrices, which we may do securely with the
above constructions.

4.1 Matrix Inversion

First, we note that we can obtain the reciprocal of a number a without necessitating any actual
division by an application of Newton’s method to the function f(x) = 2= — a. Iterations follow
Zs41 = x5(2 — axs), which requires multiplication and subtraction only.

It turns out that we can apply the same scheme to matrix inversion, e.g., see [20] and references
therein. A numerically stable, coupled iteration for computing A~!, takes the form:

Xs+1 = 2Xs - X My, Xo = Cil], (7)
Mg1 = 2My— M2, My = c A,

where My = X A, and c is to be chosen by the user. A possible choice, leading to a quadratic
convergence of Xy — A~1 (Mg — I), is ¢ = max; A;(A). In our actual implementation we consider
instead the trace (which dominates the largest eigenvalue, as the matrix in question is positive
definite), since we can compute shares of the trace from shares of the matrix locally by each party.

To compute ¢! we use the same iteration, with scalars instead of matrices. For this iteration we
initialize with an arbitrarily small € > 0 (as convergence depends on the magnitude of the initial
value being lower than that of the inverse we compute).

This technique is iterative, so we have a choice regarding how many iterations to run. We may
either employ a convergence check after each iteration, or instead simply upper bound the number
of iterations required for convergence and just perform that many iterations. The former choice
may terminate after fewer iterations, however the number of iterations performed will unnecessarily
reveal information about the input. For example, when computing the reciprocal, a larger value
of a will take fewer iterations to converge. For computing a reciprocal, an extremely conservative
lower bound on the number of iterations required is 2logy M. After this many iterations even the
smallest value representable (M 1) will be inverted. For our suggested M = 25% we may then
iterate for 128 iterations to be guaranteed to compute the reciprocal.

Computing the inverse of a matrix is a more expensive operation, since 2p>® products are
required at each iteration (using Strassen’s approach for matrix multiplication), therefore we seek a
tighter lower bound on the number of iterations required for convergence. Unfortunately, the exact
number of iterations required for convergence depends on the eigenvalues of the matrix, which we
assume should be secret. Note that we have convergence as soon as My = IP*P, as then the X
iterate of (7) ceases changing. Denote by);(s) the " eigenvalue of M;, then we have that the
eigenvalues of M follow

Ai(s +1) = 2Xi(s) — A2(s). (8)

We can restate the condition for convergence as A;(s) = 1 for all 7. Unfortunately, unless we have a
lower bound for the lowest eigenvalue of the matrix My, we must use 2logy M iterations as before.
In our case, A = X7 X, and so the smallest eigenvalue of My depends on the condition number of
the sample covariance matrix, i.e., the ratio of the largest and smallest eigenvalues. If the parties
have prior information that their covariance matrix will be well conditioned, then this could be
the basis for choosing the number of iterations to run, e.g., if as a preprocess they engaged in a
protocol for uncorrelating the variables, or standardizing them.

If there is no usable bound on the condition number, then the parties may either run for
2logy M iterations as before, or may choose to test for convergence every few iterations, and stop
when convergence is achieved. This way would leak information about the condition number of
the covariance matrix, which may be acceptable depending on how the data is shared between the
parties. By increasing the number of iterations between convergence checks, the amount of infor-
mation leaked decreases, since the mapping from matrices to iteration numbers becomes coarser.
To test convergence we suggest testing whether Tr(M;) > p — e for some small epsilon. As the
method converges, My tends towards the identity matrix, and so the trace equals p when the al-
gorithm has converged. Moreover, it stays below p until that point, and so only a one-sided check
is required. Performing this test on additive shares of the matrix trace is equivalent to one of the
first protocols in cryptography, for the so-called “Millionaires Problem.” A protocol for evaluating
the “greater-than” predicate is given in e.g., Blake and Kolesnikov [2]. An alternative to the above
is to first standardize the data, which gives some improvement to the condition of the matrix, and
then to run for some fixed number of iterations decided a-priori. If the number is sufficiently large,
the result will be accurate.

10

4.2 A Complete Protocol for Multiple Linear Regression

By putting together all the techniques we have constructed so far, we are in a position to propose a
complete protocol for the linear and ridge regression. The protocol begins by using the constructions
of section 3 to compute additive shares of X7 X and X7y. Using the above method for matrix
inversion, we may then compute additive shares of (X7 X)~!. Finally we compute shares of the
product (X7 X)~1XTy. After this, each party should send his shares of the parameter to the other
party. After receiving all the shares, each party may then do a modular addition to reveal the final
estimated vector B To extend this to ridge regression, all that is required is for one party to add
A to his share of X7 X (or alternatively, for each party to add 27'AI to their shares). Security of
the full protocol follows from the composition theorem (see e.g., [17]) where secure sub-protocols
compose into a larger secure protocol.

For the protocol to be correct, we must be careful in choosing P so that is a correct upper
bound. First we note that P should bound every element of X7 X. A loose upper bound on the
magnitude of these values is to take the largest element of z,, = max; ;|X; ;| and take P > pz2,.
It is reasonable that parties may be unwilling to divulge the maximum magnitude of elements of
X. In this case we may base P off a very loose upper bound for the maximum, e.g., the maximum
size of an integer. In our experiments we choose P = 228 and M = 25* as this gives the ability to
store numbers with magnitude up to 293. For this choice, using 1024 bit long keys is also fine, as
the bound obtained in (6) is vanishingly small.

5 Extension to K > 2 Parties

We note that our protocol has two main phases. The first phase is the secure computation of the
data covariance matrix from the inputs, and the second phase is the inversion of this matrix. We
see that in extending to three or more parties, the first phase decomposes into a set of pairwise
interactions between parties, and so the existing protocol may be used by each pair, to generate a
share of the data covariance. This is due to the decomposition:

XTX =) XY X; = XX+) XX+ X[+ X,
i j i i#]
Each term on the right hand side may be computed locally by the respective party, then each
term in the second sum may be computed by invoking our basic construction for products with two
parties. Lastly, each pair of parties will need exactly one party who knows the key to the instance of
Paillier’s encryption scheme. Therefore there will be more instances of Pailliers encryption scheme
used during execution of the protocol. Since the sharing of outputs generated by our product
protocols depend on the public keys used, we need some way to ensure that all the outputs of the
pairwise protocol invocations can be transformed into sharing with a common n.

To convert the shares, the main idea is to create a P-sharing for some upper bound P, then
compare the encrypted sum of shares to the encrypted sum of n-shares (i.e., the encryption of the
hidden value). Subtracting one from the other gives a term which is a multiple of P. The idea is
to divide by P (if P has a multiplicative inverse in the ring mod n), then share the first two bits
of the result. This way, it is possible to construct the encryption of the same multiple of P under

11

a new public key m. This value may then be shared with techniques similar to those described in
figure 1.

After running this protocol then the K parties will have a n sharing of the data covariance and
XTy, where n is a public key to which only one party knows the private keys. At this point one
possibility is for the parties to break into two groups, and pool their shares within each group.
Then each group could act as a single “party” and invoke the two party version of the matrix
inversion protocol. This technically would achieve the definition of privacy, however it would give
an opportunity for two parties to try to collude to learn these intermediate values. Therefore we
instead extend the protocols for computing products of shares, so that all K parties are involved in
the computation. This way it takes all the parties to “collude” in this way in order to be guaranteed
to learn the intermediate values.

The first step is to generalize the protocol for computing the P-sharing of the product. The
idea is that, like figure 1 one party will know the private key, and a different party will know the
encryption of the product. The parties will form a chain and pass the encrypted value along, so
that each party will add a random draw to the encrypted value, until it finally arrives at the party
who holds the key, who decrypts it. This way every party is given a n-share of the product. In order
to convert this value to a P-share we must be careful about the domain of the random variables,
so that we may ensure that the multiple of n which appears in their sum is known to us (as in
figure 1 where we constructed r so that the sum was equal to n plus the product). Here we suggest
to ensure the sum is (K — 1)n plus the hidden value.

e Input
Party 1 has the private key to an instance of Paillier’s encryption scheme, party K has
the encryption under n of a value p, denoted E(p). Furthermore p is bounded so that
2|p| < P, or in other words p € {0...P/2} U {n — P/2...n — 1}. Every party knows the
public key n.

e Step 1 Whichever party holds the encryption (party i) draws r; uniformly at random
from the set %n + % ...n — 1}. He then computes this value for the encrypted value
by means of the homomorphic properties of the crypto system. This encrypted value is
sent to party ¢ — 1.

e Step 2 Step 1 is iterated for each party until the encryption arrives at party 1.
e Step 3 Party 1 decrypts the value to obtain s =p — Zf; r; mod n.

e Output Party 1 outputs s — (K — 1)n mod P and party ¢ > 1 outputs r; mod P, where
“mod” in this case means the operator which returns the remainder from integer division

by P.

Figure 3: A K-party protocol for generating a P-sharing of an encrypted value.

Correctness of this protocol follows a similar argument as the two party protocol. Showing
security of this protocol is more complicated, since the distribution of s is no longer uniform.
The reason is that the sum of uniform draws is distributed in a way which is peaked around
the expectation, and non uniform. Nevertheless it is possible to show that the variation distance

12

between two such distributions, whose expectations differ by less than P is negligible as logn
increases.

Having generated a P-sharing of the products, we can easily extend the protocol of figure 2 to
a K-party protocol. The main idea of the protocol of figure 2 is to compare the sum of shares to
the encryption of the true value, and then create a term which gets added to the scaled shares in
order to cancel whatever stray factor comes from the sharing. Now, in step 2, the encrypted sum
involves terms from all parties. In step 3, after multiplying the encryption by the inverse of M,
the encryption needs to be passed to each party (as in the above protocol) so that each one has a
chance to get a piece of the sharing of the value, before it arrives back at party 1 who decrypts it.

We note that this protocol is more complicated than the two party protocol. Nevertheless as
we show above, a subset of the parties may not subvert the protocol so long as they remain semi-
honest. Perhaps more of a concern is to determine which party will act as the holder of the private
key. We note that the computational demands placed upon the parties are roughly the same so this
decision likely has little impact on the overall running time. The order of the parties in the round-
robin type protocol could be decided by e.g., attempting to minimize the total round trip time
(e.g., to choose the ordering which results in the smallest average latency between neighbors in the
ordering). Although this is technically a computationally hard problem (the “traveling salesman”
problem) for a small number of parties as we envision here it may be performed reasonably quickly.

6 Scalability

We now adress the scalability of this approach by examining the number of invocations of the
sub-protocols as a function of the number of covariates p and samples in the data n (note that in
this section n is the size of the data and not a public key). We break the protocol down into three
parts, the construction of X7 X, XTy, the inversion of X7 X, and finally the matrix-vector multiply
to yield the estimate. We only count the number of secure products required by the protocol, since
sums are carried out locally and therefore have a very small impact on the runtime.

We first consider the construction of X7 X, XTy. For horizontally partitioned data this step is
trivial as the parties locally compute these quantities on their sample, which yields a sharing of
the full quantities. In the case of vertically partitioned data, our protocol requires inner products
of vectors of size n (namely y and the columns of the design matrix). Evidently each such inner
product requires n secure multiplications. Therefore this stage of the computation requires time
linear in n. Suppose the parties each have p; of these vectors so that Zi 1 pi = p+1, then the
number of inner products required is Z#]‘ pipj. This quantity is bounded above by 471 pp? +271p
(for example with two parties, the worst case is when each has half of the columns). So we see that
the time taken at this stage grows at most quadratically in the number of covariates p.

The matrix inversion (irrespective of the partitioning scheme) requires O(p?log p) multiplica-
tions. The reason is that each step of our iterative scheme requires a matrix multiplication of two
p X p matrices, and the number of steps for convergence is O(log p). Since we envision a scenario
in which p << n, the time for this step is overshadowed by the above step. Likewise the final step
consists of a multiplication of a p x p matrix with a p x 1 vector. This takes p? multiplications.
Therefore the computational burden of our protocol is contained within the construction of the
first two terms.

13

As we noted above for K > 2 parties, there is opportunity to parallelize the computation of
shares of X7 X since the product breaks down into pairwise products between parties. If the number
of cases is large, then each of these computations may take a long time to complete. We see that
we may break down each product into a sum of products over horizontal slices of the matrices. If
we have X! = (Xg’l,ng) and X]-T = (X;{l,XjTQ) and the corresponding blocks are the same size,
then:

XX = X1 X0+ XX,

So each pair of parties may agree on a partitioning of the data matrix, so that they may
compute products of the blocks in parallel, then at the end sum their shares locally. This data
splitting technique yields a procedure which is “embarrassingly parallel” and so we anticipate that
if the blocks are approximately equal size, then the procedure should be sped up by a factor equal
to the number of blocks (modulo differences in hardware used for different blocks of the partition).
We also note that the matrix inversion procedure is built out of matrix multiplies of matrices of
shares. It is possible to parallelize each of these products in the same way, although that matrix is
only p x p and so we anticipate the products not taking long on even one machine (for e.g., p up
to 20 or so).

7 Model Checking and Inference

Obtaining the regression coefficient estimates is just the tip of the inference iceberg, as far as
modeling and inference are concerned. Checking the aptness of the fitted model is usually carried
out by exploring functions of the regression residuals. The coefficient of determination R? is a
standard summary of the predictive ability of the regression equation:

T
R2 -1 n€—6_2 ,
> ie1 (Wi —)
where e = (I — H)y is the residual vector, given in terms of the so-called hat matrix H =

X (X Tx)*1X T By using the constructions of this paper, we can construct a protocol for esti-
mating the coefficient of determination. We can compute the “hat” matrix H by means of the
protocols for sums and products, making use of the matrix inversion outlined in Section 4.1. We
would then apply the same protocols to the numerator and to the denominator, leading to a secure
computation of R2, once we “invert” the denominator. Similarly we can compute variants on R?,
and other summary functions used in model search.

Testing the fit of the linear regression is yet another important statistical concern. Model
inferences about the estimated coefficient vector, which include constructing confidence intervals
and performing hypothesis testing, requires an estimate of the noise variance and an estimate of
the covariance matrix of the coefficients estimate. The former is given by 62 = ele/(n — p — 1)
when the design is in R"*?, and the latter is 72(X” X)~!. These two estimates are linear functions
of the “hat” matrix. Therefore, we can construct a protocol to compute them. The square roots
of diagonal elements of 62(XTX)~! are the standard errors of the coefficient estimates. These
are necessary, as mentioned above, for the construction of confidence intervals for the coefficient
estimates as well as for hypothesis tests about the latter. Instead of explicitly calculating and

14

releasing these standard errors, we may construct fully secure protocols which only reveal p-values
related to hypothesis tests. Taking one step further along that path, we can report an interval
containing the p-value instead of the exact figure. For example, if the p-value is .0005, one may
report “smaller than .001”. By doing so, we guarantee that no adversary can unwind a formula to
determine a coefficient’s standard error.

As we mentioned towards the end of Section 2, we are primarily concerned here with leakage
from the computation itself, and not from whatever can be learned from the output. Appendix A
explores possible leakage when the output consists solely of the estimated parameter vector. When
the goal is to produce other summaries beyond the parameter vector (such as the coefficient of
determination), then the output of the protocol must be modified to include these statistics, in
order to enjoy the security guarantees described in the paper. In such a case, an assessment of the
security implications of revealing such statistics is necessary.

7.1 The Release of the Full Covariance Matrix

When the goal is a detailed statistical analysis then the parties might choose to share the full
data covariance matrix X7 X. This is the setting explored in e.g., Karr et al. [24]. Although the
protocol we proposed above computes the regression coefficients directly, note that it is trivially
modified to reveal the statistics {X7 X, X7y} instead, so that the parties themselves may carry
out the remaining analysis “in situ.” We could achieve this by running the protocol to compute
the shares of {X7 X, X7y}, but before the matrix inversion takes place. Thereupon the parties
would pool these shares to recover the requisite statistics, at which point the protocol would end.
In making this change we have redefined the protocol so that these values would take the place
of the regression coefficients as the output of the protocol. As we stated previously, our protocol
only seeks to prevent the leakage of private information due to the computation itself, and it is
ambivalent about privacy implications due to the output itself. Therefore before considering such
a modification, the parties would have to agree that the data covariance matrix is essential to the
analysis and therefore they can tolerate whatever risk to privacy it introduces. To see that (in
general) the regression coefficients reveal less information than the data covariance matrix please
see Appendix A below.

In the event that the parties choose to share the data covariance, it is plausible that the protocol
of Karr et al. [24] is more appropriate from the perspective of computational efficiency—since it
relies on techniques which are less burdensome than homomorphic encryption. Nevertheless our
approach is clearly advantageous when security is a top priority, since it maintains the cryptographic
definition of security, whereas their protocol achieves a weaker notion of security. How important
this distinction will be depends heavily on the data in question and whatever properties of the
information are known beforehand.

The comparison with the work of Karr et al. [24] (and alike) brings us naturally to a discussion
about a risk-utility paradigm. Associated with every statistical disclosure limitation method, or
any statistical protocol aimed at providing statistical analysis without compromising privacy, there
is a risk-utility tradeoff that gets affected by changes in the method’s parameters (see Duncan et al.
[8] and Duncan et al. [7]). In contrast to the approach of Karr et al. [24], we note that the utility
here may be measured by computational efficiency rather than by statistical efficiency. When the
decision is to share data covariances, both our approach and the approach of [24] provide the same

15

(statistically efficient) answer. It is the computational aspects in which the two approaches differ.
Our approach provides stronger security guarantees, and therefore may require longer computations.
It is up to the managers of information organizations to decide what is more important for them
in a specific task.

8 Simulation Experiments

As Karr et al. [24] mention, the repeated application of public key cryptography (which we advocate)
is slower than alternative techniques that supposedly preserve privacy, although without achieving
the strict definition we adhere to. We demonstrate that our protocol is useful in practice by
implementing a simulator of a three party setup, using 1024 bit long keys.

We used the GMP library to handle the arithmetic operations on the large numbers required
during the protocol. We simulated the computation required for the three party version of the
protocol. Our simulations took place on individual machines, rather than two computers commu-
nicating over a network, and so our timings do not take into account the time taken to transfer
data between the parties. Instead our experiments show that the amount of computation required
to run our protocol is acceptably small even with large datasets.

For the experiment we took the Current Population Survey data®, which consists of 51,016 cases
with 23 covariates each (after converting categorical covariates into sets of binary flags). Each case
represents one household and the covariates consist of measurements such as income, education
level etc. We constructed a regression problem where the response is the log of the household
income, and the other 22 covariates are used as predictors. We split the data among the three
parties in a column-wise fashion, so that each party held a data set which was the union of a set of
columns, and the parties datasets did not overlap with each other. The simulated parties held 10,
8 and 4 covariates respectively, with each holding the same set of attributes for all the cases. We
note that although we described our approach in the context of continuous covariates, it handles
binary flags equally well, by using values of 0.0, 1.0 for these covariates.

We split the data matrix into three blocks for computing the data covariance matrix, as in-
dicated in (6), so there were nine machines used in computing this stage of the protocol (three
for each pair of parties). For inverting the matrix, we used only one machine. We standardized
the data ahead of time so that the problem would be better conditioned. We also halted the ma-
trix inversion procedure after 40 iterations, as opposed to the 128 which would be necessary to
guarantee “convergence” if the problem was extremely ill conditioned. Comparing the estimated
parameters to the regression coefficients estimated using R locally on one machine, we found that
the estimates agreed up to at least 3 decimal places. The disagreement in the remaining digits
can be attributed to the matrix inversion procedure, and the slight loss of precision faced by our
fixed point arithmetic scheme. Greater precision would be obtained by taking larger values for the
constants P and M, but this would also require larger public keys (and hence computation and
communication overhead) to ensure the same degree of security. Overall, our experiment took two
days to complete, where the first day roughly corresponded to the computation of the shares of the
covariance matrix, and the second day corresponded to inverting the matrix on one computer.

®http://www.bls.gov/CPS/

16

We believe that we could speed up these calculations substantially, by making further use of
parallelization.

9 Discussion

In this paper, we have presented a protocol which achieves the cryptographic definition of security,
when the only output are the regression coefficient estimates, and perhaps multiple statistics related
to the goodness of fit. We have demonstrated that a fully secure approach to linear regression based
on the homomorphic encryption is practical for use on moderately large datasets shared between
several parties. We emphasize that our protocol (like any cryptographic protocol) prevents leakage
of information which may arise from the computation itself. It does not address any leakage which
results from the output. Below in Appendix A we give some comments on the amount of leakage
under different input partitioning schemes.

Our approach offers more rigorous guarantees with respect to the privacy of the input data than
previous such protocols. But since we use computationally demanding cryptographic primitives to
achieve this security, our protocol is rather slow when compared with that of Karr et al. [24]. It
is important to understand the strengths and weaknesses of both methods in order to make an
informed choice about which is more appropriate to use in a particular situation.

First, we recall that the sub-protocol used for products and sums in Karr et al. [24] fails
to meet the standards of the cryptographic definition of security. To eschew this issue we may
consider an alternative protocol, which uses e.g., our above methods for products and sums to
construct X7 X and X7y, at which points these statistics are re-assembled from the shares and
then disseminated amongst the parties. This would give a secure analog to their protocol that is
clearly less computationally demanding than our full protocol since it does not require the secure
matrix inversion or the final round of secure inner products for computing the final estimate.
Rather, these operations are performed locally by each party. Whether or not it provides a sufficient
privacy guarantee depends on whether the data covariance matrix, and the projection of y onto
the covariates are appropriate to release. From the discussion in Appendix A, we see that these
statistics cannot be reconstructed completely from the regression coefficients, and therefore our full
secure protocol does not release them. If the parties somehow come to the consensus that these
statistics do not impinge on privacy, then clearly the above modification of [24] is appropriate to
use instead.

We can, in principle, combine both approaches and at the same time attempt to make the output
satisfy a formal definition of privacy such as “e-differential privacy” approach due to Dwork [12]
and Nissim [27]. Dwork et al. [11] discuss efficient ways to do this for several problems involving the
secure evaluation of sums, whereas our protocols involve calculation of secure sums and products.
This combined secure-private approach would involve computing some form of perturbed regression
coefficients and statistics for assessing goodness of fit.

A very different approach involves carrying out data sanitization directly on the data held by
the parties. This would entail the parties each adding random noise to their data in an effort
to preserve individuals’ privacy, while maintaining some form of utility in the data. Next, the
parties would share these sanitized databases among themselves, at which point they could perform
whatever statistical analysis they wanted. This approach requires a formal definition of privacy

17

to be achieved via the sanitization process, e.g., using “e-differential privacy.” Were we to insist

on this cryptographic definition of privacy, the use of a sanitization scheme would thwart the data
merger, except in the case of horizontal partitioning, and even then it would affect the regression
coefficients and related goodness of fit statistics. There is no developed theory that would allow us
to carry out accurate statistical inference under such a scheme. Therefore, although the approach is
a conceptually appealing alternative, we would need to do further work before it would be practical
for multi-party statistical calculations especially in moderate to high dimensional problems.

The problem of secure regression is far from solved however, we have yet to deal with missing
data (e.g., by multiple imputation), measurement error, and possibly overlapping entries, in a secure
way. Furthermore, record linkage due to a statistical model may be incorrect and will result in
biased estimates of model parameters. Extensions of the present work would include approaches
that are robust to these kinds of errors, and also methods for generalized linear models such as
logistic and poisson regression.

References

[1] Aggarwal, C. and Yu, P. S. eds. (2008). Privacy Preserving Data Mining: Models and Algorithms.
Springer, New York.

[2] Blake, I. and Kolesnikov, V. (2004). Strong conditional oblivious transfer and computing on intervals,
In Advances in Cryptology—ASIACRYPT 2004, 515-529.

[3] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, New York.

[4] Chaudhuri, K. and Monteleoni, C. (2008). Privacy-preserving logistic regression. In Advances in Neural
Information Processing Systems 21 (NIPS 2008), 289-296.

[5] Chen, B.-C., Kifer, K., LeFevre, K., and Machanavajjhala, A. (2009). Privacy-preserving data publish-
ing. Foundations and Trends in Databases, 2(1-2), 1-167.

[6) Du, W. Han, Y.-S., and Chen, S. (2004). Privacy-preserving multivariate statistical analysis: Linear
regression and classification. In Berry M. W., U. Dayal, C. Kamath, and D.B. Skillicorn, editors, 2004
SIAM International Conference on Data Mining, Lak Buena Vista, Florida.

[7] Duncan, G.T., Elliot, M. and Salazar-Gonzalez, J.J. (2001). Statistical Confidentiality: Principles and
Practice. Springer, New York.

[8] Duncan, G.T., Keller-McNulty, S. and Stokes, L. (2001). Disclosure Risk vs. Data Utility: The R-U
Confidentiality Map. Technical Report, National Institute of Statistical Sciences, December, No. 121.

[9] Duncan, G.T. and Pearson, R.W. (1991). Enhancing access to microdata while protecting confidential-
ity: prospects for the future. Statistical Science, 6, 219-232.

[10] Duncan, G.T. and Stokes, L. (2009). Data masking for disclosure limitation. Wiley Interdisciplinary
Reviews: Computational Statistics, 1 (1), 83-92.

[11] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor, M. (2006). Our data, ourselves:
Privacy via distributed noise generation. In Advances in Cryptology (EUROCRYPT 2006), LNCS Vol.
4004, Springer, Berlin, 486-503.

18

[12]

[13]

[14]

Dwork, C. (2008). Differential privacy: A survey of results. Theory and Applications of Models of
Computation, 1-19.

Fienberg, S. E., Fulp, W. J., and Slavkovic, A. B. and Wrobel, T. A. (2006). “Secure” log-linear and
logistic regression analysis of distributed databases. Privacy in Statistical Databases: CENEX-SDC
Project International Conference, PSD 2006, LNCS Vol. 4302, Springer, Berlin, 277-290.

Fienberg, S. E., Slavkovic, A. B., and Nardi, Y. (2009). Valid statistical analysis for logistic regression
with Multiple Sources,” In Gal, C.S., Kantor, P.B., Lesk, M.E., eds., Protecting Persons While Protect-
ing the People: Second Annual Workshop on Information Privacy and National Security, ISIPS 2008,
LNCS Vol. 5661, Springer, Berlin, 82-94.

Fuller, W.A. (1993). Masking Procedures for Microdata, Journal of Official Statistics 9, 383—406.

Goethals, B., Laur, S., Lipmaa, H., Mielikainen, T. (2004). On secure scalar product computation for
privacy-preserving data mining. ISISC, 2004.

Goldreich, O. (2004). Foundations of Cryptography: Volume 2 Basic Applications. Cambridge University
Press, New York.

Goldreich, O. (1998). Modern Cryptography, Probabilistic Proofs, and Pseudorandomness. Springer,
New York.

Goldwasser, S. (1997). Multi-party computations: Past and present. Proceedings of the 16th Annual
ACM Symposium on Principles of Distributed Computing, 1-6.

Guo, C. and Higham N. J. (2006). A Schur-Newton method for the matrix p’th root and its inverse.
SIAM Journal on Matriz Analysis and Applications, 28(3), 788-804.

Jagannathan, G. and Wright, R. (2008) Privacy-preserving imputation of missing data. Data Knowl.
Eng., 65(1), 40-56.

Karr A.F., and Lin, X., and Reiter, J.P. and Sanil, A .P. (2005) Secure regression on distributed
databases. Journal of Computational and Graphical Statistics, 14(2), 263-279.

Karr A.F., and Lin, X., and Reiter, J.P. and Sanil, A .P. (2006) Secure analysis of distributed databases.
In D. Olwell and A. G. Wilson and G. Wilson, eds., Statistical Methods in Counterterrorism: Game
Theory, Modeling, Syndromic Surveillance, and Biometric Authentication, Springer-Verlag, New York,
237-261.

Karr A.F., and Lin X., and Sanil A.P.; and Reiter, J.P. (2009). Privacy-preserving analysis of vertically
partitioned data using secure matrix products. Journal of Official Statistics, 25(1), 125-138.

Lindell, Y. and Pinkas, B. (2002). Privacy preserving data mining. Journal of Cryptology, 15(3), 177-
206.

Lindell, Y. and Pinkas, B. (2009). Secure multiparty computation for privacy-preserving data mining.
Journal of Privacy and Confidentiality, 1(1), 59-98.

Nissim, K. (2008). Private Data Analysis via Output Perturbation. In Charu C. Aggarwal and P.S. Yu,
editors, Privacy-Preserving Data Mining: Models and Algorithms, Springer, New York, 385—416.

O’Keefe, C.M. and Good, N.M. (2007). Risk and utility of alternative regression diagnostics in remote
analysis servers. In Proceedings of the 55th Session of the International Statistical Institute, August
22-29, Lisbon, 2007.

19

[29]

O’Keefe, C.M. and Good, N.M. (2008). A remote analysis server—What does regression output look
like? In Domingo-Ferrer, J., Saygin, Y. (eds.), Privacy in Statistical Databases, PSD 2008, LNCS 5262,
Springer, Berlin, 270-283.

O’Keefe, C.M. and Good, N.M. (2009). Regression output from a remote analysis server. Data &
Knowledge Engineering, 68 1175-1186.

Paillier, P. (1999). Public-key cryptosystems based on composite Degree residuosity classes. In J. Stern,
ed. Advances in Cryptology (EUROCRYPT 1999), LNCS Vol. 1592, Springer-Verlag, Berlin, 223-238.

Reiter, J.P. (2003). Model diagnostics for remote-access regression servers, Statistics and Computing,
13, 371-380.

Scannapieco, M. and Figotin, I. and Bertino, E. and Elmagarmid, A.K. (2007) Privacy preserving
schema and data matching. SIGMOD 2007, pages 653—664.

Ting, D., Fienberg, S.E., and Trottini, M. (2008). Random orthogonal matrix masking methodology
for microdata release. International Journal of Information and Computer Security, 2 (1), 86-105.

Trottini, M., Fienberg, S.E., Makov, U.E. and Meyer, M.M. (2004). Additive noise and multiplica-
tive bias as disclosure limitation techniques for continuous microdata: a simulation study. Journal of
Computational Methods in Sciences and Engineering, 4, 5-16.

Vaidya, J. and Zhu, Y. and Clifton, C. (2005). Privacy Preserving Data Mining (Advances in Informa-
tion Security). Springer-Verlag, New York.

Yao, A. C. (1982). Protocols for secure computations. Proceedings of the 23rd Annual IEEE Symposium
on Foundations of Computer Science, 160-164.

20

A Privacy Implications Associated with the Release of OLS Esti-
mates

Our protocol computes the ordinary least squares regression estimates for a design and response
vector which is somehow shared between two parties. The OLS is a function of the inputs from
the parties consisting of “private” data. The definitions used in constructing the protocol itself
ensure that nothing is revealed besides the estimated parameter vector and whatever is implied by
it. Here we investigate the implications of knowing an OLS estimator which is based partially on
the private data of another party.

The main idea is to look at the set of data matrices which could be input by the other party
and would produce the same coefficients vector as the one observed during an actual run of the
protocol. First let 3 = /3 (X1, X2, y1,y2) be the coefficients computed by our protocol, on the inputs
(X1,y1) belonging to party 1, and (X2, y2) belonging to party 2. We will examine the structure of
the set:

M2 = {(M7U) ’ B(X17X27y17y2) = B(X17M)y17v)}

All that party 1 may conclude after running the protocol with party 2, is that the data belonging
to party 2 is an element of set Ms. The construction is the same for the privacy of party 1. If this
set contains a single element (i.e., if B had an inverse) then party 1 would know the data of party
2 and completely violate his privacy. On the other hand if the set Ms is large, then party 1 may
only conclude whatever is implied by the structure of the set (i.e., whatever properties are shared
by every element). We will examine the structure of the set under two common data partitioning
schemes. Note that although we concentrate on a setup which mimics the two party protocol, the
same ideas carry through for analysis of the case where there are multiple parties. We may either
say that party 1 wants to investigate the other parties data by himself in which case take (X3, y2)
to mean the union of the data belonging to other parties, or perhaps several parties will collude to
try to reveal the data of another party, in which case take (Xi,y;) to mean the union of the data
of the colluding parties.

A.1 Horizontally Partitioned Data

Consider the case where there are two parties who each have a horizontal slice of the design
matrix and the response vector. We have X = (X7, XJ)7 where X € R")xP x| € R™P and
Xo € R™*P. Also y = (yi,yd)7T for y € R"™ y; € R™ and y, € R™.

We can write he OLS estimator as:

B(X1, M,yr,v) = (XTI Xy + MTM)" Y (X Ty, + MT0)

)
and so we have:

(XTX1+MTM)B = X{yi+ M
(XIx)p—xty = MTv—MTMB
A = MT(/U_MB)a

21

where we have defined A accordingly. If we assume that X is of full rank (i.e., rank p) then we
have that A is in one to one correspondence with 8. We may then rewrite the set Mos:

My = {(M,v) e R™P x R™ | MT (v — Mj) = A}

Where 3 = B(Xl,X2,y1,y2). Therefore all party 1 may conclude is the equality implied in
the definition of the set. Note that if he drew a full rank matrix M € R™*P at random and set
v=MMT"M)TA + MB, then the pair (M, v) could be used in place of the data of party 2, and
would produce the same coefficient vector. Note that v — M B is the coordinates of A in the row
space of M. For m > p this is not unique since the rows form an overcomplete basis for the space.
Therefore, we have that the design held by party 2 could be any m x p matrix where A is in the row
space, and associated with each choice is a set of at least one vector which could be the response
vector. Since My contains so many different elements which are all over the space of matrices M,
it will be difficult for party 1 to conclude anything about the data matrix.

A.2 Vertically Partitioned Data

Consider the case where there are two parties, each with a matrix of covariates X7 € R™*P, X, €
R™*4 and party 1 holds the response vector y € R". We take X = (X, X>) € R™ (P19 ag the
complete matrix of predictors. Our protocol computes the coefficient vector:

B(X1, Xa,y) = [(X1, X2)T (X1, X2)] 71 (X1, X2)Ty = (XTX) X Ty

We will start by investigating what party 1 (the holder of the response) may learn about the
predictors belonging to party 2. First note that we may write the formula for 5 in terms of the
block matrix, and use the technique for inverting a block matrix:

. (XTxy xTwm \'[X7
B(X17M7y) - (]\4T‘X'1 MTM MT Yy
_ (XTX7 — XITMMTM) T MT X)Xy — XTM(MTM)~tMTy)
(MTM — MT X (XT X)) XTI M)~ (—MT X (XT X)) Xy + MTy)

It will be useful to express each M in terms of its projection onto the column space of X; and
note a few properties:

M = X A+M
A = (XIx)'xTm
MTX, = (M-Xx,A)"X, =MTX, - ATXT X, = MTX, — MTX, =0
MM = MT"X;A+M'"M =0A+M"M =M"M
Thus M is a matrix where every column is orthogonal to every column of X;. A € RP*? is the
matrix which gives the projection of each column of M into the column space of X;. Note that we

tacitly assumed that X is not rank deficient, and thus we consider only M (and hence A) which
are also not rank deficient.

22

Applying these equalities, and simplifying the matrix form by applying the matrix inversion
lemma to the matrix inverse in the top row yields:

5 < B) _ ((XT X)Xy — A(ME M)~ M Ty > _ < (XTX0) Xy — ABs)
Ba (MTM)"'MTy Ba

In this way, we can index the set My by A and M:

My ={M € R"™9 | M = X;A+ M for (A, M) € M}

My = {(A,M)eRP*IxR™ | MTXy =0, (MTM)'M"y =B, Apy = (X] X1) ' XTy— p1}
= {AeRP*| ARy = (X{X1) ' X{y— B} x {M e R | MTX; =0, (MTM)"'M"y = p5}
= A2 X MQ

We see that the elements of Ay are the matrices where (X{ X1) !XTy — f; is in the column
space, and the coordinates are given by #3. When g = 1 and 2 # 0 the set contains exactly one
element, and so party 1 learns:

MTx, = ATXT X,

Hence the off diagonal blocks of the data covariance matrix would be revealed to party 1. For ¢ > 1
this information is not revealed.

For M, we note that the column space of every element is in the left nullspace of X, which is
an (n — p)-dimensional space. Further, if any element of f35 is zero, then the corresponding column
of M is orthogonal to y. Columns corresponding to nonzero elements of 32 are not orthogonal to y.
If we choose a set of p vectors spanning a p-dimensional subspace of the left nullspace of X7, and if
we respect the previous condition regarding ¥y, we can choose an appropriate scaling appropriately
scaled to ensure that s gives the coordinates of the projection of y into that subspace.

23

