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Goals

� Develop scalable RL algorithms that learn near optimal controls for

POMDPs without prior knowledge of the model. This is hard!

� Demonstrate these algorithms on a large scale, real world problems:

– speech processing;

– robot navigation.
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Historical Perspective I

Bellman’s Equation
Richard Bellman (1957)

����� ��� �
	 ����

� Describes ��� equations with ��� unknowns ( ��� = states).

� Model must be known.

� This formulation is for MDPs only.

� Intractable for more than a few tens of states.
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Historical Perspective II

Policy Iteration
Bellman (1957) and Howard (1960)

� Finds a solution to the Bellman equation via dynamic programming.

� Practical for much larger state spaces.

� Related method: value iteration.

� Function approximation for RL in use by 1965 (Waltz and Fu 1965).
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Historical Perspective III

Simulated Methods
� Do not require the environment model. They learn from experience.

� Q-learning (Watkin’s 1989).

� Eligibility traces: TD(
�
) (Sutton 1988).

7



Historical Perspective IV

Policy Gradient Methods
� Learns the policy directly.

� Nice convergence properties, even for function approximators.

� Variance in the gradient estimates is a problem.

� REINFORCE (Williams 1992).

� GPOMDP (Baxter & Bartlett 1999).

� Hybrids: VAPS (Baird & Moore 1999).

8



Historical Perspective V

Exact POMDP methods
Aström (1965), Sondik (1971)

� Re-introduces the environment model.

� Modified Bellman equation computes the value of belief states.

� At least PSpace-complete so approximate methods are needed.

Controlling POMDPs sans model, with infinite state and action spaces, is

about as general as it gets.
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Failings of current methods

The drawbacks of current approximate POMDP methods include:

� Assumption of a model of the environment.

� Only recalling events finitely far into the past.

� Use of an independent internal state model that does not aim to

maximise the long term reward.

� Do not easily generalize to continuous observations and actions.

� Applications to toy problems only.
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The GPOMDP algorithm

GPOMDP is a policy gradient approach to reinforcement learning.

� GPOMDP is an algorithm for of estimating the gradient of� � �������� 	 
 ��� �
������� ��� with respect to the parameters of the policy.

� Estimates the infinite horizon average reward gradient by using a

parameter
�

which is equivalent to discounting.

� Computes
�� ��� ������ ��� ��!#"%$'&)(+*,".-� ��!#"/$'&)(0*,".- �

� ���.1�� � � � � � � � � .
� Works for POMDP environments if observations are belief states.

� Similar to REINFORCE (Williams 1992) and VAPS (Baird & Moore

1999), (Marbach & Tsitsiklis 1999).

12



y

y

y

2

3

1

P(u=1)

P(u=0)

���

� �

Environment

Agent

���
� ��� 	 
 � ���

� �
��

� 
 � ������� � ���

� 
 � ��� � ��� �
� ���

13



Outline

� Motivation

� GPOMDP, a policy gradient RL algorithm

� GPOMDP with I-state

� The Load-Unload problem

� Related Work

� Pros and Cons of GPOMDP with I-state

� Repairing I-state GPOMDP

� The Heaven-Hell problem

� (?) Using prior knowledge to reduce gradient variance

14



GPOMDP with memory

� GPOMDP implements a memoryless controller, which is not always

sufficient

r = 1 0 0 0 0 1
U L

(Peshkin, Meuleau, Kaebling 1999)

� GPOMDP has been extended with I-states
� ��� � .

� � � � ��1����	��
 � ��
� ��� gives the next I-state probabilities.

� ����� ���	��
 � ��1 ��� gives action probabilities.

� GPOMDP computes the gradient w.r.t � and � independently.
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Policy graph learnt for the Load/Unload problem.
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Related Work

� Use HMMs to learn the model (Chrisman 1992).

� Recurrent Neural Networks (Lin & Mitchell 1992).

� Differentiable approx. to piecewise function (Parr & Russell 1995).

� U-Tree’s: Dynamic finite history windows (McCallum 1996).

� External memory setting actions (Peshkin, Meuleau, Kaebling 1999).
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Pros of GPOMDP with I-states

� Converges to the optimal policy that can be learnt with � � I-states.

� Does not require a model of the POMDP.

� I-states can remember occurrences infinitely far into the past.

� Works with continuous state and action spaces.

� Theoretically scales to large problems.
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Cons of GPOMDP with I-states

1. GPOMDP has a large variance as
� �

�
.

2. I-states increase the mixing time of the overall system.
� Importance Sampling;
� replace � with an MDP alg. that works on the I-states;
� eligibility trace filtering to incorporate prior knowledge;
� deterministic ��� � ��� � ��1 � 
� ��
�� � � .

3. Internal states are initially undifferentiated, resulting in
� � � � .

� Define a sparse internal finite state machine.
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Undifferentiated I-states I
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Figure 1: Possible I-state trajectories for observation/action trajectories.
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Undifferentiated I-states II
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Figure 2: Alternate, equally likely, I-state trajectories.
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Sparse transitions for I-states
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Figure 3: Reduced number of possible I-state trajectories.
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Signpost problem description

r=1 r=−1r=−1 r=1

Figure 4: Simplified Heaven-Hell problem. Agent must visit lower state to

determine which way to move at the top of the T (Thrun 2000), (Geffner &

Bonet 1998).
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I-states Trajectory Probabilities
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Figure 5: Histogram of probabilities of 10,000 I-state trajectories sampled

from the signpost problem. Shown for 2 sets of observations.
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Sparse transitions for I-states
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Figure 6: I-state trajectory histograms for sparse I-state transitions.
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A simple POMDP?

� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

r=10

r=11

r=12

p

p

p

0

Figure 7: A UMDP which requires
� � � ���
	 for GPOMDP to learn to act

optimally.
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GPOMDP Eligibility Trace Update
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Standard discounting
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We know the minimum delays from key action until rewards are issued.
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Alternative filter I
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Figure 8: A bias optimal FIR filter for
� � � .
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Alternative filter II
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.
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Arbitrary IIR Trace Filter
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Results

Trace

type

Test I �
� � Test II �

� � � �

Bias var Bias var
� � � � � � 	����

12.3
� 	����

18.4
� � � � � � ��� � 	��

2090
�	� � 	
�

2140

FIR � � � � 	�� 7.72
� ��� � �

59.5

IIR
� � �����

10.71

Table 1: Results of eligibility trace filtering tests. Note reduced variance

of the filtered traces.
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Key Conclusions
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� III A tough problem has been solved, using the sparse

initialization trick to avoid the problem of low initial gradients.
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� IV We can use eligibility trace filtering to add prior knowledge

and hence reduce the gradient estimate variance.

41



Future Work

� I-state GPOMDP for larger problems from the literature.

� I-state GPOMDP for speech processing.

� I-state trained using EM like algorithm.

� Bounds on policy error introduced by too few I-states.

� Automatic selection of � � .
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