
Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 20011

Planning, Execution & LearningPlanning, Execution & Learning
1. Partial Order Planning1. Partial Order Planning

Reid Simmons

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 20012

Partial Order PlanningPartial Order Planning
• Basic Idea

– Search in plan space and use least commitment, when possible

• Plan Space Search
– Search space is set of partial plans
– Plan is tuple <A, O, B>

• A: Set of actions, of the form (ai : Opj)
• O: Set of orderings, of the form (ai < aj)
• B: Set of bindings, of the form (vi = C), (vi ≠ C), (vi = vj) or (vi ≠ vj)

– Initial plan:
• <{start, finish}, {start < finish}, {}>
• start has no preconditions; Its effects are the initial state
• finish has no effects; Its preconditions are the goals

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 20013

Least CommitmentLeast Commitment
• Basic Idea

– Make choices only that are relevant to solving the current
part of the problem

• Least Commitment Choices
– Orderings: Leave actions unordered, unless they must be

sequential
– Bindings: Leave variables unbound, unless needed to unify

with conditions being achieved
– Actions: Usually not subject to “least commitment”

• Refinement
– Only add information to the current plan
– Transformational planning can remove choices

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 20014

Plan TerminologyPlan Terminology
• Totally Ordered Plan

– There exists sufficient orderings O such that all actions in A
are ordered with respect to each other

• Fully Instantiated Plan
– There exists sufficient constraints in B such that all variables

are constrained to be equal to some constant

• Consistent Plan
– There are no contradictions in O or B

• Complete Plan
– Every precondition p of every action ai in A is achieved:

There exists an effect of an action aj that comes before ai and
unifies with p, and no action ak that deletes p comes between
aj and ai

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 20015

NOAH [Sacerdoti, 1975]NOAH [Sacerdoti, 1975]
• NOAH

– First non-linear, partial-order planner
– Introduced notion of plan-space search
– Used TOME (Table of Multiple Effects) to detect goal

interactions

A B
C

Initial State Goal

A
B
C

• NOAH can easily (and optimally) solve the “Sussman
Anomaly” problem

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 20016

NOAH and Sussman’s AnomalyNOAH and Sussman’s Anomaly

Start
On(C, A) On(A, Table) On(B, Table)

Clear(C), Clear(B)

Finish
On(A, B) On(B, C)

A B
C

A
B
C

1.

2.

Move(B, C)
Clear(B) Clear(C)

Finish
On(A, B) On(B, C)

Start
On(C, A) On(A, Table) On(B, Table)

Clear(C) Clear(B)

3.

Move(B, C)
Clear(B) Clear(C)

Finish
On(A, B) On(B, C)

Start
On(C, A) On(A, Table) On(B, Table)

Clear(C) Clear(B)

Move(A, B)
Clear(A) Clear(B)

Move(C, Table)
Clear(C)

Clear(A) On(C, Table)

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 20017

NOAH and Sussman’s AnomalyNOAH and Sussman’s Anomaly

4.

Move(B, C)
Clear(B) Clear(C)

Finish
On(A, B) On(B, C)

Start
On(C, A) On(A, Table) On(B, Table)

Clear(C) Clear(B)

Move(A, B)
Clear(A) Clear(B)

Move(C, Table)
Clear(C)

Clear(A) On(C, Table)

~Clear(C)
Move(A, B)

Clear(A) Clear(B)

5.

Move(B, C)
Clear(B) Clear(C)

Finish
On(A, B) On(B, C)

Start
On(C, A) On(A, Table) On(B, Table)

Clear(C) Clear(B)

Move(C, Table)
Clear(C)

Clear(A) On(C, Table)

~Clear(C)

~Clear(B)

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 20018

Modal Truth Criterion [Chapman, 1987]Modal Truth Criterion [Chapman, 1987]
• Modal Truth Criterion (MTC)

– Formalized criterion for determining whether a (partial)
plan achieves a given precondition p at a given step s

• p is true in s if:
∃t ((�t < s) ∧ �asserts(t, p)) ∧
∀C ((�s < C) ∨

∀q ((◊ q ≈ p) ⇒ �~denies(C, q) ∨
∃W ((�C < W) ∧ (�W < s) ∧

∃r (asserts(W, r) ∧ (p ≈ q) ⇒ (p ≈ r)))))

• Can be used to generate planning algorithm (TWEAK)
– step addition / establishment
– promotion/demotion
– separation
– white knight

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 20019

SNLP [McAllester & Rosenblitt, 1991]SNLP [McAllester & Rosenblitt, 1991]
• Systematic Non-Linear Planner (SNLP)

– Efficient way to determine which preconditions are achieved
– Explore each node in search space at most once

• Not clear whether this is an advantage…

• Causal Links
– The “purpose” of an action (which condition it supports)
– ai →c aj, where ai, aj are actions and c is an effect of ai

– Plan = <A, O, B, L>
• Threats

– Action ak with an effect c′ that might “clobber” a causal link
– Promotion: Order ak after aj

– Demotion : Order ak before ai

– Separation : Constrain c′ so that it does not unify with c
(non-codesignation constraint)

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200110

UCPOP [Penberthy & Weld, 1992]UCPOP [Penberthy & Weld, 1992]
• Universal, Conditional Partial-Order Planner (UCPOP)

– Extension of SNLP to handle more expressive operators
• Conditionals
• Disjunction in preconditions
• Universal and existential quantification

• Uses unification to find necessary bindings
– Most General Unifier: MGU(p, q, B) = {(vi, xi), … }

• Uses constraint satisfaction to prove consistency of plans
– Consistent orderings
– Consistent variable bindings (co-designation)

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200111

UCPOP Language ExtensionsUCPOP Language Extensions
• Conditionals

– (when (?b ≠ table) (clear ?b))
– Add a new threat resolution mechanism: confrontation

• Add the negation of conditional effect antecedent to the set of goals
that must be achieved

• Disjunction in Preconditions
– Add a new choice point to the algorithm that

non-deterministically chooses to achieve one of the disjuncts

• Quantification
– Typed formula: (forall (<type> <var>) <expression>)
– Universal: Expand into equivalent conjunct (assumes finite, known

universe of objects)
– Existential: Replace quantification with Skolem function

((<type> <vari>) & <expression>\{(<var>, <vari>)})

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200112

UCPOP & MTCUCPOP & MTC
• The Modal Truth Criterion was used to prove that, for

expressive operator representations, determining whether a
plan achieves its conditions is NP-hard!

• UCPOP can handle expressive operators, yet it can
trivially determine whether it has found a plan that
achieves all the conditions

• How to reconcile this apparent contradiction?
• MTC proves whether: Need to find necessary and sufficient

conditions

• UCPOP ensures achievement: Only need sufficient conditions
• UCPOP pushes complexity from per-node cost to search space size

• This is a win if search is (usually) well focused

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200113

UCPOP AlgorithmUCPOP Algorithm
• UCPOP(initial-state, goals)

– plan = <A={Start, Finish}, O={Start < Finish}, B={}, L={}>
– agenda = {(goals, Finish)}
– Repeat until agenda is empty

• Select (and remove) an open condition (q, ac) from agenda
• If q is quantified, then expand and add it to agenda
• If q is a conjunction, then add each conjunct to agenda
• If q is a disjunction, then choose one disjunct and add to agenda
• If q is a literal and ap →~q ac exists in L, then Fail
• Else choose ap (either a new action or an existing action from A) that has an effect r that

unifies with q
– Add {ap →q ac } to L
– Add MGU(q, r, B) to B
– Add {(ap < ac), (ap < Finish), (Start < ap)} to O
– If ap is new, add preconditions to agenda and any variable constraints to B

• For each causal link ai →p aj and each at action which threatens the link, choose a
resolution mechanism

– Promotion: Add (aj < at) to O
– Demotion : Add (at < ai) to O
– Confrontation : If threatening effect is conditional, with antecedent S and effect R,

add {(~S\MGU(p, r, B), at)} to agenda
• Fail if plan is inconsistent

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200114

UCPOP and the Briefcase WorldUCPOP and the Briefcase World
• Move(b, src, dest)

Pre: briefcase(b), at(b, src), src ≠ dest
Effect: at(b, dest), ~at(b, src),

(forall (object x) (when in(x, b) (at(x, dest) & ~at(x, src))))

• Take-Out(x, b) Put-In(x, b, loc)
Pre: in(x, b) Pre: briefcase(b), at(x, loc), at(b, loc), x ≠ b
Effect: ~in(x, b) Effect: in(x, b)

• Initial: in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),
at(Check, Home), at(Calc, Home), at(Book, Home),
object(Check), object(Book), object(Calc),
briefcase(B1), briefcase(B2)

• Goal: at(Check, Home), (forall (object x) (x = Check | at(x, Office)))

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200115

UCPOP Briefcase World ExampleUCPOP Briefcase World Example

1. Start
in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),

at(Check, Home), at(Calc, Home), at(Book, Home)

Move(B1, Home, Office)
~at(B1, Home), at(B1, Office),

~at(Book, Home), at(Book, Office),
~at(x1, Home), at(x1, Office)

Finish

at(Check, Home), (Check = Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

at(B1, Home), in(Book, B1)

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200116

UCPOP Briefcase World ExampleUCPOP Briefcase World Example

2. Start
in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),

at(Check, Home), at(Calc, Home), at(Book, Home)

Move(B1, Home, Office)
~at(B1, Home), at(B1, Office),

~at(Book, Home), at(Book, Office),
~at(x1, Home), at(x1, Office)

Finish

at(Check, Home), (Check = Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

at(B1, Home), in(Book, B1)

Take-Out(Check, B1)
in(Check, B1)

, ~in(Check, B1)

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200117

UCPOP Briefcase World ExampleUCPOP Briefcase World Example

in(Calc, ?b),

3. Start
in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),

at(Check, Home), at(Calc, Home), at(Book, Home)

Move(B1, Home, Office)
~at(B1, Home), at(B1, Office),

~at(Book, Home), at(Book, Office),
~at(x1, Home), at(x1, Office)

Finish

at(Check, Home), (Check = Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

at(B1, Home), in(Book, B1) , ~in(Check, B1)

Take-Out(Check, B1)
in(Check, B1)

~at(Calc, Home), at(Calc, Office)

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200118

UCPOP Briefcase World ExampleUCPOP Briefcase World Example

in(Calc, B1),

4. Start
in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),

at(Check, Home), at(Calc, Home), at(Book, Home)

Move(B1, Home, Office)
~at(B1, Home), at(B1, Office),

~at(Book, Home), at(Book, Office),
~at(x1, Home), at(x1, Office)

Finish

at(Check, Home), (Check = Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

at(B1, Home), in(Book, B1) , ~in(Check, B1)

Take-Out(Check, B1)
in(Check, B1)

~at(Calc, Home), at(Calc, Office)

Put-In(Calc, B1, Home)
in(Calc, B1)

at(Calc, Home), at(B1, Home), Calc ≠ B1

Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200119

Partial Order Planning: DiscussionPartial Order Planning: Discussion
• Advantages

– Partial order planning is sound and complete
– Typically produces optimal solutions (plan length)
– Least commitment may lead to shorter search times

• Disadvantages
– Significantly more complex algorithms (higher per-node

cost)
– Hard to determine what is true in a state
– Larger search space, since concurrent actions are allowed

