Planning, Execution & Learning
1. Partial Order Planning

Reld Simmons

Panning, Execution & Learning: Partial Order 1 Simmons, Veloso : Fal 2001

Partial Order Planning

 Basicldea
— Search in plan space and use least commitment, when possible

« Plan Space Search

— Search space is set of partial plans
— Planistuple <A, O, B>

« A Setof actions, of theform (g : Op,)

 O: Setof orderings, of theform (g <a)

* B: Setof bindings, of theform (v, = C), (v, * C), (v, =v) or (v, * v)
— Initial plan:

o <{dsart, finish}, {start <finish}, {}>

o start has no preconditions; Its effects are the initia state

o finish has no effects; Its preconditions are the goals

Panning, Execution & Learning: Partial Order 2 Simmons, Veloso : Fal 2001

Least Commitment

» Basicldea

— Make choices only that are relevant to solving the current
part of the problem

e Least Commitment Choices

— Orderings. Leave actions unordered, unless they must be
seguential

— Bindings. Leave variables unbound, unless needed to unify
with conditions being achieved

— Actions: Usually not subject to “least commitment”

e Refinement
— Only add information to the current plan
— Transformational planning can remove choices

Planning, Execution & Learning: Partial Order 3 Simmons, Veloso : Fall 2001

Plan Terminology

Totally Ordered Plan

— There exists sufficient orderings O such that all actionsin A
are ordered with respect to each other

Fully Instantiated Plan
— There exists sufficient constraints in B such that all variables
are constrained to be equal to some constant
Consistent Plan
— There are no contradictionsin O or B

Complete Plan

— Every precondition p of every action a, in A isachieved:
There exists an effect of an action a; that comes before & and
unifies with p, and no action a, that deletes p comes between
a and &

Panning, Execution & Learning: Partial Order 4 Simmons, Veloso : Fal 2001

NOAH [Sacerdoti, 1975}

« NOAH
— First non-linear, partial -order planner
— Introduced notion of plan-space search

— Used TOME (Table of Multiple Effects) to detect goal
Interactions

« NOAH can easlly (and optimally) solve the “ Sussman
Anomaly” problem

o Mk

A B
Initial State Goal

Planning, Execution & Learning: Partial Order 5 Simmons, Veloso : Fall 2001

1.

NOAH and Sussman’s Anomaly
S

Start

A

B

On(C, A) On(A, Table) On(B, Table)
Clear(C), Clear(B)

2

r
On(A, B) On(B, C)
Finish C
Start

Or.l(C, A) On(A, Table)

(
Clear(C) Cl ear?l_%x
Clear(

Move(B, C)

On(A, B) On(B

B, Table)

Clear(C)

Finish

Panning, Execution & Learning: Partial Order

3

Start

oﬁ(c, A) On(A, Table)n(B, Table)

Cledr(C) Clear(

Clear(C)

Move(C, Table)

lear(

Clear(A)|On(C, Table)
Clear(A

B)

Move(A, B)

On(AyB) On(j, C)
Finish

Clear(B¥{Clear(C)
Move(B, C)

S mmons, Veoso : Fall 2001

NOAH and Sussman’'s Anomaly

4. Start
On(C, A) On(A, Table) Qn(B, Table)
Clghr(C) Clear(
|
Move(C, Table) |
CIear(A))L(:)n(C, Table) oy o (BAClear(©)
Move(B, C)
Clear(ANClear(B)
Move(A, B)
On(AyB) On(¥, C)

Finish

Panning, Execution & Learning: Partial Order

S}

Start

Or.1(C, A) On(A, Table) On(B, Table)
Clegar(C) Clear(B)

Clear(C)
Move(C, Table)
Clea(A)[onC. T abmmear(B) Clear(C)
Clear(ANClear(B) Move®.©)
~Clear(C)
Move(A, B) —
~Clear (B)
On(AyB) On(§, C)
Finish
7 Simmons, Veoso : Fall 2001

Modal Truth Criterion [Chapman, 1987]

e Modal Truth Criterion (MTC)

— Formalized criterion for determining whether a (partial)
plan achieves a given precondition p at agiven step s
* pistrueinsif:)
$t((f t<s) Ui asserts(t, p)) U
"C((is<C)U

"q(@q»p)P i~denies(C,q)U
SW ([C<W)U@TW<s) U

$r (asserts(W,) U (p»q) P (p»r)))))
« Can be used to generate planning algorithm (TWEAK)
— step addition / establishment
— promotion/demotion
— Separation
— white knight

Planning, Execution & Learning: Partial Order 8 Simmons, Veloso : Fall 2001

SNLP [McAllester & Rosenblitt, 1991]

o Systematic Non-Linear Planner (SNLP)
— Efficient way to determine which preconditions are achieved

— EXxplore each node in search space at most once
» Not clear whether thisis an advantage...

e Causal Links
— The“purpose’ of an action (which condition it supports)
— 8 ®°a, wherea, a areactionsand c is an effect of a
— Plan=<A,0, B, L>
e Threats
— Action a, with an effect c¢that might “clobber” a causal link
— Promotion: Order a, after &,
— Demotion : Order a, before a,

— Separation : Constrain c¢so that it does not unify with c
(non-codesignation constraint)

Planning, Execution & Learning: Partial Order 9 Simmons, Veloso : Fall 2001

UCPOP [Penberthy & Weld, 1992]

e Universal, Conditional Partial-Order Planner (UCPOP)

— Extension of SNLP to handle more expressive operators

e Conditionals
« Digunction in preconditions
« Universal and existential quantification

e Usesunification to find necessary bindings
— Most General Unifier: MGU(p, g, B) = {(v;, %), ... }

e Usesconstraint satisfaction to prove consistency of plans

— Consistent orderings
— Consistent variable bindings (co-designation)

Planning, Execution & Learning: Partial Order 10 Simmons, Veloso : Fall 2001

UCPOP Language Extensions

e Conditionals
— (when (?b* table) (clear ?b))

— Add anew threat resolution mechanism: confrontation

» Add the negation of conditional effect antecedent to the set of goals
that must be achieved

« Digunction in Preconditions

— Add anew choice point to the algorithm that
non-deterministically chooses to achieve one of the diguncts

e Quantification
— Typed formula: (forall (<type> <var>) <expression>)

— Universal: Expand into equivalent conjunct (assumes finite, known
universe of objects)

. Replace quantification with Skolem function
((<type> <var >) & <expression>\{(<var>, <var,>)})

Panning, Execution & Learning: Partial Order 11 Simmons, Veloso : Fal 2001

UCPOP & MTC

« The Moda Truth Criterion was used to prove that, for
expressive operator representations, determining whether a
plan achieves its conditions is NP-hard!

« UCPOP can handle expressive operators, yet it can
trivialy determine whether it has found a plan that
achieves all the conditions

* How to reconcile this apparent contradiction?

e MTC proves whether: Need to find necessary and sufficient
conditions

« UCPOP . Only need sufficient conditions
o UCPORP pushes complexity from per-node cost to search space size
 Thisisawin if searchis (usually) well focused

Panning, Execution & Learning: Partial Order 12 Simmons, Veloso : Fal 2001

UCPOP Algorithm

« UCPORP(initial-state, goals)
— plan = <A={ Sart, Finish}, O={ Sart < Finish}, B={}, L={}>
— agenda ={(goals, Finish)}
— Repeat until agenda is empty
 Select (and remove) an open condition (g, a.) from agenda
» |If qisquantified, then expand and add it to agenda
« If g isaconjunction, then add each conjunct to agenda
« If gisadigunction, then choose one digunct and add to agenda
 Ifgisaliterd and a,® ~9a existsin L, then Fail
* Elsechoosea, (either anew action or an existing action from A) that has an effect r that
unifieswith g
— Add{a,®d9a_ } toL
— Add MGU(q,r,B)toB
— Add{(a,<a), (@, <Finish), (Sart<a)} to O
— If a,isnew, add preconditions to agenda and any variable constraintsto B

* For each causal link & ® P a; and each a, action which threatens the link, choose a
resolution mechanism

— Promotion: Add (3 <a)t0 O
— Demotion : Add (@, <a)to O
— Confrontation : If threatening effect is conditional, with antecedent S and effect R,
add { -<S\MGU(p, r, B), a,)} toagenda
* Fail if planisinconsistent
Planning, Execution & Learning: Partial Order 13 Simmons, Veloso : Fall 2001

UCPOP and the Briefcase World

Move(b, src, dest)
Pre: briefcase(b), at(b, src), srct dest
Effect: at(b, dest), ~at(b, src),
(forall (object x) (whenin(x, b) (at(x, dest) & ~at(x, src))))

Take-Out(x, b) Put-In(x, b, loc)
Pre: in(x, b) Pre: briefcase(b), at(x, loc), at(b, loc),x 1 b
Effect: ~in(x, b) Effect: in(x, b)

Initial: in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),
at(Check, Home), at(Calc, Home), at(Book, Home),
obj ect(Check), object(Book), object(Calc),
briefcase(B1), briefcase(B2)

Goal: at(Check, Home), (forall (object x) (x = Check | at(x, Office)))

Panning, Execution & Learning: Partial Order 14 Simmons, Veloso : Fal 2001

UCPORP Briefcase World Example

1 Start
in(Check, B1), in(Book, B1);.at(B1, Home), at(B2, Office),
at(Check, Home), at(Célc,\ Home), at(Book, Home)

Move(B1l, Home, Office)
~at(B1, Home), at(B1, Office),

~at(Book, Home), at(Book, Office),

~at(x1, Home), at(x1, Office)

v
at(Check, Home), (Check/A~ Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

Finish

Panning, Execution & Learning: Partial Order 15 Simmons, Veloso : Fal 2001

UCPORP Briefcase World Example

2 Start
in(Check, B1), in(Book, BT\ at(R1Ndome), at(B2, Office),
at(Check, Home), at(Calc,\Home), at(Book, Home)

in(Check, B1)

Take-Out(Check, B1)

Book, Bl% n(Check, B1)

Move(Bl, Home, Office)

v
at(Check, Home), (Check~ Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

Finish

Planning, Execution & Learning: Partial Order 16 Simmons, Veloso : Fall 2001

UCPORP Briefcase World Example

3. Start
in(Check, B1), in(Book, BT\ at(&®1,

ome), at(B2, Office),

Take-Out(Check, B1)

Book, Bl),/~i n(Check, B1)

(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))
Finish

Panning, Execution & Learning: Partial Order 17 Simmons, Veloso : Fal 2001

UCPORP Briefcase World Example

4.

at

, Home), at(B1, Home), Calc! B1

Put-In(Calc, B1, Home)

in(Calc, B1)

Take-Out(Check, B1)

BOOk, Bl),/~i n(Check, B1)

(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

Finish

Panning, Execution & Learning: Partial Order

18 S mmons, Veoso : Fall 2001

Partial Order Planning: Discussion

 Advantages
— Partial order planning is sound and complete
— Typically produces optimal solutions (plan length)
— Least commitment may lead to shorter search times

 Disadvantages
— Significantly more complex algorithms (higher per-node
cost)
— Hard to determine what istrue in a state

— Larger search space, since concurrent actions are allowed

Planning, Execution & Learning: Partial Order 19 Simmons, Veloso : Fall 2001

