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Partial Order PlanningPartial Order Planning
• Basic Idea

– Search in plan space and use least commitment, when possible

• Plan Space Search
– Search space is set of partial plans
– Plan is tuple <A, O, B>

• A: Set of actions, of the form (ai : Opj)
• O: Set of orderings, of the form (ai < aj)
• B: Set of bindings, of the form (vi = C), (vi ≠ C), (vi = vj) or (vi ≠ vj) 

– Initial plan:
• <{start, finish}, {start < finish}, {}>
• start has no preconditions; Its effects are the initial state
• finish has no effects; Its preconditions are the goals
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Least CommitmentLeast Commitment
• Basic Idea

– Make choices only that are relevant to solving the current 
part of the problem

• Least Commitment Choices
– Orderings: Leave actions unordered, unless they must be 

sequential
– Bindings: Leave variables unbound, unless needed to unify 

with conditions being achieved
– Actions: Usually not subject to “least commitment”

• Refinement
– Only add information to the current plan
– Transformational planning can remove choices
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Plan TerminologyPlan Terminology
• Totally Ordered Plan

– There exists sufficient orderings O such that all actions in A
are ordered with respect to each other

• Fully Instantiated Plan
– There exists sufficient constraints in B such that all variables 

are constrained to be equal to some constant

• Consistent Plan
– There are no contradictions in O or B

• Complete Plan
– Every precondition p of every action ai in A is achieved: 

There exists an effect of an action aj that comes before ai and 
unifies with p, and no action ak that deletes p comes between 
aj and ai
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NOAH [Sacerdoti, 1975]NOAH [Sacerdoti, 1975]
• NOAH

– First non-linear, partial-order planner
– Introduced notion of plan-space search
– Used TOME (Table of Multiple Effects) to detect goal 

interactions

A B
C

Initial State Goal

A
B
C

• NOAH can easily (and optimally) solve the “Sussman 
Anomaly” problem
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NOAH and Sussman’s AnomalyNOAH and Sussman’s Anomaly

Start
On(C, A) On(A, Table) On(B, Table)
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Finish
On(A, B) On(B, C)

A B
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A
B
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Clear(B) Clear(C)

Finish
On(A, B) On(B, C)

Start
On(C, A) On(A, Table) On(B, Table)

Clear(C) Clear(B)

3.

Move(B, C)
Clear(B) Clear(C)
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NOAH and Sussman’s AnomalyNOAH and Sussman’s Anomaly

4.

Move(B, C)
Clear(B) Clear(C)
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Clear(C) Clear(B)

Move(A, B)
Clear(A) Clear(B)
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Clear(C)

Clear(A) On(C, Table)

~Clear(C)
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Clear(A) Clear(B)

5.
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Clear(B) Clear(C)
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Start
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Modal Truth Criterion [Chapman, 1987]Modal Truth Criterion [Chapman, 1987]
• Modal Truth Criterion (MTC)

– Formalized criterion for determining whether a (partial) 
plan achieves a given precondition p at a given step s

• p is true in s if:
∃t ((�t < s) ∧ �asserts(t, p)) ∧
∀C ((�s < C) ∨

∀q ((◊ q ≈ p) ⇒ �~denies(C, q) ∨
∃W ((�C < W) ∧ (�W < s) ∧

∃r (asserts(W, r) ∧ (p ≈ q) ⇒ (p ≈ r)))))

• Can be used to generate planning algorithm (TWEAK)
– step addition / establishment
– promotion/demotion
– separation
– white knight
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SNLP [McAllester & Rosenblitt, 1991]SNLP [McAllester & Rosenblitt, 1991]
• Systematic Non-Linear Planner (SNLP)

– Efficient way to determine which preconditions are achieved
– Explore each node in search space at most once

• Not clear whether this is an advantage…

• Causal Links
– The “purpose” of an action (which condition it supports)
– ai →c aj, where ai, aj are actions and c is an effect of ai

– Plan = <A, O, B, L>
• Threats

– Action ak with an effect c′ that might “clobber” a causal link
– Promotion: Order ak after aj

– Demotion : Order ak before ai

– Separation : Constrain c′ so that it does not unify with c
(non-codesignation constraint)
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UCPOP [Penberthy & Weld, 1992]UCPOP [Penberthy & Weld, 1992]
• Universal, Conditional Partial-Order Planner (UCPOP)

– Extension of SNLP to handle more expressive operators
• Conditionals
• Disjunction in preconditions
• Universal and existential quantification

• Uses unification to find necessary bindings
– Most General Unifier: MGU(p, q, B) = {(vi, xi), … }

• Uses constraint satisfaction to prove consistency of plans
– Consistent orderings
– Consistent variable bindings (co-designation)
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UCPOP Language ExtensionsUCPOP Language Extensions
• Conditionals

– (when (?b ≠ table) (clear ?b))
– Add a new threat resolution mechanism: confrontation

• Add the negation of conditional effect antecedent to the set of goals 
that must be achieved

• Disjunction in Preconditions
– Add a new choice point to the algorithm that 

non-deterministically chooses to achieve one of the disjuncts

• Quantification
– Typed formula: (forall (<type> <var>) <expression>)
– Universal: Expand into equivalent conjunct (assumes finite, known 

universe of objects)
– Existential: Replace quantification with Skolem function

((<type> <vari>) & <expression>\{(<var>, <vari>)})
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UCPOP & MTCUCPOP & MTC
• The Modal Truth Criterion was used to prove that, for 

expressive operator representations, determining whether a 
plan achieves its conditions is NP-hard!

• UCPOP can handle expressive operators, yet it can 
trivially determine whether it has found a plan that 
achieves all the conditions

• How to reconcile this apparent contradiction?
• MTC proves whether: Need to find necessary and sufficient 

conditions

• UCPOP ensures achievement: Only need sufficient conditions
• UCPOP pushes complexity from per-node cost to search space size

• This is a win if search is (usually) well focused



Planning, Execution & Learning: Partial Order Simmons, Veloso : Fall 200113

UCPOP AlgorithmUCPOP Algorithm
• UCPOP(initial-state, goals)

– plan = <A={Start, Finish}, O={Start < Finish}, B={}, L={}>
– agenda = {(goals, Finish)}
– Repeat until agenda is empty

• Select (and remove) an open condition (q, ac) from agenda
• If q is quantified, then expand and add it to agenda
• If q is a conjunction, then add each conjunct to agenda
• If q is a disjunction, then choose one disjunct and add to agenda
• If q is a literal and ap →~q ac exists in L, then Fail
• Else choose ap (either a new action or an existing action from A) that has an effect r that 

unifies with q
– Add {ap →q ac } to L
– Add MGU(q, r, B) to B
– Add {(ap < ac), (ap < Finish), (Start < ap)} to O
– If ap is new, add preconditions to agenda and any variable constraints to B

• For each causal link ai →p aj and each at action which threatens the link, choose a 
resolution mechanism

– Promotion: Add (aj < at) to O
– Demotion : Add (at < ai) to O
– Confrontation : If threatening effect is conditional, with antecedent S and effect R, 

add {(~S\MGU(p, r, B), at)} to agenda
• Fail if plan is inconsistent
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UCPOP and the Briefcase WorldUCPOP and the Briefcase World
• Move(b, src, dest)

Pre: briefcase(b), at(b, src), src ≠ dest
Effect: at(b, dest), ~at(b, src), 

(forall (object x) (when in(x, b) (at(x, dest) & ~at(x, src))))

• Take-Out(x, b) Put-In(x, b, loc)
Pre: in(x, b) Pre: briefcase(b), at(x, loc), at(b, loc), x ≠ b
Effect: ~in(x, b) Effect: in(x, b)

• Initial: in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),
at(Check, Home), at(Calc, Home), at(Book, Home), 
object(Check), object(Book), object(Calc), 
briefcase(B1), briefcase(B2)

• Goal:  at(Check, Home), (forall (object x) (x = Check | at(x, Office)))
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UCPOP Briefcase World ExampleUCPOP Briefcase World Example

1. Start
in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),

at(Check, Home), at(Calc, Home), at(Book, Home)

Move(B1, Home, Office)
~at(B1, Home), at(B1, Office),

~at(Book, Home), at(Book, Office), 
~at(x1, Home), at(x1, Office)

Finish

at(Check, Home), (Check = Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

at(B1, Home), in(Book, B1)
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UCPOP Briefcase World ExampleUCPOP Briefcase World Example

2. Start
in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),

at(Check, Home), at(Calc, Home), at(Book, Home)

Move(B1, Home, Office)
~at(B1, Home), at(B1, Office),

~at(Book, Home), at(Book, Office), 
~at(x1, Home), at(x1, Office)

Finish

at(Check, Home), (Check = Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

at(B1, Home), in(Book, B1)

Take-Out(Check, B1)
in(Check, B1)

, ~in(Check, B1)
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UCPOP Briefcase World ExampleUCPOP Briefcase World Example

in(Calc, ?b),

3. Start
in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),

at(Check, Home), at(Calc, Home), at(Book, Home)

Move(B1, Home, Office)
~at(B1, Home), at(B1, Office),

~at(Book, Home), at(Book, Office), 
~at(x1, Home), at(x1, Office)

Finish

at(Check, Home), (Check = Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

at(B1, Home), in(Book, B1) , ~in(Check, B1)

Take-Out(Check, B1)
in(Check, B1)

~at(Calc, Home), at(Calc, Office)
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UCPOP Briefcase World ExampleUCPOP Briefcase World Example

in(Calc, B1),

4. Start
in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office),

at(Check, Home), at(Calc, Home), at(Book, Home)

Move(B1, Home, Office)
~at(B1, Home), at(B1, Office),

~at(Book, Home), at(Book, Office), 
~at(x1, Home), at(x1, Office)

Finish

at(Check, Home), (Check = Check | at(Check, Office)),
(Book = Check | at(Book, Office)), (Calc = Check | at(Check, Office))

at(B1, Home), in(Book, B1) , ~in(Check, B1)

Take-Out(Check, B1)
in(Check, B1)

~at(Calc, Home), at(Calc, Office)

Put-In(Calc, B1, Home)
in(Calc, B1)

at(Calc, Home), at(B1, Home), Calc ≠ B1
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Partial Order Planning: DiscussionPartial Order Planning: Discussion
• Advantages

– Partial order planning is sound and complete
– Typically produces optimal solutions (plan length)
– Least commitment may lead to shorter search times

• Disadvantages
– Significantly more complex algorithms (higher per-node

cost)
– Hard to determine what is true in a state
– Larger search space, since concurrent actions are allowed


