Planning, Execution & Learning 1. Partial Order Planning

Reid Simmons

Partial Order Planning

- Basic Idea
 - Search in plan space and use least commitment, when possible
- Plan Space Search
 - Search space is set of partial plans
 - Plan is tuple $\langle A, O, B \rangle$
 - A: Set of *actions*, of the form $(a_i : Op_i)$
 - O: Set of *orderings*, of the form $(a_i < a_j)$
 - B: Set of **bindings**, of the form $(v_i = C)$, $(v_i^1 C)$, $(v_i = v_j)$ or $(v_i^1 v_j)$
 - Initial plan:
 - <{start, finish}, {start < finish}, {}>
 - start has no preconditions; Its effects are the initial state
 - finish has no effects; Its preconditions are the goals

Least Commitment

- Basic Idea
 - Make choices only that are relevant to solving the current part of the problem
- Least Commitment Choices
 - Orderings: Leave actions unordered, unless they must be sequential
 - Bindings: Leave variables unbound, unless needed to unify with conditions being achieved
 - Actions: Usually not subject to "least commitment"
- Refinement
 - Only add information to the current plan
 - *Transformational* planning can remove choices

Plan Terminology

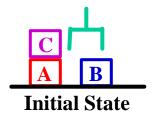
• Totally Ordered Plan

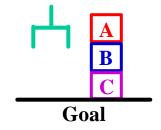
There exists sufficient orderings O such that all actions in A are ordered with respect to each other

• Fully Instantiated Plan

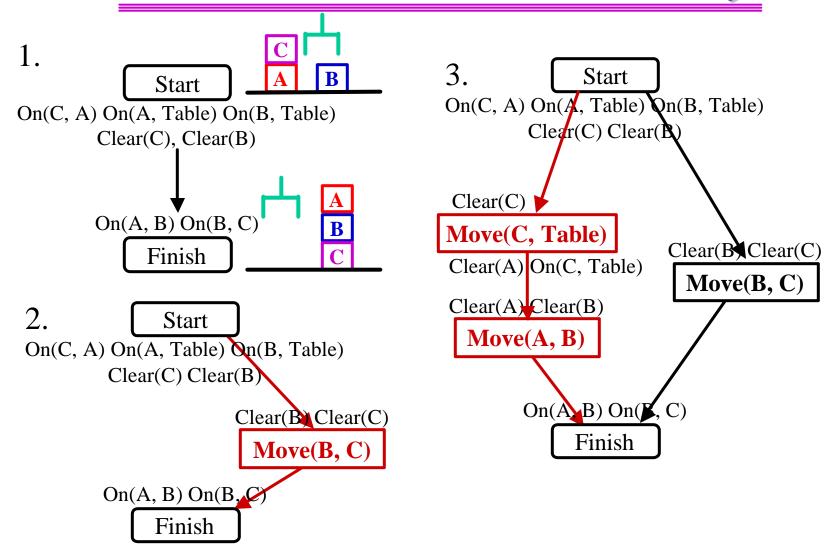
- There exists sufficient constraints in *B* such that all variables are constrained to be equal to some constant

• Consistent Plan

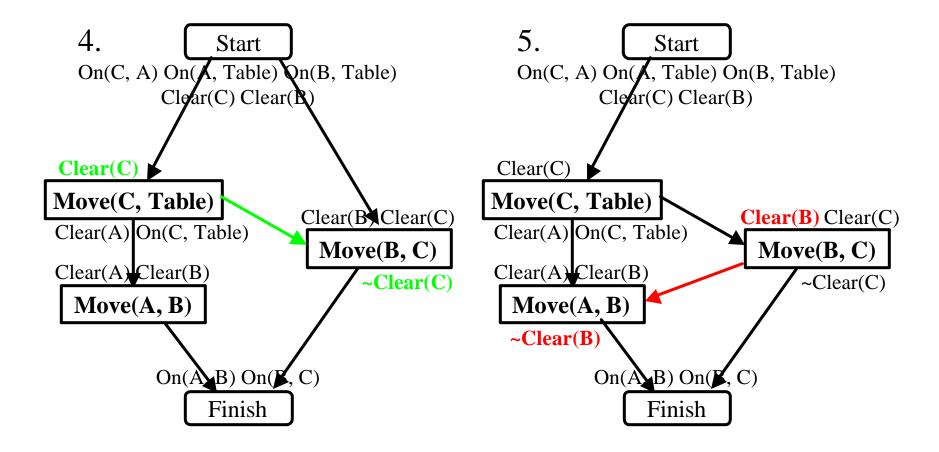

- There are no contradictions in O or B


• Complete Plan

- Every precondition p of every action a_i in A is *achieved*: There exists an effect of an action a_j that comes before a_i and unifies with p, and no action a_k that deletes p comes between a_i and a_i


NOAH [Sacerdoti, 1975]

- NOAH
 - First non-linear, partial-order planner
 - Introduced notion of plan-space search
 - Used TOME (Table of Multiple Effects) to detect goal interactions
- NOAH can easily (and optimally) solve the "Sussman Anomaly" problem



NOAH and Sussman's Anomaly

NOAH and Sussman's Anomaly

Modal Truth Criterion [Chapman, 1987]

- Modal Truth Criterion (MTC)
 - Formalized criterion for determining whether a (partial)
 plan achieves a given precondition p at a given step s
 - p is true in s if:

- Can be used to generate planning algorithm (TWEAK)
 - step addition / establishment
 - promotion/demotion
 - separation
 - white knight

SNLP [McAllester & Rosenblitt, 1991]

- Systematic Non-Linear Planner (SNLP)
 - Efficient way to determine which preconditions are achieved
 - Explore each node in search space at most once
 - Not clear whether this is an advantage...
- Causal Links
 - The "purpose" of an action (which condition it supports)
 - $-a_i \rightarrow^c a_j$, where a_i , a_j are actions and c is an effect of a_i
 - Plan = <*A*, *O*, *B*, *L*>
- Threats
 - Action a_k with an effect c' that might "clobber" a causal link
 - **Promotion**: Order a_k after a_j
 - **Demotion**: Order a_k before a_i
 - **Separation**: Constrain c' so that it does not unify with c (non-codesignation constraint)

UCPOP [Penberthy & Weld, 1992]

- Universal, Conditional Partial-Order Planner (UCPOP)
 - Extension of SNLP to handle more expressive operators
 - Conditionals
 - Disjunction in preconditions
 - Universal and existential quantification
- Uses *unification* to find necessary bindings
 - Most General Unifier: $MGU(p, q, B) = \{(v_i, x_i), \dots\}$
- Uses *constraint satisfaction* to prove consistency of plans
 - Consistent orderings
 - Consistent variable bindings (co-designation)

UCPOP Language Extensions

- Conditionals
 - (when (?b 1 table) (clear ?b))
 - Add a new threat resolution mechanism: confrontation
 - Add the *negation* of conditional effect antecedent to the set of goals that must be achieved
- Disjunction in Preconditions
 - Add a new choice point to the algorithm that non-deterministically chooses to achieve one of the disjuncts
- Quantification
 - Typed formula: (forall (<type> <var>) <expression>)
 - Universal: Expand into equivalent conjunct (assumes finite, known universe of objects)
 - Existential: Replace quantification with Skolem function ((<type> <var_i>) & <expression>\{(<var>>, <var_i>)})

UCPOP & MTC

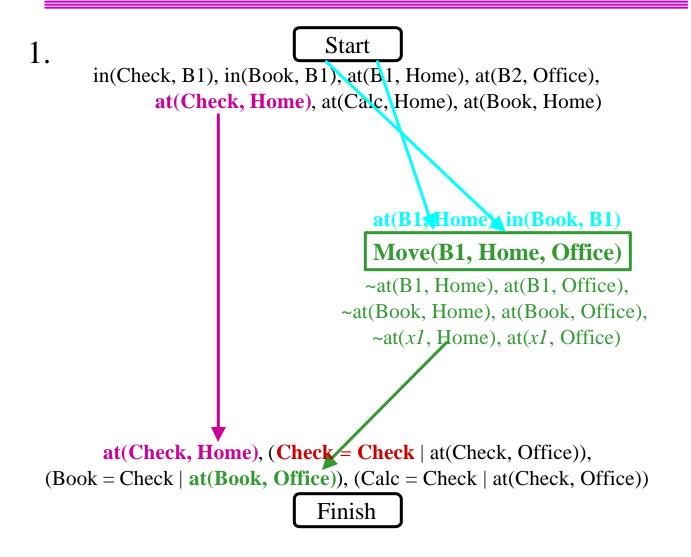
- The Modal Truth Criterion was used to prove that, for expressive operator representations, determining whether a plan achieves its conditions is NP-hard!
- UCPOP can handle expressive operators, yet it can trivially determine whether it has found a plan that achieves all the conditions
- How to reconcile this apparent contradiction?
 - MTC *proves whether*: Need to find necessary and sufficient conditions
 - UCPOP *ensures achievement*: Only need sufficient conditions
 - UCPOP pushes complexity from per-node cost to search space size
 - This is a win if search is (usually) well focused

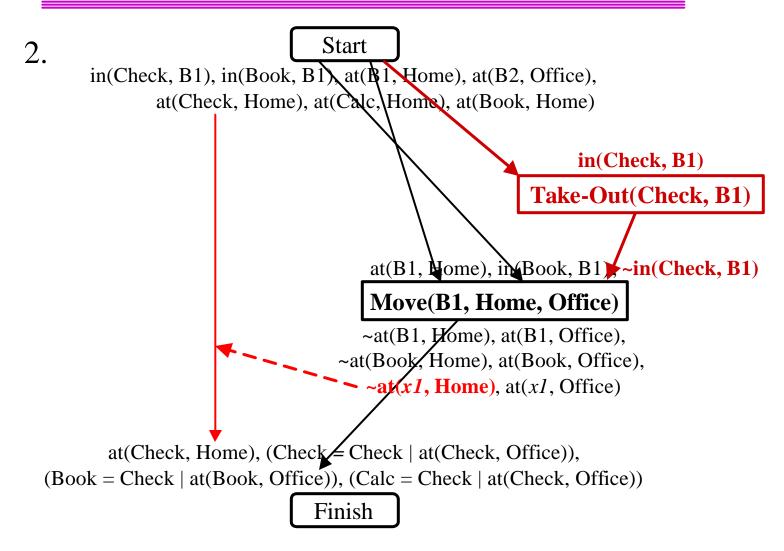
UCPOP Algorithm

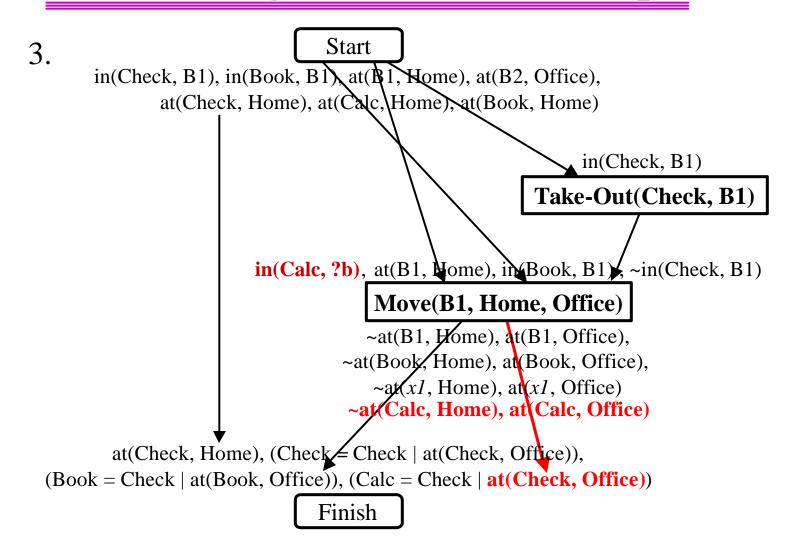
- UCPOP(initial-state, goals)
 - $plan = \langle A = \{ Start, Finish \}, O = \{ Start < Finish \}, B = \{ \}, L = \{ \} >$
 - $agenda = \{(goals, Finish)\}$
 - Repeat until agenda is empty
 - Select (and remove) an open condition (q, a_c) from agenda
 - If q is quantified, then expand and add it to agenda
 - If q is a conjunction, then add each conjunct to agenda
 - If q is a disjunction, then **choose** one disjunct and add to agenda
 - If q is a literal and $a_n \rightarrow^{\sim q} a_c$ exists in L, then Fail
 - Else **choose** a_p (either a new action or an existing action from A) that has an effect r that unifies with q
 - Add $\{a_n \rightarrow^q a_c\}$ to L
 - Add MGU(q, r, B) to B
 - Add $\{(a_p < a_c), (a_p < Finish), (Start < a_p)\}$ to O
 - If a_p is new, add preconditions to agenda and any variable constraints to B
 - For each causal link $a_i \rightarrow^p a_j$ and each a_t action which threatens the link, **choose** a resolution mechanism
 - **Promotion**: Add $(a_i < a_t)$ to O
 - **Demotion**: Add $(a_i < a_i)$ to O
 - *Confrontation*: If threatening effect is conditional, with antecedent S and effect R, add $\{(\sim S \setminus MGU(p, r, B), a_t)\}$ to agenda
 - Fail if *plan* is inconsistent

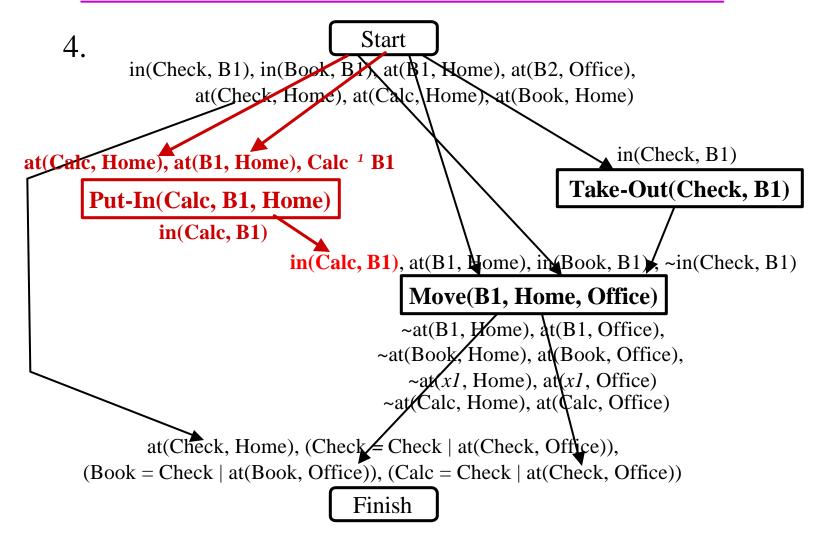
UCPOP and the Briefcase World

• **Move**(b, src, dest)


```
Pre: briefcase(b), at(b, src), src <sup>1</sup> dest
Effect: at(b, dest), ~at(b, src),
(forall (object x) (when in(x, b) (at(x, dest) & ~at(x, src))))
```


• Take-Out(x, b) Put-In(x, b, loc)


Pre: in(x, b) Pre: briefcase(b), at(x, loc), at(b, loc), x^{-1} b


Effect: $\sim in(x, b)$ Effect: in(x, b)

- Initial: in(Check, B1), in(Book, B1), at(B1, Home), at(B2, Office), at(Check, Home), at(Calc, Home), at(Book, Home), object(Check), object(Book), object(Calc), briefcase(B1), briefcase(B2)
- Goal: at(Check, Home), (forall (object x) $(x = Check \mid at(x, Office)))$

Partial Order Planning: Discussion

Advantages

- Partial order planning is sound and complete
- Typically produces *optimal* solutions (plan length)
- Least commitment may lead to shorter search times

Disadvantages

- Significantly more complex algorithms (higher *per-node* cost)
- Hard to determine what is true in a state
- Larger search space, since concurrent actions are allowed