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Abstract: Mobile robots operating in the real world need very reliable navigation capabilities to operate
autonomously for long periods of time. However, it is almost impossible to specify in advance all the possible
anomalous situations the navigation system can encounter, especially given noisy and imprecise sensor
information and a dynamic and partially known environment. In this paper, we present an architecture for robust
execution monitoring of the different tasks of the robot. This approach uses a set of monitors that get information
about the robot’s state and, rather than detecting fault states directly, detects significant differences between
perceived and expected states. To deal with the uncertainty about the knowledge of the state of the system and
the result of some actions, it uses a POMDP model to decide when is worthy to take recovery actions. We
present the general approach and show its application in the domain of indoor mobile robot navigation.
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1. INTRODUCTION
One of the goals for intelligent mobile robots is

the ability to operate autonomously in all situations,
even to respond in advance before anomalous
situations arise. Since it is almost impossible for the
programmer to predict all the circumstances that
might be encountered, however, a general
mechanism is required to handle failure situations.
For this purpose, different supervisory functions
must be implemented.

Advanced supervision and fault diagnosis to
improve reliability, safety and economy is a subject
of intensive research. Most of this research is
carried out in industrial processes. In the field of
mobile robots, solutions to deal with errors strongly
depend on the architecture used in the navigation
system. For instance, error recovery is not
employed in purely reactive systems because the
system basically reacts to events. In the context of
robot navigation, several architectures deal with
exceptions and sensor errors in different ways
[Noreils and Chatila, 1995][Stuck, 1995].
Monitoring and recovery processes are responsible
for verifying that the robot is correctly executing its
tasks, detecting when is not and handling
exceptions.

The faults commonly handled are due to the
sensor system either only at hardware level or also
including software faults. While some architectures
only consider faults in sensors and effectors, in
others they also take into account the faults at the
navigation level. The treatment of faults in this last
group is always conditioned by the architecture of
navigation used, leading to different supervision,
fault detection and recovery systems.

In this paper, an exception detection and
recovery architecture for mobile robots is
presented. The architecture uses a set of monitors to
gather information about the state of the robot
[Fernández and Simmons, 1998] and is able to
either (1) command a set of actions to recover from
errors, (2) obtain information about the state of the
robot, or (3) try to reach the goal. The idea is to
provide coverage for many types of unexpected and
unanticipated situations, while at the same time
enabling the robot to quickly detect, and react to,
specific contingencies. Our monitoring and
recovery architecture is independent of the
navigation architecture. Like other systems, the
architecture used in our research combines reactive
and deliberative behaviors. The approach described
in this paper has roots in earlier work with a
previous navigation system [Simmons, 1994b]
[Fernández and Simmons, 1998].

2. SOME CONSIDERATIONS ABOUT
THE SUPERVISOR

Our supervision architecture uses a stochastic
model to decide which action to do for the next
step, based on the current (estimated) state, current
senor values, and the different alternative actions it
can perform.

We take the role of execution monitors to be to
detect symptoms. A symptom is defined as a
significant difference between the observed state-
of-the-world and the expectation with respect to the
nominal situation. Depending on the metrics used to
measure that difference, we can set up different
monitors to look for different symptoms. In
navigation, for example, one metric is the time the
robot takes to achieve its goal. Another measure is
the distance traveled by the robot. In the latter case,



a symptom will be that the robot is moving too
slowly, or not moving at all. The idea is that such
symptoms, which we refer to as exception
situations, will usually be associated with situations
where the robot is stuck or is performing poorly
named.

Due to system complexity, many issues must be
taken into account in order to develop a module to
robustly detect and recover from exception
situations. First, it is necessary to consider that, due
to noise and modeling limitations, monitors can
detect symptoms that are not always caused by a
failure. If we could set up monitors that classify
exactly the failure state of the robot then, depending
on the state, we could take the best action for that
state [Fernández and Simmons, 1998].
Unfortunately, this is not possible for most of the
situations.

Another issue to consider is that the penalty of a
false detection is not the same for all the problems.
Even more, for the same problem in different
situations the penalty of a wrong decision can be
different. It is also necessary to bear in mind that
the recovery mechanisms are not perfect. As with
navigation, almost all the recovery actions can
themselves fail (e.g., due to perception problems,
environment exceptions, etc).

Finally, in order to make intelligent decisions
about when is worthwhile to change the nominal
action and execute a recovery action, the state of
the system must be considered. However, this state
is not deterministically known. Instead, we have a
set of observations from different sensors, results of
actions, etc. The actual state of the system should
be estimated from all the history of these
observations.

 Our architecture uses a stochastic model of the
system to deal with all these uncertainties. To date,
we have built the model based in our experience
working with the robot.

3. STOCHASTIC SUPERVISOR
Fault diagnosis and recovery can be seen as a

sequential process involving three steps: symptom
extraction using the monitors, identification, and
recovery (if necessary). A supervisor is in charge of
monitoring the system, searching for exception
situations, and selecting recovery actions when
necessary.

Real-world robotic systems have much
uncertainty due to (1) limitations in the sensors, (2)
dynamic, hard-to-model, and non-predictable
environments, and (3) non-deterministic effects of
actions. Therefore, in order to decide what the robot
should do for next step, the supervisor must take
into account the uncertainty in the observation
about the system and in the action results, the action
costs in different situations, and past information.

A decision process that supports the above
requirements is the Partial Observable Markov

Decision Process (POMDP) where the uncertainties
are expressed using probabilities [Cassandra, 1998].
A POMDP Ξ can be described as a sextuple
[Kaelbling et al., 1998]:

),,,,,( ROTZAS≡Ξ (1)
where:
ü S is a finite set of states of the system
ü A is a finite set of actions the robot can do.
ü Z is a finite set of observations the robot can

obtain.
ü T : S ×× A →→ ΠΠ(S) is the state transition

function. T(s,a,s') is the probability of ending in
state s' when the robot is in state s and executes
action a.

ü O: S ×× A →→ ΠΠ(Z) is the observation function.
O(s',a,o) is the probability of making
observation o while doing action a and ending
in state s'.

ü R : S ×× A ×× S →→ ℜℜ is the reward function.
R(s,a,s') is the expected reward for taking the
action a in state s and ending in state s'.
Our approach, then, is to model the system as a

POMDP and apply POMDP theory to find a policy
that dictates which action to execute at each step. In
next section, we describe how we model navigation
as a POMDP.  Section 5 describes how the robot
uses this POMDP to decide what to do.

4. CONSTRUCTING THE POMDP
MODEL

In order to describe the system as a POMDP, we
have to define the different parameters (S, A, Z),
probabilities (T, O) and rewards (R).

4.1. Parameters
States

In order to define the system states, the different
exception situations must be determined. Even
though we cannot identify all the possible exception
situations, we can classify them.

Figure 1 shows a classification for some of the
possible problems. An exception situation can be a
combination of one or more problems.

To assure completeness, we need a cut through
the tree of possible problems (Figure 1), at some
level of detail.  If we want to be more specific about
the exceptions, we should use the subsets
represented by the leaves of the tree. However,
since we don’t have implemented so far enough
mechanisms to identify every subset, we use only
the items in squares in Figure 1, which are also
shown in Table 1. Nevertheless, new subsets can be
added easily if new observations are included. For
example, instead of the non-navigable environment
set, we can use the subsets obstacle and floor
discontinuities, provided we have ways of detecting
those situations.

Note that the state of the system is a
combination of these possible problems. The state



without any problem is labeled as the nominal state.
The exception situations are all the possible
combinations of the components shown in the
Table 1. In particular, considering the seven
exception components shown, the whole system
can be in 27 = 128 possible states. A detailed
description can be found in [Fernández, 2000].

Table 1. Basic problems considered in the supervisor

Name Description Source
NNP Non Navigable Path Environment
HP Hardware Problems Hardware
RT Reactive Problems Soft. (React.)
PP Perception Problems Soft. (Per.)
WD Wrong Direction Soft. (Nav.)
LST Robot Lost Soft. (Nav.)
NNA Non Navigable Alternative Environment
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Figure 1. Classification of the possible problems

Actions
An action is a single procedure performed by

the robot in order to accomplish a task or recover
from an exception situation. Table 2 shows the six
actions developed in our robot system.

Observations
Information about the system comes from two

different sources: monitors and actions. A monitor
informs the devisor (decision making module)
whenever its monitored condition is detected. In
addition, the decisor uses the absence of monitor
firings at each step to reinforce the nominal state
probability. Some actions communicate the results
of their successes. Note that neither sources of
information is perfect and they only provide
symptoms about the state of the robot. Table 3 lists
the possible components of the observations the

system can get in one step. These observations
could be any combination of the components.

Table 2. Basic robot actions

Action Description
FP Nominal action. Follow planned path
NP Request a new path
RL Relocalize using other methods
GO Go opening
MA Move away from the current position
SH Send a message for assistance.
GU Give up on this task.

Table 3. Basic Observations

Obs. Description Source
EPS Error Position (stopped) Monitor
EPM Error Position (moving) Monitor
LD Loop Detected Monitor
SD Spinning Detected Monitor
BO Blockage Overtaken Action (GO)
ALT Alternative path found Action (NP)
NNA Non Navigable Alternative Environment

The monitors are implemented as one
independent process that uses TCA control
constructions to coordinate with the executing
navigation tasks [Simmons, 1994b]. A detailed
description about how the monitors work is
presented in [Fernández, 2000].

4.2. Probabilities
The POMDP model of the system is defined

using a syntax similar to the one presented in
[Cassandra 1998], with some new features added to
the syntax.  In the following, we describe how we
define the probability models used.

Transition probabilities
Since the transition probability is a function:

)(: sSxAT Π→ (2)

there are a total of |S| × |A| × |S| (114,688)
probabilities to specify. We can significantly reduce
the number and effort of specifying probabilities if
we assume that the components of the states are
independent. While this is correct for most of our
cases, there are some obvious relations among some
components that need to be modeled. For example
the reactive and perception problems. Fortunately,
the extended syntax of our model allows us to
represent them as particular cases.

Observation probabilities
For each state and action, the probability of

getting each possible observation must be
established:

)(: zSxAO Π→ (3)



Again, instead of specifying all |S| × |A| × |Z|
(57,344) probabilities, we can reduce the number
by considering that the observation components are
dependent on the state and the action, but are
independent of the other components. The number
of necessary transitions to define can also be cut
down by taking into account that not all the
components can be observed for all the actions.
Table 4 shows the possible observations obtained
during the execution of each action.

Table 4 Possible observations for each action

Actions Observations
Follow path EPS    EPM   LD   SD
Go through opening BO
Relocalize
New path ALT
Move away
Give up
Rep. hardware prob.

All the monitors and, therefore, all the
observations that come from the monitors are only
active while navigating. That means that we can
only get these observations during the Follow Path
(FP) action. Therefore, the probability is zero of
getting these observations for any other action. The
probabilities to get a combination of several
observations are calculated simply by multiplying
the individual probabilities for each observation.
For example, the probability that only the Error
Position Static (EPS) is fired during navigation will
be:

})SDP({ })LDP({ })EPMP({ P(EPS)  P(EPS) ×××=
(4)

Because
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for the New Path (NP) action.

4.3. Rewards
There are different ways we can define the

rewards and this is somewhat subjective for the
user. It is possible to set rewards for an action,
rewards for all the states that include a failure
component in the start state or in the end state. For
the system we are dealing with, a cost for each
action has been selected according to time needed
and giving a high penalty to some actions like Give
Up (GU). The following criteria have been
followed:

ü Reward for reaching the state “everything
ok”

ü Reward for doing Follow Path (FP) when
it is in nominal state.

ü High penalty to the action Send Help (SH).
ü High penalty to the action Give Up (GU).

5. EXCEPTION IDENTIFICATION AND
RECOVERY

The task of exception identification and
recovery is to determine the exception situation and
decide on the appropriate response. The decision
process is done in two phases (Figure 2): (1) the
belief state of the robot is updated according to the
information gathered in the last step and, (2) the
decisor selects the action according to the belief
state of the system.
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Figure 2. Stochastic supervisor

5.1. Updating the belief state
The system does not know the state of the robot

exactly because of the uncertainty in the
information sources. Instead, it maintains a belief
state (a distribution probability b over the states S).
An interesting property of the belief state is that,
under the Markov property, it summarizes all the
past information about the state of the robot. That
is, the belief state is a sufficient statistic for the
history. We use b(s) to denote the probability that
the robot is in state s and ba

z(s) the probability that
the robot ends in state s after executing a and
observing z. The a posteriori probability for each
state when action a is executed and z is observed
can be obtained [Kaelbling et al., 1998] by:
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5.2. Decisor
Since the belief state is a sufficient statistic, the

optimal decision is one based solely on the current
belief state. To determine the optimal decision, it is
necessary to have some measure to evaluate
decisions. That measure comes from the rewards
that were defined in Section 4.3. While an exact
solution of the POMDP model will produce an
optimal policy Π{MLS}, unfortunately, with
known algorithms, this is not feasible for models
with as many states, actions, and observations as
the model presented here. Instead, we use
approximate solutions proposed in [Cassandra
1998]. These solutions are based on calculating the
optimal policy for the underlying Completely
Observable Markov Decision Problem (COMDP),
assuming no state uncertainty. The different
POMDP approximate solutions depend on how to



select the action to execute given the COMDP
ΠΠCO(s) policy and the belief state b(s).
1. Most Likely State (MLS) simply chooses the

optimal COMDP action associated with the
state that has the highest probability:

))(maxarg()( sbb
s

COMDPMLS Π=Π (7)

2. Action Voting (AV) assigns a probability over
the actions:

),)(()()( assbbP
s

COa ∑ Γ= δ (8)

where:

δ (x,y) =1 if x  ==  y; 0 otherwise (9)
Then, selects the action with highest probability:

)(arg)( bPmaxb aAV

a
=Γ                                   (10)

3. Q-MDP control strategy uses the function
value Va(s) and is given by:

∑=
s

a ssbbPa )(V')()( (11)

where Va(s) is the reward of executing a in the
next step when the robot is in s, considering that
after the next step all uncertainty is removed
and the system behaves optimally.

4. The Dual Control Mode strategies (D-X, A-X)
have two different modes of operation
depending on a threshold factor K. They use
the X strategy where X can be any of the
aforementioned strategies (MLS, AV,
Q_MDP) when the entropy is under K and
select the action that most reduces the expected
state entropy (D-X) or the expected action
entropy (A-X).

6. EXPERIMENTAL RESULTS
An event simulator was used to compare the

performance of the different heuristic
approximations.  The best performing strategy was
then implemented on the robot. Then, we created
some exception scenarios with the robot to see how
it behaves.

Since we do not have the optimal solution to
compare the simulation results, we have used an
omniscient (OMNI) controller to find a superior
bound on the reward. The results in Figure 3 show
the average reward for different methods. The
considerable difference of the results for this
method gives us an idea of the importance of
uncertainty in the system. We assume that the robot
always has tasks to do and we use a discount factor
of 0.85 to calculate the reward. With regard to the
parameterized algorithms (A-X, D-X), the figure
illustrates best results from the range of parameter
settings used.  We have considered two starting
situations. In the first situation the robot starts from
the nominal state and the state is known. In the
second situation the starting state is randomly
selected.

From Figure 3, we can see that MLS
performance is one of the best decision strategies.
Since it is also simple and fast to compute, we
decided to use it for the tests in the robot.

Figure 3. Reward for the different decision
methods.

6.1. Robot tests
Two robot platforms have been used in this

research: Xavier (Carnegie Mellon University-
USA) and Rato (University of Vigo-SPAIN).
Xavier is designed with a layered architecture,
consisting of task scheduling, path planning,
navigation, and obstacle avoidance components,
each of which relies on the abstraction provided by
the previous level [Simmons 2000]. Obstacle
avoidance is performed by the Curvature-Velocity
method and navigation is done using Partially
Observable Markov Decision Process (POMDP)
models [Simmons and Koenig, 1995]. Path
planning uses an A* algorithm strategy. The robot
architecture is implemented as a collection of
asynchronous processes. System integration is
performed using the Task Control Architecture
(TCA) [Simmons 1994a]. The Xavier navigation
system has also been implemented in Rato, with
minor changes, proving the versatility of the
architecture.

The supervisor, using an MLS, decisor has been
tested in both robots (Xavier and Rato) showing the
desired behaviors for a variety of situations.
Because of the low failure rate of the navigation
system, we have created artificial exception
situations.

The simplest scene is to block a corridor that is
in the planned path of the robot. The position
monitor (EPM) is fired several times increasing the
probability of reactive problems (RT), perception
problems (PP), or a non-navigable path (NNP),
among others. Once the supervisor is confident
about the existence of an exception situation, even
if it does not know exactly why such a situation
exists, it decides to execute Go Opening (GO). The
observation that there is no opening increases the
probability of a non-navigable path (NNP).  Since it
is quite confident about a NNP situation, decides to
execute New Path (NP).
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In the case of a non-observable obstacle, things
are a bit more complicated.  First, since the robot
does not detect the obstacle, the probability of
PP/RP (combination of PP and RP) increases, but
NNP decreases. Given that, the robot first decides
to use Move Away (MA), which decreases the
probability of reactive problems. Since the position
monitor keeps firing, however, the robot will end
up in a non-navigable path/perception problems
(NNP/PP) situation where it decides, once again, to
use a New Path (NP).

7. CONCLUSIONS
We have presented a general approach to

execution monitoring that uses Partial Observable
Markov Decision Processes to detect exceptions
between the expected and observed states of the
world. This approach has been used in the context
of indoor mobile robot navigation.

Instead of errors, we deal with exception
situations since this is a more general concept that
includes all situations not contemplated in the
design phase that can keep the robot from reaching
its goal.

While we do not have complete coverage of the
exception space, the monitors developed do cover a
very wide range of the exceptions that commonly
occur in indoor navigation. Some of these monitors,
such as a watchdog timer, need little domain
information, and are very easy to encode. Most,
however, are very task-specific, and needed to be
tuned for the particular robots and the environments
in which they normally operate (for instance,
battery characteristics, or average speed). While we
would like to learn such monitors automatically,
our experience indicates that it would be a difficult
task, in general. For now, we continue to
experiment with the set of hand-coded monitors we
have developed, and we working on adding more
sophisticated recovery strategies using the same
stochastic model to decide which strategy to use at
each moment.

The biggest strength of this model is that, if the
model matches the real system, the decisor will
perform quite well. On the other hand, the main
shortcoming is the tedious task of finding the
correct parameters, probabilities, and rewards.
Currently, we need to set up the probabilities by
hand, based on experience, and tune the rewards so
that the robot will show the desired behaviors. We
believe, however, that this can be done
reinforcement learning, and we are trying to extend
our research in this way. In any case, the results we
currently achieve are much better than with a
deterministic system, even though the probabilities
may not be completely accurate.
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