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Abstract—We consider the problem of how to provide an
execution environment where the application’s secrets are safe
even in the presence of malicious system software layers. We
propose Iso-X — a flexible, fine-grained hardware-supported
framework that provides isolation for security-critical pieces
of an application such that they can execute securely even in
the presence of untrusted system software. Isolation in Iso-X is
achieved by creating and dynamically managing compartments
to host critical fragments of code and associated data. Iso-
X provides fine-grained isolation at the memory-page level,
flexible allocation of memory, and a low-complexity, hardware-
only trusted computing base. Iso-X requires minimal additional
hardware, a small number of new ISA instructions to manage
compartments, and minimal changes to the operating system
which need not be in the trusted computing base. The run-time
performance overhead of Iso-X is negligible and even the over-
head of creating and destroying compartments is modest. Iso-
X offers higher memory flexibility than the recently proposed
SGX design from Intel, allowing both fluid partitioning of the
available memory space and dynamic growth of compartments.
An FPGA implementation of Iso-X runtime mechanisms shows
a negligible impact on the processor cycle time.
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I. INTRODUCTION

One of the challenges in securing today’s computing
systems is how to efficiently protect the critical parts of
security-sensitive applications from attacks that are launched
using untrusted or compromised system software layers.
Modern system software stacks include hypervisors to sup-
port virtualization and one or more guest operating sys-
tems (OSs) running on top of them. OS and virtualization
layers are growing into large and very complex pieces of
code. Indeed, modern OS kernels have tens of millions of
lines of code [23], and it is virtually impossible to design
them without exploitable vulnerabilities. For example, 189
new vulnerabilities were reported for the Linux kernel in
2013 [41], of which 6 lead to arbitrary code execution, 13
to memory corruption and 26 to privilege escalation, for
example by using return-to-user attacks [22].

To exacerbate the situation, modern hypervisors (such
as Xen or KVM) are also rapidly becoming large pieces
of software with hundreds of thousands of lines of code,
and many vulnerabilities are discovered in them every year.
A recent study [35] analyzed and classified hypervisor
vulnerabilities and attack surfaces. According to the study,
59 vulnerabilities have been identified in Xen and 38 in
KVM. Many recent attacks on hypervisors, exploiting these
vulnerabilities, have been successfully demonstrated [5],

[13], [14], [15], [24], [38], [50], [54].

One approach to providing a secure execution environ-
ment in the presence of malicious software layers uses the
concept of isolated execution, where the security-critical
pieces of application code execute in isolated compart-
ments [4], [7], [8], [10], [11], [20], [21], [26], [27], [30],
[44]. These compartments are inaccessible to the system
software layers and are managed either entirely by the
hardware [7], [27], [30], [34] or by a special layer of secure
software that is sometimes assisted by hardware [8], [10],
[11], [21], [26], [44]. The idea of supporting secure isolated
environments has also received considerable attention from
industry. Amazon recently announced its CloudHSM ser-
vice [1] to support isolation and provide secure execution
in the cloud environment. Furthermore, Intel introduced
SGX extensions to x86 processors that are built around the
concept of secure enclaves (compartments) [4], [20], [30].

In this paper, we propose Iso-X (Isolated eXecution)
- a hardware-managed framework for supporting a fine-
grained and flexible isolated execution environment. Iso-X
relies on simple OS functionality only to support flexible
allocation of memory, eliminating the restrictions inherent
in prior hardware-only isolation schemes. As a result, Iso-
X combines the benefits of hardware and software-managed
designs in terms of provable security and flexibility.

Iso-X achieves the execution isolation through a series of
techniques that center around the use of secure compartment
page tables to dynamically map and maintain memory
pages for the compartments. The compartmentalization is
accomplished with only six required additional ISA in-
structions for compartment management, as well as two
optional instructions to support page swapping, resulting in
a simple hardware implementation. While the Iso-X design
requires that the application code be written in a way that
explicitly marks the security-sensitive code to be isolated,
the remaining software layers incur minimal changes. We
demonstrate that the performance overhead of Iso-X is
negligible and predictable for both secure and non-secure
mode execution. In addition, we show that the overhead
of creating and destroying compartments is also tolerable,
considering that these operations are not required often.

We evaluate and validate the Iso-X design in a num-
ber of ways. First, we develop a fully-functional software
environment for simulating Iso-X within the OpenRISC
simulator [25]. In addition, we integrate the Iso-X runtime
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Figure 1: TCB Comparison of the Traditional System and
the Iso-X System

mechanisms into the HDL description of the OpenRISC
processor core. These two components show that the critical
mechanisms for Iso-X are functional and estimate their
complexity in an FPGA context. Next, we measured the per-
formance overhead of Iso-X on a full-system x86 simulator
using the SPEC 2006 benchmarks to provide an estimate
of performance impact on typical systems and benchmarks.
Finally, we estimate the performance overhead of one-
time, infrequent or optional Iso-X mechanisms (such as
initialization, crypto-operations and swapping) using micro-
benchmarking on real hardware.

In summary, this paper makes the following contributions:

« We propose and describe the Iso-X security architecture
— a hardware/software co-design that supports the
execution of security-critical pieces of application code
inside isolated compartments.

o We present evaluation of an integrated HDL implemen-
tation of the runtime Iso-X hardware with an Open-
RISC processor core [25]. The resulting design was
synthesized onto an FPGA Altera DEO-Nano board.
The results show only a 2% increase in the cycle
time due to the Iso-X logic. We also demonstrate that
the performance impact of Iso-X is negligible both in
secure and non-secure execution mode.

o We provide a detailed comparison of Iso-X with Intel’s
recently announced SGX architecture and also place
the proposed scheme into the context of other related
efforts from academia.

II. THREAT MODEL AND ASSUMPTIONS

We assume that any portion of the system software stack,
including the OS and the hypervisor, can be potentially
compromised. Only software that runs in a special hardware-

supported compartment mode can be fully trusted. The
software trusted computing base (TCB) in the Iso-X system
is thus limited to the developer-defined security-critical
code. As long as the code inside a compartment does not
leak any secrets, I[so-X guarantees strong protection of the
compartment’s internal memory from any malicious OS or
hypervisor activity. Specifically, a compartment becomes
protected once it has been created, the compartment code
and data have been added, and the compartment is attested
and sealed. At the same time, the process of compartment
creation by itself need not be secure and any entity is allowed
to create compartments.

While Iso-X relies on some basic functionality of the
OS, such a reliance does not compromise security. Even
if an attacker tampers with the OS services that offer this
functionality, it can only lead to denial of service, but never
to the leakage of the compartment state. In addition, Iso-X
is not inherently vulnerable to Iago attacks [9]. To protect
against them, the code running in the compartment must
treat all information from the OS as potentially malicious.

We do not consider denial-of-service (DoS) in our threat
model, because it is already trivial for a malicious OS to
deny service to an application or compartment. We also do
not consider side channel attacks; several techniques exist
to protect against them [16], [49].

We assume that the hardware TCB of Iso-X is limited
only to the microprocessor, physical memory (DRAM), and
system buses. In particular, we assume that hardware attacks
(such as snooping on the memory bus or probing the physical
memory) are not part of the threat model. We make this
assumption for two reasons. First, hardware attacks are more
difficult to perform than software attacks. Second, if the
proposed architecture is deployed in a cloud environment,
then it is reasonable to assume that a cloud operator will
offer physical security of the system to protect its reputation.
This is consistent with the assumptions made by recent
works [18], [42], [47]. We note that it is straightforward to
amend Iso-X to consider physical memory to be untrusted,
by incorporating well-known techniques for memory in-
tegrity verification (such as Merkle trees) and encryption [8],
[45].
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Figure 2: Iso-X Memory Layout



comp_base comp_size page_count comp_hash cpt_base cpt_size
Points to the beginning of | Size of the compartment | Current number of pages | Used to perform compart- | The starting physical | Size of CPT
the compartment segment | segment mapped to the compartment | ment attestation page of CPT

Table I: Format of a CT Entry

III. ISO-X DESIGN AND IMPLEMENTATION

This section describes the Iso-X architecture and imple-
mentation. We start with a design overview and follow with
the data structures used to support compartments. Then,
we describe the runtime interfaces exposed by Iso-X: the
instructions used to implement compartment mode and the
transition to and from the compartment.

A. Iso-X Design Overview

In Iso-X, application developers partition their programs
into one Untrusted Partition (UP) and one or more Trusted
Partitions (TP). The UP contains non-critical program code
and data as well as all system software and libraries that
are also assumed to be untrusted. The TPs contain security-
critical code fragments and associated data, along with
stack and heap memory regions to provide a fully-functional
execution environment. The compartments also maintain a
library for performing secure interaction with the rest of the
system. A high-level comparison of the traditional system
organization and the Iso-X system is shown in Figure 1.

B. Protected Structures for Supporting Iso-X Compartments

Memory protection is at the core of the Iso-X design.
Iso-X protects physical memory using two mechanisms.
First, the basic data structures used for managing Iso-X
are themselves stored in reserved memory that is only
accessible by the Iso-X hardware. This restricted memory
region is defined at boot time and it does not change during
execution. Second, unreserved physical memory can also
be dynamically protected at runtime for use by the indi-
vidual compartments and for storing compartment-related
metadata.

The statically reserved memory holds two Iso-X struc-
tures:

Physical Page Compartment Membership Vector
(CMYV): This data structure is used to facilitate dynamic pro-
tection of memory pages. The CMV is a bit vector with one
bit for each physical memory page in the system, specifying
whether this page currently belongs to any compartment.
The CMV is used to ensure that compartment pages and their
metadata are never accessed by non-compartment code. It is
also used to protect against double-mapping of compartment
pages to other compartments, as described later. The CMV
bits are also cached as part of the regular TLB entries, which
are extended by a single bit that we call the Compartment
bit, or the C bit. Therefore, memory accesses to check the
CMV bits in memory (or caches) are only required on a
TLB miss.

Compartment Table (CT): The CT maintains the metadata
that describes all compartments that have been created in the
Iso-X system. It is indexed by the compartment ID, and the

format of each CT entry is shown in Table I. CPT refers
to compartment page tables — another Iso-X data structure
that is explained later in this section.

In addition to the static data structures described above,
Iso-X also maintains dynamic structures that are established
on-demand as compartments are created, used and destroyed.
These structures reside in regular memory that is mapped to
compartment space as needed. They include:

Compartment Page Tables (CPT): The CPT (one for
each compartment) maintains page address translations for
compartments, similar to regular page tables. Although it
duplicates information stored in regular page tables, the CPT
is needed to protect the page mappings of the compartments
from malicious modifications by the system software. Since
the management of CPTs is a security-critical operation,
it can only be manipulated by the hardware. Because im-
plementing multi-level page tables completely in hardware
is complicated, we chose to implement CPTs as single-
level page tables. In general, a compartment will only use a
portion of the virtual address space of the process to which
it belongs. Therefore, a modest number of page table entries
are often sufficient to manage the compartment memory.

Compartment Metadata Page: Each compartment also
maintains a special page called the Compartment Metadata
Page. This page is used for storing Iso-X specific data
structures inside of the compartment memory space at a
predefined location, such as the first compartment page.
The information that needs to be stored there includes:
the context data of the compartment, the certificate of the
compartment, and the compartment public key. The metadata
page is protected from the OS just as any other compartment
page. Section III-E presents more details on how this data
is used.

In addition to the memory structures described above, [so-X
also requires minor modifications to the on-chip hardware.
First, we add a small hardware structure (called CCR —
Current Compartment Register) that is composed of two
parts: the CCR.CT is the CT entry corresponding to the
currently active compartment, and the CCR.ID is the ID
of the currently active compartment. Second, the processor
status register is augmented with a single bit that explicitly
indicates whether the CPU is currently executing compart-
ment code. We call this mode of operation Compartment
Mode. The memory space layout, including the contents of
the reserved memory, is shown in Figure 2.

C. Iso-X Operations and Instructions for Compartment
Management

To support compartment management operations, several
new instructions are added to the ISA and are directly sup-
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Instruction Mode |Mode

Arguments

Notation Used in Figure 3

comp_id, comp_base, comp_size,
@ COMP_INIT P p_ P Yes No
cpt_base, cpt_size

comp_id, virt_addr, phys_addr,
(@ CPAGE_MAP P s ,p Y Yes No
page_permission_bits

() COMP_ENTER  |comp_id No No
(@ COMP_ATTEST |None No Yes
(3 CPAGE_REVOKE |comp_id, phys_addr Yes No
(®& COMP_RESUME |comp_id Yes No

Table II: Iso-X Instructions

ported by the Iso-X hardware. These instructions, along with
the mode in which they can be accessed, are summarized in
Table II. Figure 3 depicts abstract algorithmic descriptions
of these instructions and their impact on the processor
state. The usage of these instructions is demonstrated in the
following section.

D. Creating and Entering a Compartment

When a process requires the creation of a compartment, it
passes the necessary information, such as the range of future
compartment virtual memory pages, to the OS via a system
call. Upon receiving this system call, the OS inspects its
internal data structures to locate an unused compartment ID
(comp_id) and finds the required number of contiguous free
physical memory pages to hold the CPT for the compartment
to be created. After that, the OS executes the new Iso-X
instruction called COMP_INIT (.

To execute the COMP_INIT instruction, the Iso-X hard-
ware zeroes out the CT entry indexed by comp_id. The entry
is filled in based on the parameters of the COMP_INIT
instruction. The page_count and comp_hash fields remain
zeroed at this point. In addition, hardware clears the memory
pages that will be used as CPT pages for this compartment.
After this instruction completes execution, the empty com-
partment is initialized with no pages inside.

Populating the created compartment with memory pages
is accomplished using another Iso-X instruction called
CPAGE_MAP (. This instruction adds the specified virtual-
to-physical page mapping to the compartment’s CPT with
given permissions. Before making the page specified by the
CPAGE_MAP instruction part of a new compartment, the
Iso-X hardware checks the CMV bit of the corresponding
physical page to ensure that this page does not already
belong to another compartment since we do not allow
double-mapping of the same physical page to different
compartments. If the check passes, then the CMV bit is set,
preventing further accesses to this page by untrusted code.
The instruction also computes the hash of the entire page
and extends the comp_hash field in the CT structure. To
ensure the integrity of page mappings and permissions, both
virtual page number and page permission bits are included
as part of the page hash, preventing attacks such as mapping
legitimate data to incorrect virtual pages, or mapping pages
with malicious permissions. Finally, the page_count field of

Mz : ] Access to physical memory range from x to y
H(h,...) Extend hash h with new data

S Sign with CPU private key

PAGE_SIZE |Platform specific memory page size
META_PAGE [ ] [Access to compartment metadata page

PC CPU program counter

@» COMP_INIT (comp_id,

cpt_base, cpt_size):

1 CT[comp_id] .page_count, comp_hash<-0

2 Mcpt_base:cpt_base+cpt_size]<+0

3 CT[comp_id] .cpt_base,cpt_size+
cpt_base, cpt_size

4 CT[comp_id] .comp_base, comp_size+
comp_base, comp_size

comp_base, comp_size,

@ CPAGE_MAP (comp_id,
page_permission_bits):
1 ASSERT (—CMV [phys_addr])

2 CMV|[phys_addr]<+true

3 CT[comp_1id] .CPT[virt_addr]<+phys_addr

virt_addr, phys_addr,

4 CT[comp_id] .comp_hash«H (CT[comp_id].comp_hash,

M [phys_addr:phys_addr+PAGE_SIZE],
virt_addr, page_permission_bits)
5 CT[comp_1id] .page_count+1

(3 COMP_ENTER (comp_1id) :
1 CCR.ID<¢—comp_id

2 CCR.CT«CT[comp_1id]

3 CompMode<-true

4 PC<-CCR.CT.comp_base

(@ COMP_ATTEST:
1 CCR.CT.comp_hash<+ H(CCR.CT.comp_hash,
META_ PAGE [COMP_PUB_KEY])
2 META_PAGE [CERTIFICATE]< S(CCR.CT.comp_hash)

(® CPAGE_REVOKE (comp_1id, phys_addr):

1 M [phys_addr:phys_addr+PAGE_SIZE]<+0
2 CMV|[phys_addr]<+false

3 CT[comp_id] .page_count-1

COMP_RESUME (comp_1d) :
CCR.ID¢-comp_id
CCR.CT<+CT[comp_1id]
PrivilegedMode<«false
CPU_REGISTERS<-META_PAGE [CONTEXT]
CompMode<-true

@ thl:.)l\)l—‘@

EVENT_COMP_LEAVE:

1 META_PAGE [CONTEXT]<-CPU_REGISTERS
2 CPU_REGISTERS<-0

3 CT<+CCR.CT

4 CompMode<«-false

Figure 3: Algorithmic description of Iso-X instructions and
events

CT is incremented.

To enter a compartment from an untrusted address space,
the COMP_ENTER (@ instruction is used. The hardware sets
up the CCR with the data corresponding to the comp_id that
is used as an argument for this instruction. Once the CT entry
has been loaded into CCR, the CPU starts executing the
compartment code at a statically pre-defined location. The
register state remains intact during this transition to allow
the UP to pass data to the compartment.

Note that there is no need to authenticate that the request
to enter the compartment comes from the process that



created it. This is because the process itself is part of the
untrusted partition, and thus there is no difference from the
security standpoint whether the compartment was created
by the process that owns it or by some malicious entity.
If a malicious entity creates a malicious compartment, it
can be detected by the compartment attestation mechanisms
described in the next subsection.

E. Attesting Compartments and Building Trusted Channels

The code executed inside an Iso-X compartment does not
trust any external data. Therefore, to communicate with other
trusted entities that are located outside of the compartment
(such as other compartments, or trusted resources outside the
system), the compartment leverages a secure communication
library which uses standard cryptography techniques to build
a secure channel through the untrusted partition [31]. This
functionality is similar to that used in HSM devices [40] to
create trusted communication channels. Figure 4 illustrates
the process of using a secure library — it shows how the Iso-
X compartment transmits secret data to a trusted resource
on the network.

After a compartment is created, the Iso-X system provides
the opportunity to attest the compartment’s integrity to
outside entities. For this purpose, another Iso-X instruction,
COMP_ATTEST @, is used. The purpose of this instruction
is to sign data that represents a compartment’s identity with
the processor key, providing evidence of the fact that the
compartment contains only legitimate code and data. Iso-X
uses a public/private key pair that is uniquely generated at
CPU manufacturing time. This means any external entities
that rely on compartments are assured that they are executing
on genuine Iso-X hardware and not within an emulator. In
addition, this allows the CPU to create a certificate for each
compartment which can be used to verify the identity of a
compartment and the CPU it is running on.

The secure communication model of compartmentalized
applications relies on the secrecy of a compartment’s pub-
lic/private key pair. To this end, Iso-X allows compartments
to execute some initialization code in isolated mode prior
to compartment attestation. This allows the compartment to
generate unique keys completely within the compartment.
The initialization code then places the freshly generated
public key at a specific location in the metadata page,
allowing the hardware to use it during the attestation process.

When the COMP_ATTEST instruction is executed from
within the compartment, the Iso-X hardware combines the
comp_hash field of CCR.CT with the compartment’s public
key from the metadata page and signs the resulting data
with the CPU’s private key. The resulting certificate is then
placed on the compartment metadata page. It can then be
used by the compartment to prove its identity to any outside
entities. The correct certificate also proves the integrity of the
compartment’s initial state. Including the public key of the
compartment in the signed data mitigates man-in-the-middle
style attacks, as the OS does not know the generated private
key, nor can it reproduce a valid compartment certificate.
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Figure 4: Compartment communicating securely to a remote
resource

This model allows the outside entity, which is verifying
the compartment, to also be guaranteed of the integrity
of the compartment’s public key. After COMP_ATTEST is
executed for the first time, the compartment is sealed. No
additional code or non-empty data pages may be added to the
compartment. Empty data pages may still be added in order
to support dynamic growth of the stack and heap memory
regions.

F. Revoking Pages and Destroying Compartments

Revoking compartment pages and subsequently
destroying compartments is accomplished via the
CPAGE_REVOKE (3 instruction. The CPAGE_REVOKE
instruction wipes off the page specified as its argument (thus
preventing possible data leaks) and then clears the CMV
bit corresponding to the page, allowing non-compartment
code to access it. After a page has been revoked from
the compartment, the page_count field of the CT entry
corresponding to comp_id is decremented to reflect this
change. If the compartment is left with no pages, it is
considered destroyed. This instruction is used by the OS to
free compartment pages.

G. Leaving Compartment Code

The Iso-X hardware performs additional actions when
the program control flow transitions from an instruction
belonging to a compartment to an instruction outside of
it. Such a transition occurs in two cases: (1) to support an
event that needs to be handled by the OS, such as a timing
interrupt; and (2) to transition the control flow back to the
untrusted partition after the compartment execution phase
completes. We call this event EVENT_COMP_LEAVE @. It
is detected by the hardware during the instruction fetch stage
when the CPU executes in compartment mode. When this
event is detected, the current state of CCR.CT is saved in
memory in the CT structure, all CPU registers are saved
within the compartment metadata page and then they are
wiped off. Finally, the processor exits compartment mode.
This mechanism guarantees that neither the OS, nor the
untrusted partition can view or modify the registers of a
compartment during interrupts, or when the compartment
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phase finishes its execution.

To resume the compartment execution after it has
been context switched, another Iso-X instruction —
COMP_RESUME (® is used. To implement it, the hardware
restores the CCR.CT structure from the compartment’s CT
record. The compartment context is then restored from the
compartment metadata page, and the CPU is switched to
compartment mode.

H. Performing Memory Accesses in Iso-X

In this section, we describe how the Iso-X system per-
forms memory accesses while executing in both compart-
ment and regular modes. The memory data-flow chart illus-
trating this process is depicted in Figure 5.

If the processor is executing in compartment mode,
memory accesses are checked to see if they fall in the
compartment segment range using existing segmentation
support or similar hardware. If an access falls outside of the
compartment segment, this situation is treated differently for
data and instruction accesses. While outside code accesses
generate the EVENT_COMP_LEAVE event, data accesses
are allowed, as it is the basis for the interaction of the
compartment with the rest of the system. For an access
within the compartment segment, the lookup proceeds using
the TLB to determine the corresponding physical page
number. A TLB hit occurs only if the C bit of the matching
TLB entry is set. On a TLB miss, the CPT is accessed to
get the translation, and the CMV bit of the corresponding
physical page is checked. If it is not set, the access to a
revoked page is detected and a security exception is raised.

If the processor is executing in regular (non-compartment)
mode, then a TLB access is first performed to obtain the
physical page number and the C bit. On a TLB hit (which
occurs when the matching virtual page entry is found and
its C bit is set to zero), the memory access is allowed — it
is a regular access outside of the compartment. Otherwise,
on a TLB miss, a regular page walk of the conventional
page tables is performed to obtain the translation, and then
the CMV bit of the physical page is read from memory.

@LL

If the CMV bit is zero, then the page mapping is installed
in the TLB and the memory access is allowed to proceed.
Otherwise, if the CMV value of the translated physical page
is set, it signifies that the code outside of the compartment is
attempting to perform a compartment access. Such an access
is denied and a security exception is raised.

Note that memory accesses in either mode involve the
extra delay of accessing physical memory to read the CMV
bits. We optimize most of this delay away by caching the
CMV bit in the TLB; CMV bits are accessed in memory
only on TLB misses.

For direct memory access using physical addresses, CMV
checks are also performed to ensure that none of the pages
used for DMA belong to a compartment: DMA accesses to
a compartmentalized page are not allowed since they are
controlled by the system software and could be abused.

1. Accessing OS services from the Compartment

System calls, network, and disk access require critical data
to be operated on outside the compartment. Our solution
relies on using the UP as an intermediate buffer between
the TP and the destination device. To send a network packet
or read/write to the disk, the TP writes the encrypted data
to the UP and then uses a standard syscall to perform the
I/0O. This principle is demonstrated in Figure 4.

J. Supporting Compartment Page Swapping

In terms of page swapping for the compartment pages, two
approaches are possible. One solution is to simply pin the
compartment pages to physical memory and disallow their
swapping to the disk. With large DRAM capacities typically
available on modern systems, this may not be a significant
limitation. However, it is also possible to securely support
compartment page swapping in Iso-X via two more ISA
instructions (described below). Note that these instructions
are optional and are only required if swapping support is
necessary.

Before a compartment page can be swapped out, the
Iso-X system must prepare it by measuring (hashing) and
encrypting it. The OS is then allowed access to the page
in order to swap it out. The confidentiality of the page is
provided by the encryption, while its integrity is ensured
by storing the page measurement in the internal Iso-X data
structures. The Iso-X hardware accomplishes this through
the COMP_SWAP_PREP instruction, which is available to
system.

COMP__SWAP_PREP (comp_id, virt_addr). First, the TLB
entry that covers the virtual page virt_addr is invalidated.
Second, the page to be swapped out is measured and the
hash value is saved in the now unneeded CPT entry. Either
a 128-bit or a 256-bit hash can be used. The size of a CPT
record has to be adjusted to allow storing measurements
of the desired size. Next, the page is encrypted with a
symmetric key. This key is randomly generated by the
hardware on boot and stored in a register that is not software
accessible. Then, the valid bit in the CPT is cleared as
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Figure 6: Processor Modifications Required by Iso-X

well as the corresponding CMV bit. After these actions are
completed, the page becomes available for read, write and
DMA accesses by the OS. The OS can then initiate the DMA
access to move the page to the disk.

Swapping the page back into memory also requires co-
operation of the OS and the Iso-X hardware. The OS is
responsible for bringing the encrypted page from the disk
back into memory, but further actions to return the page into
the proper compartment can only be performed by the Iso-
X hardware. The OS stores information about swapped out
pages and is capable of distinguishing compartment pages
from regular ones. After a compartment page is moved to
memory, the OS executes the COMP_SWAP_RET instruction
to complete the swapping process as follows.

COMP_SWAP_RET (comp_id, virt_addr, phys_addr).
First, the CMV bit of the swapped in page is set, making the
page accessible only by the Iso-X hardware. Next, the Iso-X
hardware decrypts the page, measures it, and compares the
resulting measurement with the one stored in the CPT entry
that was saved during the swap-out. If the measurements
match, the hardware replaces the CPT entry with a physical
address of the page, provided by the OS. The valid bit in
the CPT entry is then set, allowing compartment code to
access the page. Otherwise, the swap in of such a page is
disallowed.

K. Summary of Hardware Changes

Figure 6 summarizes all of the required CPU hardware
changes. These include the extra CCR register, extra C
bits in the instruction and data TLBs, support for the new
ISA instructions to handle compartments, the addition of
a public/private key pair, and also logic to detect and
handle the EVENT_COMP_LEAVE event. In addition, Iso-
X performs hashing and signing operations for attestation
and also encryption for optional swapping in hardware.

IV. RELATED WORK

Now that we have described the design and implemen-
tation of Iso-X, we are in a position to compare it to
previous efforts that proposed secure processor designs to
protect application secrets from system compromise. Many
solutions [29], [33], [37], [39], [52] rely on some trusted
software module without hardware support. Unless this
software is formally verified, it is difficult to guarantee the
security of such schemes; the trusted software base can

itself be compromised by the attackers. In addition, software
approaches often incur substantial performance overhead. In
the remainder of this section, we focus mostly on hardware-
supported solutions with the exception of Inktag [21] and
Virtual Ghost [12] as representatives of recent state-of-the-
art software-only isolation schemes.

A. Hardware-Assisted Isolation

Hardware-assisted solutions are motivated by better se-
curity and performance [8], [11], [26], [27], [34], [44].
Table III summarizes the differences between Iso-X and
other hardware-assisted solutions, as well as to Inktag [21]
and Virtual Ghost [12] which are software only solutions.
The granularity of protection refers to the minimum unit
for isolation. System software in TCB indicates whether the
solution includes software as part of the Trusted Comput-
ing Base. Limited isolated execution distinguishes between
solutions that allow only limited operations in the isolated
environment from those that do not. Hardware Attestation
mechanism indicates whether the solution supports hardware
attestation to verify the initial state of the compartment.
Dynamic protected space refers to whether the solution
provides the ability to flexibly allocate and grow the isolated
regions. Requires encrypted executable refers to whether
executables must be encrypted with the processor’s hardware
key. Finally, secrets can reside anywhere indicates whether
any region of memory can be protected or if the system
requires that protected data and code must be placed in a
special region of memory. The related efforts are listed in
the table in order of granularity of protection starting from
the largest. In the remainder of this subsection, we examine
some of these solutions in more detail.

The Secret Protection (SP) architecture [17], [26] supports
a secure environment for executing trusted software modules
that perform manipulations with secret keys. However, SP
only supports one trusted software module per system.
A more recent work, Bastion [8], supports many isolated
compartments and is designed for modern software stacks
supporting virtualization. However, Bastion relies on a modi-
fied hypervisor to be part of the TCB to provide some critical
services. Similarly, SecureMe [11] uses a combination of
memory cloaking (presenting the OS with encrypted view
of memory), permission paging to provide a secure way
for two applications to establish shared pages, and system
call protection. It also relies on a small secure hypervisor
for some of its tasks. In the Iso-X system, neither the
hypervisor, nor the guest operating systems are part of the
trusted computing base. Inktag [21] is a recent software-only
solution that uses para-verification, a technique where the
untrusted OS actions are monitored and verified by a trusted
hypervisor, to provide isolation at the process granularity.

Other recent solutions proposed hardware support for pro-
tecting system against the attacks launched by a malicious
hypervisor in virtualized systems. These include HyperWall
[47], H-SVM [42] and HyperCoffer [51]. The granularity
of isolation for these solutions is the Virtual Machine.



System software | Limited isolated Hardware Dynamic Requires Secrets can
Granularity of protection R -~ Attestation protected encrypted reside
in TCB execution .
mechanism space executable anywhere
Iso-X Virtual memory region* N N Y Y N Y
Academia:
Hyperwall [47] Virtual machine N Y Y Y N Y
g;/iz/rlf\:if[tg] i 51] Virtual Machine Y? N Y Y N Y
g:g;‘r';‘llv{[f][’lll‘ikTag (211, Process Y N N Y N Y
XOM [27] Process N N N Y Y Y
AEGIS [46] Process N N Y Y N N
Virtual Ghost [12] Virtual memory region Y/N¢ N N Y/N¢ N N
OASIS [34] Cache-as-RAM module N Y Y N N N
SP [26] Trusted module (one per N N N N N v
system)

Industry:
SecureBlue++ [7] Process N N N Y Y Y
SGX [30] Virtual memory region N N Y N N N

Table III: Comparing Iso-X with Related Efforts on Isolated Execution (Green is a strength, red is a limitation)

“Iso-X can isolate any arbitrary component of a process; a process can have multiple compartments.
bFor running applications H-SVM and Hypercoffer require a trusted guest OS. In addition, Hypercoffer has a thin trusted software.

“The compiler remains trusted to instrument the OS kernel.

4The ghost memory segment itself is not dynamically expandable, but can be used dynamically.

The effort of [18] proposed an architecture based on non-
inclusive memory permissions, thus not automaticaly giving
a malicious OS or hypervisor access to the application code
and data. The goal of these techniques is not to explicitly
provide an isolated execution environment, but to prevent a
range of emerging attacks by placing hardware (rather than
the hypervisor) in charge of security-critical decisions, such
as setting the access rights to the code and data.

XOM [27] proposes execute-only memory that allows
instructions to be executed, but not manipulated in other
ways. XOM code is encapsulated in compartments to isolate
different applications; each compartment is a process. Com-
partment’s code is decrypted using the compartment session
key. The code and data only leave the compartment in
encrypted form. While the high-level idea of compartments
in XOM is similar to Iso-X, the mechanisms used in Iso-
X rely on hardware support for memory permissions rather
than encryption.

AEGIS [44], [46] provides a secure execution environ-
ment where any physical or software tampering becomes evi-
dent. One of the AEGIS implementations relies on a security
kernel, while another implementation does not [44]. Both
designs require that the application remains in secure mode
throughout its execution. Improvements to the design [46]
rely on a trusted security kernel as part of the TCB to relax
this requirement and allow the tamper-resistant state to be
maintained while unprotected code executes.

OASIS [34] supports isolated execution on minimally-
modified commodity CPUs by using physically-unclonable
functions to create unique cryptographic keys for security-
sensitive applications. It also uses the recently proposed
Cache-as-RAM mode [28], [48], where the cache subsystem
is re-purposed as a general-purpose memory area for isolated

execution. As such, the size of the compartments is limited
by the cache size, and performance may be affected by the
reduced availability of the conventional cache.

Recently, designs for compartmentalized and isolated ex-
ecution developed by industry have been introduced in-
dicating significant commercial interest in this execution
model. IBM introduced an isolated execution design called
SecureBlue++ [7]. SecureBlue++ is designed specifically for
the PowerPC architecture. This mechanism cannot combine
secure and insecure code in a single process. Another related
industry development is the recent introduction by Intel of its
SMEP/SMAP mechanism to protect some user-level pages
from being executed and/or accessed by supervisor mode
code. This support is available in Ivy Bridge and later.
However, to support proper functionality, SMAP has to be
toggled on and off to allow the OS to access the user-
space buffers. Trusting the OS to toggle SMAP removes
any protection against a malicious OS, which is at the core
of our threat model.

Finally, Intel’s recent SGX security extension is per-
haps the most significant recent development in hardware-
supported security in industry [4], [20], [30]. SGX is sched-
uled to appear in Intel products in the future and it is build
around the concept of enclaves (hardware-enforceable con-
tainers) that provide isolated execution environment at the
granularity that is determined by the application developers.

B. Comparing Iso-X with Intel’s SGX

Since the SGX architecture shares similar goals with Iso-
X, in this subsection we highlight the differences between
the two approaches. The primary differences between Iso-X
and SGX are in the following areas.

Compartment memory management and performance
predictability: SGX requires all of the compartment’s code



and data to be physically located in a reserved memory
region called the Enclave Page Cache (EPC). The EPC in
SGX is a fixed-size dedicated cache, which implies some
limitations. For example, if the EPC cannot fit the memory
pages for all compartments, the OS would need to evict
compartment pages often. Since encryption/decryption and
integrity checks are required on every page eviction/return,
this could slow down the system significantly, especially if
the EPC size is sub-optimally configured at system boot
(the EPC size cannot change dynamically during system
operation). Note that over-provisioning of the EPC would
lead to wastage of DRAM space. Iso-X creates duplicate
mappings in CPTs (Compartment Page Tables) and there-
fore allows compartment pages to be placed anywhere in
memory. Only limited-size service data structures are stored
in reserved memory and the memory overhead for each
additional compartment is minimal.

Memory Access Latencies and Performance in Secure
Mode: The second major difference is in the data-flow (and
associated latencies) of memory operations. In SGX, every
memory access in the secure mode requires checking the
EPC Map (EPCM) structure located in reserved memory.
While the published details of SGX provide no low-level
details of this operation, it is reasonable to assume that
EPCM bytes will also be cached in the CPU caches, to avoid
DRAM accesses. However, the size of the EPCM can put
pressure on the caches; based on our understanding of SGX,
each page requires an entry of size 79 bits [30]. In addition,
EPCM accesses are required in SGX after every TLB access
(hit or miss) in secure mode. Although it may be possible
to amortize these checks, the security implications are not
clear. In contrast, Iso-X only accesses CMV bits on TLB
misses because Iso-X verifies the mappings rather than the
page permissions. In summary, it is possible that SGX will
experience higher performance overhead while executing in
secure mode due to these effects. On the positive side, SGX
requires no additional checks in non-secure mode, so its
performance in non-secure mode could be slightly better
than Iso-X.

Dynamic Extensibility of Compartment Memory: In
SGX, once the compartment is created, it needs to be sealed.
After that, new pages cannot be added to the compartment.
This restricts the programming model, leaving application
designers to choose between over-allocating their compart-
ment size (and hence creating internal fragmentation) or
risking running out of space if they need it. In contrast,
Iso-X allows the dynamic addition of new, empty pages to
the compartment.

V. PERFORMANCE EVALUATION

With respect to performance, we evaluate two sources of
overhead: (1) overhead due to the extra memory permission
checks that occur with every memory access; and (2) One-
time or infrequent overhead associated with events such as
compartment creation, destruction, and page swapping.
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A. Permission Access Overhead

With every memory access, [so-X must check the CMV
bits. This is the only ongoing overhead that Iso-X adds
during steady-state execution. To model this impact, we
simulated the SPEC2006 CPU benchmarks [43] using the
MARSSx86 full system x86-64 simulator [2]. The simulated
processor configuration is depicted in Table IV. For each
benchmark, we simulated 5 billion committed instructions.
We assume that the entire benchmark code is executed inside
a compartment.

Since the CMV bits are also stored in the processor
caches, we modeled this impact in our evaluations. We
expect the performance loss and the extra cycles encountered
during execution to be small for two reasons. First, since the
CMYV bits are also stored in the processor TLBs (in the form
of C bits as described in Section III), the memory accesses to
retrieve them are only performed on TLB misses. Second, a
single cache line containing CMV bits covers many adjacent
pages, therefore a high cache hit rate is expected.

Figure 7 shows the decrease in the commit IPCs of the
SPEC2006 benchmarks for an Iso-X system normalized to a
baseline system without Iso-X. As seen from the results, Iso-
X performance loss compared to the baseline architecture
is 0.97% on the average in both secure and non-secure
mode. The largest loss among individual benchmarks is
that of hmmer at about 8%. Figure 8 depicts the combined
miss rates for both data and instruction TLBs for the Iso-X
system. As the additional delays in Iso-X are encountered
during TLB misses, there is a strong correlation between

Parameter
Datapath

Configuration

4-way superscalar, 128-entry ROB, 64-entry
Issue Queue, 96-entry LSQ

64-entry, Fully Associative

32 KB, 8-way, 64B line, 2 cycles

256KB, 8-way, 64B line, 10 cycles

8MB, 16-way, 64B line, 40 cycles

150 cycles

Inst. & Data TLBs
L1 T & D Caches

L2 Unified Cache

L3 Unified Cache

Memory latency

Table IV: Configuration of the Simulated x86-64 Processor



Operation |Actions(s) Cost (Cycles)
System Call 138

Create Find Free Comp. 2,107
COMP_INIT 2

Total 2,247

Populate  |Hash Page(s) 6.172M
Attest Sign Hash 1.241M
Revoke Page |Zero Page 596
Destroy Revoke All Pages 52,379
Interrupt EVENT_COMP_LEAVE 52
Resume  |COMP_RESUME 26
Hash Page 70,357

Swap Page Out|Encrypt Page 32,744
Total 103,101

Decrypt Page 22,593

Swap Page In |Hash Page 70,357
Total 92,950

Table V: Compartment Operation Overheads

TLB miss rate and IPC loss.

The cache miss rates specific to the metadata accesses
were extremely low for Iso-X (about 1.3% on average). In
addition, the small metadata size causes negligible pollution
to the cache which results in little to no increase in miss
rate for normal data.

In order to provide an estimate of the area overhead
and the impact on the cycle time, we implemented Iso-X
permission accesses on the OpenRISC processor core using
an Altera DEO Nano FPGA board. We used OpenRISC
version 3.1 [25] and Altera Quartus II 13.1 for our timing,
area and power analysis. The OpenRISC processor is a
32-bit in-order pipelined architecture with 16KB data and
instruction caches, 32 registers and 64-entry separate data
and instruction TLBs. In order to estimate the runtime
overhead of Iso-X, we implemented the C bit checks on
every memory access, as well as additional memory reads
from CMV to refill the corresponding C bit on TLB misses.
Since all Iso-X violations are treated as high priority ex-
ceptions, the routing of the Iso-X exception signal is on the
critical path of the processor, resulting in a slight frequency
decrease. The checks reduced the maximum frequency of
the processor only by 2%. However, in a commercial design
with ASIC tools, this extra delay can be optimized to
avoid an increase in cycle time. The CMV bits for all of
the system’s pages occupy only 512 Bytes of memory for
this implementation, since there is only 32MB of physical
memory and OpenRISC uses 8KB pages. The effect of the
dynamic runtime Iso-X logic on the core area is only 0.65%
and it has a 1% increase in dynamic power. In an ASIC
implementation of Iso-X with out-of-order processor, these
overheads will be even lower, as the out-of-order structures
will contribute to a larger fraction of the chip area and power.

B. Overhead of Compartment Operations

We now evaluate other overheads of Iso-X, primarily
those involved in the creation and destruction of compart-
ments. These results are summarized in Table V. This table
shows the number of cycles that each compartment operation
takes. In addition, each operation is broken down into the
actions that it requires and the costs of these individual

actions are also reported. These figures were obtained by
running a suite of micro-benchmarks, which we developed
on an Intel Core i7-4700MQ CPU running at a frequency
of 2.4GHz.

The population of compartment memory depends on the
number of pages that must be added to the compartment,
and destruction depends on the number of pages that must be
removed. For this example, we have used the sizes of sshd,
which requires 89 4KB pages (88 for the program itself and
a single CPT page), to calculate the total costs. To compute
the total cost of compartment destruction, we assumed that
all 88 pages need to be revoked. Furthermore, the frequency
of some operations (i.e. revoke, interrupt, resume, swap out,
and swap in) will vary since they depend on the overall
system load. The numbers reported for these operations
represent the cost of each invocation. We evaluated the
following cryptographic functions: SHA-256 for hashing,
1024-bit RSA for certificate signing, and 128-bit AES-
CBC for encryption. We used the polarssl library [36] for
hashing, signing, and encryption. This means that the costs
of hashing and signing are representative of a hardware
implementation which uses the regular CPU datapath to
perform these operations, rather than dedicated hardware.
Note that the polarssl implementation of AES uses Intel’s
AES-NI instructions.

Out of the operations shown in Table V the most expen-
sive ones by far are hashing and signing — each taking more
than one million cycles for a compartment of the considered
size. However, these operations only occur once during the
lifetime of a compartment. Therefore, these overheads can
be tolerated since they are on the order of at most a few
milliseconds for each compartment. All other overheads
presented in Table V are much smaller.

Some of these operations can be significantly accelerated
by deploying dedicated crypto-engines. For example, the
SHA-256 hashing on a dedicated crypto-engine clocked
at 170MHz requires 0.125 cycles/byte according to [32],
which is about 10x faster than the software implementation
reported in Table V. As another example, AES encryption
performed on a separate engine clocked at 340MHz requires
0.69 cycles/byte [19], which is about 1.6x faster than encryp-
tion that uses Intel’s AES-NI instructions. Note that with a
crypto-engine, the encryption can be done in the background,
freeing up the CPU core to continue execution.

In summary, these estimations demonstrate that regardless
of how the encryption/hashing/attestation logic is imple-
mented (either within the main CPU or through an accelera-
tor), the performance overhead of these activities is tolerable
given the infrequent nature of these operations.

C. Impact of dynamic memory reservation

One of the key differences between Iso-X and SGX is
that SGX requires that compartments reside in a memory
region to be statically reserved during boot time. There are
a number of situations where the decision of how much
memory to allocate to compartments at boot time could
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Figure 9: Effect of Static Memory Provisioning

be difficult. For example, on memory constrained systems
such as embedded devices or smart phones, or on systems
with drastically changing workloads such as cloud servers.
In contrast the Iso-X system can dynamically protect any
physical page in the system.

To provide a basic comparison between this difference in
the models of SGX and Iso-X, we show the effect of a stat-
ically provisioned compartment memory region on a system
where the overall memory pressure is high. In particular, we
created a virtual machine with a total of 1000MB of RAM
and the host file system cache disabled (i.e. VM disk writes
go directly to an SSD drive). The size was selected to be
representative of modern smart phones such as the iPhone
6. Inside this VM we ran a stripped down copy of 32-bit
Debian Linux. We partitioned the memory inside the VM to
represent compartment and untrusted partitions. Inside each
partition we run a benchmark that allocates and accesses
memory of a configurable size. By changing this size, we can
shift the pressure from the trusted to the untrusted partition.
On a page fault, we encrypted and sealed the pages on the
compartment partition consistent with swapping support in
Iso-X.

We fix the overall memory demand but vary the percent-
age of workload pages that need to be isolated. Because
the memory pressure is high, only a correctly provisioned
compartment memory size allows the system to function
without thrashing. If the compartment memory size is under-
provisioned (the left hand side of Figure 9) many page
faults occur in that memory region, incurring expensive
compartment side swaps (which require encryption and
hashing). Alternatively, if the compartment side is over-
provisioned, the untrusted partition is under-provisioned and
page faults occur in that region. Meanwhile, Iso-X is able
to dynamically grow each partition to the size it needs
and avoids thrashing on either side. The scenario represents
the best case advantage for Iso-X; under many operating
conditions the memory pressure may be lower, leading to
a margin for error in provisioning the two memory regions.
However, if the system uses magnetic drives instead of SSD,
the impact of incorrect provisioning will be substantially
higher.

VI. 1s0-X APPLICATIONS EXAMPLES

Some classes of applications can directly benefit from
the Iso-X system by storing their secrets and performing

IsoX client IsoX server
_PA is prepared with Client sends PA
integrated CA, > Ais executed
including pupllc PA Initiates CA creation
key of the client
CA generates Pub and Priv keys, CA s filled with

pages, hash is
computed, CAis

executes COMP_ATTEST to receive CC
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based on CPU CAsends its Public Key & cC entered
Public Key using
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environment
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Figure 10: Usage Flow in Cloud Scenario

computations on sensitive data in isolated compartments.
The examples of such applications include banking and e-
commerce applications, digital rights management applica-
tions, password managers, and disk encryption software. It
is also interesting to explore using hardware compartments
to provide stronger guarantees to support software isolation
mechanisms (e.g., Java Isolation [6]). In addition to these,
we describe two more scenarios where Iso-X can provide
benefits.

A. Isolated Execution in A Remote Cloud:

Iso-X can significantly improve security of cloud comput-
ing. In all currently commercially available clouds, there is
a layer of supervisor software with unrestricted permissions
that is capable of compromising user’s private data. There-
fore, prospective users of the cloud have to accept the risks
that their sensitive data can be leaked.

In contrast, computational clouds augmented with Iso-X
functionality can provide their users with guarantees that
programs that handle sensitive data will always be executed
in a hardware-protected isolated environment. Figure 10
depicts an example of actions that need to be taken by the
user of the cloud service (the Iso-X Client) and the provider
of the computational cloud resources (the Iso-X Server) to
guarantee secure execution. The Iso-X client first initiates
remote compartment creation, loads the compartment with
desired code, establishes a trusted channel with the compart-
ment, and attests and verifies the integrity of the channel.
After the trusted channel with the attested compartment is
set up, the Iso-X client sends out computational tasks to
the compartment for secure execution. The results of these
tasks are then returned to the client using the same trusted
channel.

This model is similar in principle to the design of Hard-
ware Security Modules (HSM)[40]. The Iso-X system pro-
vides functionality that is similar to the recently introduced
CloudHSM [1] module from Amazon, but without the need
for a separate hardware device.



B. Secure Machine Attestation:

Compartmentalized code can be used to periodically per-
form machine attestation to ensure that the platform has
not been tampered with. More specifically, the essential
components of the anti-virus and anti-malware software can
be placed inside a compartment, which makes their code
bases tamper-resistant. Even higher security can be achieved
by periodic attestation of these compartments using the Iso-
X attestation mechanism. A recent example of an approach
that is close to this philosophy is the McAfee/Intel Deepsafe
technology [3], where some parts of user-level anti-virus
programs are made tamper resistant using hardware support.

VII. LIMITATIONS OF ISO-X

While Iso-X provides a secure execution environment,
there are restrictions from the standpoints of both applica-
tions and system design.

Applications taking advantage of Iso-X should be parti-
tioned in such a way that no data flow exists from a trusted to
an untrusted partition. In addition, compartment code should
not be directly controlled by any external untrusted entity,
such as the UP or the operating system. For this reason,
the current design of Iso-X is more applicable to the cloud
scenario, as exemplified by Figure 10. To adapt Iso-X to
desktops and mobile devices, it needs to be augmented with
mechanisms for trusted I/O. While trusted I/O is out of the
scope of this paper, it was recently addressed by other works
[53]. Note that if only a partial isolation of compartments is
required, then some of these conditions can be relaxed.

In terms of system design, the current Iso-X implemen-
tation relies on the presence of a reserved memory region
which is only accessible to the Iso-X hardware. In addition,
the design disallows DMA accesses to compartment pages,
as defined by the compartment membership vector (CMV).

VIII. CONCLUDING REMARKS

Providing trusted and isolated execution environment for
secure execution in the presence of potentially compromised
system software layers is a challenging task. In this paper,
we introduced Iso-X — a hardware-assisted framework for
isolated execution. Iso-X requires modest hardware sup-
port: six new ISA instructions, secure compartment page
tables and associated logic, a bitmap storing the identity
of compartment memory pages, and a few registers. These
mechanisms allow the code executed inside a compartment
to be protected from the OS/hypervisor, from other code
executed in the untrusted domain, from DMA operations,
and also from other compartments. In addition, the Iso-X
trusted computing base (TCB) only includes the software
being protected by the compartment and the Iso-X hardware
itself. Iso-X offers advantages over existing hardware-based
isolation proposals in the granularity of protection and mem-
ory allocation flexibility. Moreover, we demonstrated that the
security benefits of Iso-X are achieved with negligible over-
head. We prototyped critical components of Iso-X integrated
with an OpenRISC core and evaluated them on an FPGA.

Furthermore, we showed that the performance overhead
of compartment creation, modification and destruction are
tolerable especially given that these actions are not required
frequently.

The current design represents a first effort at developing
the Iso-X architecture. Our future work plans include support
for multithreaded operation in compartment mode as well as
developing applications to use the architecture.
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