
Binary Consensus in Sensor Motes

Noor AI-Nakhala
Qatar University

Doha, Qatar

nalnakhala@qu.edu.qa

Ryan Riley
Qatar University

Doha, Qatar

ryan.riley@qu.edu.qa

Tarek M. Elfouly
Qatar University

Doha, Qatar

tarekfouly@qu.edu.qa

Abstract-In this work, we adapt the binary consensus algo­
rithm for use in wireless sensor networks. Binary consensus is

used to allow a collection of distributed entities to reach consensus
regarding the answer to a binary question and the final decision is
based on the majority opinion. Binary consensus can playa basic
role in increasing the accuracy of detecting event occurrence.
Existing work on the algorithm focuses on simulation of the
algorithm in a purely theoretic sense. In this work, we modify
the algorithm to function in wireless sensor networks by adding a
method for nodes to determine who to communicate with as well
as adding a heuristic for nodes to know when the algorithm has
completed. We implement and test our algorithm in real wireless
sensor motes and further support our results with a wireless
mote simulator.

Index Terms-Binary Consensus, TinyOS, Wireless Sensor
Networks.

I. INTRODUCTION

Algorithms for cooperative decision making have received

significant attention in recent years from the theoretical com­

puter science community. In these algorithms, a network of

agents seeks to reach a decision and ensure that all nodes in
the network know the final decision. One such algorithm in

this area is binary consensus [1], [2]. Under binary consensus,

the nodes in the network must simply agree on whether
a statement is TRUE or FALSE. For example, a network

of nodes capable of detecting natural gas could use binary

consensus to answer the question "Is the amount of gas in the
air greater than 10,000 ppm?" in order to help detect a gas

leak in a gas processing center.

In the binary consensus problem, each node has an initial

state of either 0 (false) or 1 (true), and the nodes should,

in a distributed fashion, decide which one of these values is
currently held by the majority of the nodes in the network.

The existing algorithm for binary consensus has two lim­
itations. First, it doesn't specify how nodes find partners to

run the algorithm with. Second, it doesn't provide a way
for an individual node to determine when consensus has
been reached. In order to implement the algorithm in a real

distributed network, these limitations must be overcome.

Wireless sensor networks consisting of small, embedded

devices (called motes) provide an excellent platform for binary
consensus. Motes contain sensors that can be used collect data

about their environments, and can communicate with each

other wirelessly. Due to limitations regarding their size and

power, sensor motes are computationally weak and should

limit the number of packets they send.

In this paper, we propose a set of modifications to binary

consensus that will allow it to operate in the context of

wireless sensor motes having the limitations described above.
Our modifications consist of changing how motes decide who

to communicate with and also adding a heuristic to help

motes estimate when consensus has been achieved. We have
implemented our algorithm in a set of TinyOS based sensor

motes and verified our algorithm functions both in hardware
and in simulation.

II. BACKGROUND

In this section we will give a brief overview of binary
consensus and potential applications of it to wireless sensor

networks (WSNs). Due to space constraints we do not provide

an intensive background on WSNs, but instead assume the
reader is familiar with the topic.

A. Binary Consensus

There are a variety of algorithms that are meant to allow
a network of distributed nodes to reach consensus in a com­

putation. In this work, we are specifically concerned with the
problem of binary consensus [3], [4], [5], [6], where each

node in the network holds one of two states and the algorithm

allows all nodes to learn which state is held by the majority of
nodes. There are many applications of such an algorithm, such

as determining if the majority of sensors in a network have

observed a certain event. Two strengths of binary consensus
are that it is guaranteed to the correct conclusion [5], and that

there is an upper-bound on the time to convergence [2].

Under binary consensus, nodes in the network start with

their initial state and then update their state with each other
based on an updating protocol. Convergence occurs when

all nodes agree on the majority opinion. When two nodes

communicate and run the updating protocol, they compare
current states and then each assume a new state based on what

they have seen. While the algorithm is running a node may be
in one of four states, which can be described informally as:

1) 0 - The node believes the majority opinion is most likely

false.
2) eo - The node believes the majority opinion might be

false.
3) el - The node believes the majority opinion might be

true.

978-1-4673-2480-9/13/$3l.00 ©2013 IEEE 1337

Nodel Node Nodel Node2 Nodel Node2

a--=-':8 0 8 � = B
Node3 Node4 Node3 Node4 fo'\ � -"1'� Node3

V v _ _ .>J 8 8
First Interaction

(a)

o / �
2

� ,/ ,/ Node4

cg
/

8
Fourth Interaction

(d)

Node4

8
second Interaction Third Interaction

(b) (c)
Node1 Node2--

a = :B 81 N@
Node3 Node4 (NetWOr1< conVerged)
8 8 Node3 Node4

Fifth Interaction ,8 �
(e) "

(I)

Fig. 1: Example of binary consensus algorithm functionality

4) 1 - The node believes the majority opinion is most likely
true.

The updating protocol, as quoted from [2], is as follows:

Each node is in one of four states: 0, eo, el,
and 1. The states satisfy the following order
o < eo < e1 < 1. At each contact of

a pair of nodes, their respective states x and y
(without loss of generality) ordered such that x ::::; y,
are updated according to the following mapping

(x,y) H (x',y') defined by

(O,eo) -+ (eo,O)
(O,ed -+ (eo,O)
(0,1) -+ (el,eO)

(eo, ed -+ (el,eO)
(eo, 1) -+ (1, ed
(e1' 1) -+ (1, ed
(s,s) -+ (s,s),for s = 0,eo,e1,1.

Convergence occurs when all nodes have states E {O, eo}
or E {e 1, I}. This means that if all nodes in the network have

state 0 or eo, then the network has converged and the majority

of nodes initially held the value O. Likewise, if all nodes in the
network have state el or 1, then the network has converged

and the majority of nodes initially held the value 1.
The following example illustrates the functionality of the

algorithm. Consider that there is a network with 4 nodes, 1,

2, 3 and 4 having initial states of (1; 0; 0; 0) respectively

as shown in Fig. lea). The first interaction happens between
nodes 1 and 2 and the state of node 1 becomes eo while the

state of node 2 will be e 1. (This is according to the rules
given above.) So the new sequence of states will be (eo;
el; 0; 0). Next, the second interaction is between nodes 3

and 4 as shown in Fig. l(b); they communicate and nothing
happens since they both hold the same state. Now, nodes 1

and 2 communicate again as depicted in Fig. l(c), and their

states are swapped leading to (e1; eo; 0; 0). Nodes 2 and 3
communicate as illustrated in Fig. led) and also swap their

states: (el; 0; eo; 0). Finally, node 1 communicates with node

2 as shown in Fig. l(e) leading to the converged states (0; eO;
eO; 0) illustrated in Fig. 1(f). We consider this set of states

TABLE I: Packets used during mote-to-mote communication.
M1 and M2 are motes in the communication.

I Packet I Payload I Description

PI MI State M I sends this packet to all motes in range.
P2 M2 State M2 replies to MI by sending this packet.
P3 - M I sends this packet to M2 in order to confirm

that its state update was successful.

converged because all nodes have value 0 or eo. This means

that the majority of nodes initially held state O.
It is important to note that even though convergence has

occurred, the nodes continue to communicate and exchange

states. This is because individual nodes do not have global

knowledge of the states of all others, and therefore cannot be
certain whether convergence has occurred. Absolute certainty

regarding convergence would require global knowledge.

B. The Usage of Binary Consensus in Real World Applications

There are several applications in which the binary consensus

algorithm may be used to accomplish a certain decision.

Consider a scenario when having a network of sensors

capable of detecting the presence of an object using a camera.

Then binary consensus algorithm can be applied to such a
network in order to increase the accuracy of the final decision

by taking the opinion of the majority motes. Security, military
and hazardous locations are some examples of such scenario.

Another scenario where binary consensus can be used is

in detecting gas leaks. For example, if there is a network
consisting of gas sensors, and some sensors detect that there

is gas leaking in one of the gas tanks, then binary consensus

can be applied to such network to increase the accuracy of the
final decision which based on the sensors' majority opinion.

III. DESIGN AND IMPLEMENTATION

While the binary consensus algorithm described in [2] and
Section II-A provides a complete specification of how nodes

should update their states, it leaves two important things un­

stated which are vital for implementing the algorithm in WSN.
First, the algorithm does not discuss how individual nodes
find a partner to update states with. Second, the algorithm

does not provide a method for individual nodes to determine
when convergence has occurred. In this section we will discuss

modifications to the binary consensus algorithm that will allow
us to provide both of these pieces of missing functionality.

A. Mote-to-Mote Communication

The motes that are part of a WSN do not, by default, have
any awareness of the identities of any other motes in the

network. Motes learn the identities of those around them by

simply broadcasting and listening to messages. In this case,
how does a mote determine who to communicate with and

update its state? In our solution motes will randomly broadcast
to their neighbors (other motes within range of receiving their

wireless packets) in order to find partners.

1338

Fig. 2: Stage transition diagram of the communication algo- Fig. 3: Simple example of mote communication state updates

rithm

Fig. 2 illustrates a stage transition diagram of our commu­

nication algorithm 1. Table I describes the types of packets sent
and received during the algorithm. Our stages can be described

as follows:

• Stage 0: After initialization, all motes start at Stage O.

During this stage, a mote will determine its initial state

(0 or 1) and set a random timer that will decide when

the mote will wake-up and broadcast information to its
neighbors. If a mote is still in this stage when that timer

fires, then it will transition to stage 3. If, instead, it

receives a PI packet from another mote, then it will
transition to stage 1.

• Stage 1: After receiving PI, the mote will reply with
a P2 packet containing its current state. This signifies

to the sender that this mote is available to exchange

state information. After sending P2 the mote will wait
for a reply. During this time the mote will ignore any

packets from other motes. After receiving a reply, the

mote transitions to stage 2. If no reply is received after
a suitable timeout, the mote returns to stage O.

• Stage 2: When the mote receives P3, it will update its
state using the rules previously described. At this stage

both motes in the communication have updated their

states. After this, the mote is free to communicate with

another mote, and as such starts a timer and also waits

for a potential PI packet, just as in stage O.

• Stage 3: In the event a mote has not been contacted by
others, then eventually its own random timer will fire. In

this case, the mote transitions to stage 3. After the timer
fires, the mote will broadcast PI and will wait to receive

a packet of type P2. Once it receives it, it moves on to

stage 4.
• Stage 4: After receiving P2, which contains the other

mote's current state, the mote will update its state using

the rules previously described. Next, it will send P3.
lThe astute reader will note that this is a state transition diagram with the

word "stage" substituted for "state". This is to prevent confusion between the
state of the mote (meaning 0, eo, q, or 1) and the stage of the algorithm the
mote is currently running.

After this, the mote is free to communicate with another

mote, and as such starts a timer and also waits for a
potential PI packet, just as in stage O.

Fig. 3 illustrates a simple example of how the motes

communicate to update their states. Assume that we have 3
motes: 1, 2, and 3. All motes are initially in stage 0, waiting

to either receive a packet or for their individual timers to fire.

After a time, the timer on mote 1 fires and mote 1 broadcasts
PI to all its neighbors. Both mote 2 and mote 3 receive the
broadcast. Mote 2 receives PI first, and sends P2 in reply.
Mote 1 receives the reply and updates its state accordingly.

Shortly after that, mote 3 also sends P2, however since mote

1 received mote 2's reply first, it drops the reply of mote 3.
Next, Mote 1 sends P3 to mote 2, who receives it and updates

its state as well.
Note that we have not discussed packet loss in our example.

Packets P2 and P3 are automatically acknowledged and resent
if lost. We make use of the acknowledgement features built

into the radio unit of our IRIS motes in order to accomplish

this, and we leave the details out of our description of the
protocol for the sake of clarity. PI is not acknowledged

because it is a broadcast packet.

B. Estimating Convergence

In standard binary consensus, nodes continue to run the

algorithm even after convergence has occurred. This is because
individual nodes have no way of knowing that the algorithm
has converged. From an individual node's perspective, the

algorithm does not have a stop condition.
In a wireless sensor network, this is unacceptable. In order

to save power, it is vital that sensor motes know when to stop
communicating. As such, we have designed a tunable heuristic

that will allow motes to estimate when convergence occurs.
Whenever a mote updates its state, it also keeps track of

the last N states that it has held. In the event that the mote

has not significantly changed its guess for the last N state
changes (meaning that all of the old states E {O, eo} or E

{el' I}) then the mote estimates that convergence may have
occurred. In this situation the mote will disable the timer it

uses to randomly wake-up and broadcast PI. In the event

1339

.. ________________________________ �o_� ______________________ _

10m

Wall

Fig. 4: Deployment configuration of IRIS motes

the network has actually converged, very quickly all motes

will disable their timers and communication will cease. In the

event the mote was incorrect; however, and the network has not

converged then the mote is still able to respond to PI packets

it receives and participate. If, during one of these responses,
it goes through a significant state change, it will reactivate its

timer.
It is important to note that while this heuristic allows

the algorithm to stop sending packets, it also removes the
guarantee that convergence will occur correctly because there

is a possibility that all motes could incorrectly assume con­

vergence. This means that the value chosen for N is very
important. If it is too low, then "false convergence" could

occur. If it is too high, then needless packets are sent. The
issue of choosing N is discussed further in Section IV.

IV. EXPERIMENTS

We have implemented our algorithm in the IRIS family of

sensor motes from the MEMSIC corporation [7], [8]. We used
a development version of TinyOS (between versions 2.1.1 and

2.1.2). Our implementation required about 400 lines of nesC

code, including appropriate comments.
We then tested our implementation both in hardware as well

as in the TinyOS simulator TOSSIM. In this section we will

discuss our testing methodologies and results.

A. Hardware

The binary consensus algorithm implementation was tested
in 11 IRIS motes. The motes were placed indoors in a wide

room as well as on an accompanying spiral staircase. Fig. 4

shows the layout of the motes deployment as well as the
dimensions of the room where they were placed. The goal of

the placement was to ensure that the network, while connected,
was not fully-connected. Similar configurations containing

fewer motes were also tested.
Five trials (signified Tl - T5 in the table) were performed for

each configuration of motes. Each trial contained a different

distribution of initial states (either I or 0) for the motes. In
Tl, initial states were distributed in such a way that if a mote

had a value of 0 then its neighbor would have a value of 1.
This configuration is close to optimal for the algorithm, as the

mote will directly communicate with the neighbor motes that

TABLE II: Convergence time and N values for hardware
motes

Motes T1 T2 T3 T4 TS AVG N
5 33.5 8 36 s 39.5 s 40.5 8 41.8 s 38.3 8 5
7 45 8 57 s 628 63 S 81 8 63 8 7
11 928 98 S 100 8 116 s 1468 1108 10

hold the opposite state and the majority value will be spread
through the network faster. In T5, all Os were concentrated

to one side of the network while the Is were concentrated to
the other. This mimics a worst case scenario. In both cases,

the number of Is in the network is very close (within 1 or

2) to the number of Os in the network. T2 - T4 made use
of distributions that slowly shift from Tl to T5. (Tl is the

"easiest" distribution, T2 is slightly more difficult, etc.)
In order to verify the correctness of the algorithm as well as

to measure the time to convergence, one additional mote was

programmed as a base station using the BaseStationl5.4 appli­
cation provided as part of TinyOS [9]. The mote programmed

with this application was connected to a laptop via a serial

link and was able to "sniff' all packets sent and received in
the network.

The time to convergence was calculated manually by mon­

itoring the packets sent and received from the serial readings
received at the base station. The motes were turned on and a

manual timer was started once the packets started to appear in
the monitor. After reaching our heuristic for consensus, motes

will stop initiating communication and eventually no packets

will be sent over the network. We considered the network
converged at the time the last packet was sent by any mote in

the network. In addition, the correctness of convergence was

verified.
Beyond just convergence time, the value for the tunable

convergence heuristic, N, was also experimented with. In our
testing we observed that a suitable value for N was related to

both the size of the network and the initial distribution of I and

o states within the network. For each network configuration,
a suitable N was experimentally chosen which ensured the

network converged properly.
Table II shows the results of the hardware testing for 5,

7, and 11 motes. As would be expected, as the number of
motes increases so does the convergence time. In addition,
as the distribution of initial states becomes more difficult, the

convergence time increases as well.

B. Simulation

In order to test our algorithm with a larger number of

motes in other topologies, we also made use of the TinyOS

SIMulator (TOSSIM) to gather additional results. TOSSIM
simulates motes running the TinyOS platform, complete with

network functionality and packet loss.
When simulating packet loss, TOSSIM takes as input a

noise model as well as signal strength between motes. For

our experiments we made use of the TOSSIM supplied meyer­

heavy noise model originally derived from experiments done at

the Meyer Library at Stanford University. The model includes

1340

(a) Hardware topology

.��
\

)
�

(c) Ring topology

Fig. 5: Sample topologies simulated in TOSSIM

hardware noise floor readings and points of interference [10].

For the signal strength between motes we made a simplifying
assumption of -55 dB for all connections.

We tested a variety of topologies. First, we replicated the

topology of our hardware testbed used above for 5, 7 and

11 motes. We also simulated both max-3 neighbors and ring
topologies for 5, 7, 11, 20 and 30 motes. Samples of the

topologies can be found in Fig. 5.

The distribution of initial states for trials Tl - T5 follows

the same pattern described for hardware testing. (Tl resembles
the optimal initial state distribution of Is and Os while T5

resembles the worst case.)

The H-Sim section of Table III shows the hardware topology
simulation results for 5, 7, and 11 motes. Recall that this

topology matches that of the real hardware network described

above, so we would expect similar results as in the hardware

experiments. Comparing the results of the hardware and the

simulation, we can see that the simulation convergence time is

much larger than that of the real hardware. After investigation,
we determined that this is due to the fact that the meyer­

heavy noise profile results in a simulated network with much
higher packet loss than found in our hardware test. This

results in much higher convergence times due to the extensive

retransmission that must occur for lost packets.

The Max-3 section of Table III shows the results for the
max-3 neighbors topology. Fig. 5b shows a max-3 neighbors

topology with various "areas" labeled. As would be expected,

as the number of motes increases so does the convergence
time as well as the required N. In Tl, the distribution of

0' s and l's are spread uniformly across the network, and the

convergence time is fast and the required N value is low. For
T5, however, entire "cells" of motes (such as 1, 2, 3, etc. in

the figure) are all assigned the same state, with adjacent cells
having opposite assignments. In this case, the motes require

more time to converge and have a higher N value.

TABLE III: Convergence time and N values for simulation
experiments

Motes T1 T2 T3 T4 TS AVG N
E 5 55.4 s 67 s 69 s 74 s 80 s 69 s 7
Vi 7 L09 s 165 s 173 s 222 s 290 s 192 s 20 :i: II 180 s 220 s 317 s 453 s 530 s 340 s 25

5 39 s 40 s 45 s 49 s 60 s 46.6 s 7
'" 7 76 s 95 s 110 s Ito s 113 s toO s 10
.< '" II 79 s 79 s 118 s 133 s 153 s 112 s LO
::E 20 L08 s 195 s 227 s 240 s 353 s 201 s 15

30 242 s 251 s 268 s 275 s 342 s 274 s 20
5 33 s 40 s 43 s 44 s 56 s 43.2 s 5

00 7 43 s 49 s 59 s 66 s Ito s 83 s 5
t: II 67 s 82 s 87 s L04 s 165 s LOI s 7 C2

20 113 s 180 s 246 s 293 s 480 s 262 s 20
30 298 s 360 s 409 s 534 s 560 s 432 s 25

The Ring section of Table III shows the results for the
ring topology. For small numbers of motes (5, 7 and 11) the
convergence time as well as the N value are better than in

max-3 neighbors. However, as the number of motes increases,
the time of convergence as well as the value of N increase

rapidly as well. In the worst case, reaching t =560 seconds for

30 motes. Much like the previous experiment, the initial states
also impact convergence time. For example, with 20 motes, the

difference in time between Tl (where all initial states were

alternated among neighbors) and T5 (where the left and right
halves of the rings had the initial states concentrated) was

around 400%.

The simulation results also show that for small numbers of

motes (5, 7 and 11) the convergence time as well as the N
value is better in ring topology than in max-3 neighbors topol­

ogy. For larger numbers of motes; however, this advantage is

lost. In this case, max-3 neighbors converges faster and has a
smaller N value than ring. This is due to the fact that as the

ring becomes larger, it takes significantly more time for state

changes to propagate completely around the ring.

V. DISCUSSION

In this section we will discuss the complexity of our

algorithm, potential improvements, and related work.

A. Complexity Analysis

The complexity of our algorithm varies depending on the
topology of the network. In the case of a fully connected

network, consider that the network consists of N motes. On
average, each mote would send packets to (N - 1) other

motes within the network. This makes the average complexity

for this case:

O((N)(N - 1)) (1)

Which reduces to:

(2)

B. Related Work

There is a plethora of related work on binary consensus [3],
[4], [5], [6], [2], [11]. Mostefaoui et al. [11] proposed an

algorithm in asynchronous systems with crash failures. In their

1341

algorithm, every process runs a series of binary consensus sub­
routines sequentially to solve multivalued consensus. Binary

consensus is deployed as distributed averaging on a network.

The applications of this algorithm include coordination of
autonomous agents, estimation, and distributed data fusion on

ad-hoc or social networks. In [5], the algorithm is proven to
converge to the correct solution with probability 1. In [2] the

authors derive an upper-bound on the expected convergence

time for a variety of network topologies, including complete
graph, star, and Erdos-Renyi random graphs.

There is a large amount of existing work on routing pro­

tocols [12], [13], [14] in WSNs. In theory, these protocols

could be used to create the effect of a fully connected topology

and allow a different design to our algorithm. This paper is

concerned with developing a binary consensus algorithm that
functions without requiring the complexity of a full routing

protocol. In future work, an alternative algorithm making use
of a full routing protocol could be compared to this one in

terms of energy efficiency and accuracy.

Most similar in concept to this work, Kenyeres et al. [15]

performed a hardware implementation of the average consen­
sus algorithm proposed in [16]. In average consensus nodes

are attempting to converge on the average of all values held
by nodes. They detect consensus by defining an accuracy

parameter and declaring a counter that is increased whenever

a node's value is changed. They assume that if the value of
the node is changed in small intervals less than the defined

accuracy parameter, or if the value is the same 3 times, then

convergence has been achieved. Their work makes a crucial
simplifying assumption that ours does not: They assume that

the network topology is fully connected (every node can
communicate directly with every other node). This assumption

greatly simplifies their algorithm, but limits the size of the

network it can support.

C. Limitations and Future Work

Our algorithm does note not guarantee a correct conver­

gence. This is due to the fact that convergence is detected in

our implementation based on the heuristic value N. Choosing
an appropriate value of N reduces the probability of incorrect

convergence. Our algorithm testing showed successful results
of a correct convergence in both hardware and simulation,

however care must be taken to choose a correct value of N
when deploying this algorithm.

Future work in this area should include an analysis of this

algorithm in the presence of an attacker, evaluation on a larger

hardware testbed, a more thorough analysis of the effects of
the N value, and applying the concepts from this algorithm
to other consensus algorithms.

VI. CONCLUSION

In this work, we have adapted the binary consensus algo­
rithm for use in wireless sensor networks by specifying how

motes find partners to update state with as well as by adding
a heuristic for individual nodes to determine convergence.
We have evaluated our algorithm in hardware using 11 IRIS

sensor motes and have further supported our results using the
TOSSIM simulator for other topologies. The hardware as well

as the simulation results show that the convergence speed

depends on the topology type, the number of nodes present
in the network, and the distribution of the initial 0 and 1
states. Our simulation results showed that the max-3 neighbor
topology converges faster than the ring topology for networks

with more than 11 nodes, while the ring topology converges

faster when the number of nodes is less.

ACKNOWLEDGMENT

This publication was made possible by the support of the

NPRP grant 09-1150-2-448 from the Qatar National Research
Fund. The statements made herein are solely the responsibility

of the authors.

REFERENCES

[I] Y. Ruan and Y. Mostofi, "Binary consensus with soft information pro­
cessing in cooperative networks," in Proceedings of the IEEE Conference
on Decision and Control (CDC 2008). IEEE, 2008, pp. 3613-3619.

[2] M. Draief and M. Vojnovic, "Convergence speed of binary interval
consensus;' in Proceedings of the Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM 2010), San Diego
California, March 15-19, 2010.

[3] A. Kashyap, T. Ba�ar, and R. Srikant, "Quantized consensus," Automat­

ica, vol. 43, no. 7, pp. 1192-1203, 2007.
[4] E. Perron, D. Va�udevan, and M. Vojnovic, "Using three states for

binary consensus on complete graphs," in Proceedings of the Annual

Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM 2009). IEEE, 2009, pp. 2527-2535.
[5] F. Benezit, P. Thiran, and M. Vetterli, "Interval consensus: from

quantized gossip to voting," in Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP 2009).
IEEE, 2009, pp. 3661-3664.

[6] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, "On distributed
averaging algorithms and quantization effects," IEEE Transactions on

Automatic Control, vol. 54, no. 11, pp. 2506-2517, 2009.
[7] CrossBow Technology Inc., "IRIS wireless measurement system

datasheet," http://www.xbow.com/Products/ProductpdffileslWirelesspdfl
IRISDatasheet.pdf.

[8] Crossbow Technology Inc., "Professional kit for wireless sensor net­
works," http://www.xbow.com.

[9] TinyOS Community Wiki, "Mote-PC serial communication;'
http://docs.tinyos. net/ti nywikilindex. php ?titl e=Mote-PC _ serial_
communication_and_SerialForwarder&redirect=no.

[10] --, "TOSSIM simulator," http://docs.tinyos.net/tinywikilindex.php/
TOSSIM.

[II] A. Mostefaoui, M. Raynal, and F. Tronel, "From binary consensus
to multivalued consensus in asynchronous message-passing systems."
Information Processing Lellers, vol. 73, no. 5-6, pp. 207-212, 2000.

[12] K. Akkaya and M. Younis, "A survey on routing protocols for wireless
sensor networks," Ad Hoc Networks, vol. 3, no. 3, pp. 325 - 349,
2005. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S 1570870503000738

[13] L. J. Garca Villalba, A. L. Sandoval Orozco, A. Trivio Cabrera, and
C. J. Barenco Abbas, "Routing protocols in wireless sensor networks;'
Sensors, vol. 9, no. 11, pp. 8399-8421, 2009. [Online]. Available:
http://www.mdpi.comlI424-8220/9/11I8399

[14] S. Singh, M. Singh, and D. Singh, "Routing protocols in wireless sensor
networks-a survey," International Journal of Computer science and

engineering Survey (lJCSES), vol. I, no. 2, pp. 63-83, 2010.
[15] J. Kenyeres, M. Kenyeres, M. Rupp, and P. Farka�, "WSN implementa­

tion of the average consensus algorithm," in Proceedings of the Wireless

Conference 2011 - Sustainable Wireless Technologies (European Wire­

less). VDE, 2011, pp. 1-8.
[16] R. Olfati-Saber, 1. Fax, and R. Murray, "Consensus and cooperation in

networked multi-agent systems," Proceedings of the IEEE, vol. 95, no. I,
pp. 215-233, 2007.

1342

