Binary Consensus in Sensor Motes

Noor Al-Nakhala Ryan Riley Tarek M. Elfouly
Qatar University Qatar University Qatar University
Doha, Qatar Doha, Qatar Doha, Qatar
nalnakhala @qu.edu.qa ryanriley @qu.edu.qa tarekfouly @qu.edu.qa

Abstract—In this work, we adapt the binary consensus algo-
rithm for use in wireless sensor networks. Binary consensus is
used to allow a collection of distributed entities to reach consensus
regarding the answer to a binary question and the final decision is
based on the majority opinion. Binary consensus can play a basic
role in increasing the accuracy of detecting event occurrence.
Existing work on the algorithm focuses on simulation of the
algorithm in a purely theoretic sense. In this work, we modify
the algorithm to function in wireless sensor networks by adding a
method for nodes to determine who to communicate with as well
as adding a heuristic for nodes to know when the algorithm has
completed. We implement and test our algorithm in real wireless
sensor motes and further support our results with a wireless
mote simulator.

Index Terms—Binary Consensus, TinyOS, Wireless Sensor
Networks.

I. INTRODUCTION

Algorithms for cooperative decision making have received
significant attention in recent years from the theoretical com-
puter science community. In these algorithms, a network of
agents seeks to reach a decision and ensure that all nodes in
the network know the final decision. One such algorithm in
this area is binary consensus [1], [2]. Under binary consensus,
the nodes in the network must simply agree on whether
a statement is TRUE or FALSE. For example, a network
of nodes capable of detecting natural gas could use binary
consensus to answer the question “Is the amount of gas in the
air greater than 10,000 ppm?” in order to help detect a gas
leak in a gas processing center.

In the binary consensus problem, each node has an initial
state of either O (false) or 1 (true), and the nodes should,
in a distributed fashion, decide which one of these values is
currently held by the majority of the nodes in the network.

The existing algorithm for binary consensus has two lim-
itations. First, it doesn’t specify how nodes find partners to
run the algorithm with. Second, it doesn’t provide a way
for an individual node to determine when consensus has
been reached. In order to implement the algorithm in a real
distributed network, these limitations must be overcome.

Wireless sensor networks consisting of small, embedded
devices (called motes) provide an excellent platform for binary
consensus. Motes contain sensors that can be used collect data
about their environments, and can communicate with each
other wirelessly. Due to limitations regarding their size and

978-1-4673-2480-9/13/$31.00 ©2013 IEEE

power, sensor motes are computationally weak and should
limit the number of packets they send.

In this paper, we propose a set of modifications to binary
consensus that will allow it to operate in the context of
wireless sensor motes having the limitations described above.
Our modifications consist of changing how motes decide who
to communicate with and also adding a heuristic to help
motes estimate when consensus has been achieved. We have
implemented our algorithm in a set of TinyOS based sensor
motes and verified our algorithm functions both in hardware
and in simulation.

II. BACKGROUND

In this section we will give a brief overview of binary
consensus and potential applications of it to wireless sensor
networks (WSNs). Due to space constraints we do not provide
an intensive background on WSNs, but instead assume the
reader is familiar with the topic.

A. Binary Consensus

There are a variety of algorithms that are meant to allow
a network of distributed nodes to reach consensus in a com-
putation. In this work, we are specifically concerned with the
problem of binary consensus [3], [4], [5], [6], where each
node in the network holds one of two states and the algorithm
allows all nodes to learn which state is held by the majority of
nodes. There are many applications of such an algorithm, such
as determining if the majority of sensors in a network have
observed a certain event. Two strengths of binary consensus
are that it is guaranteed to the correct conclusion [5], and that
there is an upper-bound on the time to convergence [2].

Under binary consensus, nodes in the network start with
their initial state and then update their state with each other
based on an updating protocol. Convergence occurs when
all nodes agree on the majority opinion. When two nodes
communicate and run the updating protocol, they compare
current states and then each assume a new state based on what
they have seen. While the algorithm is running a node may be
in one of four states, which can be described informally as:

1) 0 - The node believes the majority opinion is most likely
false.

2) eg — The node believes the majority opinion might be
false.

3) e; — The node believes the majority opinion might be
true.

1337

Node1 Node2
—_——
eO ((etl)
“—— —
Node3 Nodes
@ O) (o)
Firstinteraction | | second Third 5
(a) (b) (c)

Node1

CrZ

Node3

Node1 Nodpg

;eo

\? / Node4

Node2
Node1 NDdeZ

Nodal (Nelwork Converged
\ /’

Node3 Noded
Founh ion F Q y
d

Fig. 1: Example of binary consensus algorithm functionality

4) 1 - The node believes the majority opinion is most likely
true.
The updating protocol, as quoted from [2], is as follows:

Each node is in one of four states: 0, ep, e,
and 1. The states satisfy the following order
0 < e < e < 1. At each contact of
a pair of nodes, their respective states = and y
(without loss of generality) ordered such that = < y,
are updated according to the following mapping
(z,y) — (2',y’) defined by

(0760> — (60,0)
(0761) — (GOaO)
0,1) — (e1,e0)
(eo,e1) — (e1,eo0)
(607 1) — (1761)
(61, 1) — (1,61)
(s,8) — (s,8),for s =0,ep,e1,1.

Convergence occurs when all nodes have states € {0,eg}
or € {ey,1}. This means that if all nodes in the network have
state O or eg, then the network has converged and the majority
of nodes initially held the value 0. Likewise, if all nodes in the
network have state e; or 1, then the network has converged
and the majority of nodes initially held the value 1.

The following example illustrates the functionality of the
algorithm. Consider that there is a network with 4 nodes, 1,
2, 3 and 4 having initial states of (1; 0; 0; 0) respectively
as shown in Fig. 1(a). The first interaction happens between
nodes 1 and 2 and the state of node 1 becomes e¢; while the
state of node 2 will be ej. (This is according to the rules
given above.) So the new sequence of states will be (eg;
e1; 0; 0). Next, the second interaction is between nodes 3
and 4 as shown in Fig. 1(b); they communicate and nothing
happens since they both hold the same state. Now, nodes 1
and 2 communicate again as depicted in Fig. 1(c), and their
states are swapped leading to (e1; ep; 0; 0). Nodes 2 and 3
communicate as illustrated in Fig. 1(d) and also swap their
states: (e1; 0; eg; 0). Finally, node 1 communicates with node
2 as shown in Fig. 1(e) leading to the converged states (0; €0;
€0; 0) illustrated in Fig. 1(f). We consider this set of states

TABLE I: Packets used during mote-to-mote communication.
M1 and M2 are motes in the communication.

| Packet | Payload | Description |

Pl M1 State | M1 sends this packet to all motes in range.

P2 M2 State | M2 replies to M1 by sending this packet.

P3 - M1 sends this packet to M2 in order to confirm
that its state update was successful.

converged because all nodes have value O or eg. This means
that the majority of nodes initially held state 0.

It is important to note that even though convergence has
occurred, the nodes continue to communicate and exchange
states. This is because individual nodes do not have global
knowledge of the states of all others, and therefore cannot be
certain whether convergence has occurred. Absolute certainty
regarding convergence would require global knowledge.

B. The Usage of Binary Consensus in Real World Applications

There are several applications in which the binary consensus
algorithm may be used to accomplish a certain decision.

Consider a scenario when having a network of sensors
capable of detecting the presence of an object using a camera.
Then binary consensus algorithm can be applied to such a
network in order to increase the accuracy of the final decision
by taking the opinion of the majority motes. Security, military
and hazardous locations are some examples of such scenario.

Another scenario where binary consensus can be used is
in detecting gas leaks. For example, if there is a network
consisting of gas sensors, and some sensors detect that there
is gas leaking in one of the gas tanks, then binary consensus
can be applied to such network to increase the accuracy of the
final decision which based on the sensors’ majority opinion.

III. DESIGN AND IMPLEMENTATION

While the binary consensus algorithm described in [2] and
Section II-A provides a complete specification of how nodes
should update their states, it leaves two important things un-
stated which are vital for implementing the algorithm in WSN.
First, the algorithm does not discuss how individual nodes
find a partner to update states with. Second, the algorithm
does not provide a method for individual nodes to determine
when convergence has occurred. In this section we will discuss
modifications to the binary consensus algorithm that will allow
us to provide both of these pieces of missing functionality.

A. Mote-to-Mote Communication

The motes that are part of a WSN do not, by default, have
any awareness of the identities of any other motes in the
network. Motes learn the identities of those around them by
simply broadcasting and listening to messages. In this case,
how does a mote determine who to communicate with and
update its state? In our solution motes will randomly broadcast
to their neighbors (other motes within range of receiving their
wireless packets) in order to find partners.

1338

Stage 2
Stage g Receive P1) Stage L (Receive Pl tag

(Timeout Receive P3)

Receive PI

Stage 4
Y 9
% £

L4}
< 4
Stage 3

Fig. 2: Stage transition diagram of the communication algo-
rithm

Fig. 2 illustrates a stage transition diagram of our commu-
nication algorithm'. Table I describes the types of packets sent
and received during the algorithm. Our stages can be described
as follows:

o Stage 0: After initialization, all motes start at Stage O.
During this stage, a mote will determine its initial state
(0 or 1) and set a random timer that will decide when
the mote will wake-up and broadcast information to its
neighbors. If a mote is still in this stage when that timer
fires, then it will transition to stage 3. If, instead, it
receives a P1 packet from another mote, then it will
transition to stage 1.

o Stage I: After receiving P1, the mote will reply with
a P2 packet containing its current state. This signifies
to the sender that this mote is available to exchange
state information. After sending P2 the mote will wait
for a reply. During this time the mote will ignore any
packets from other motes. After receiving a reply, the
mote transitions to stage 2. If no reply is received after
a suitable timeout, the mote returns to stage 0.

e Stage 2: When the mote receives P3, it will update its
state using the rules previously described. At this stage
both motes in the communication have updated their
states. After this, the mote is free to communicate with
another mote, and as such starts a timer and also waits
for a potential P1 packet, just as in stage 0.

o Stage 3: In the event a mote has not been contacted by
others, then eventually its own random timer will fire. In
this case, the mote transitions to stage 3. After the timer
fires, the mote will broadcast P1 and will wait to receive
a packet of type P2. Once it receives it, it moves on to
stage 4.

o Stage 4: After receiving P2, which contains the other
mote’s current state, the mote will update its state using
the rules previously described. Next, it will send P3.

IThe astute reader will note that this is a state transition diagram with the
word “stage” substituted for “state”. This is to prevent confusion between the
state of the mote (meaning 0, eg, e1, or 1) and the stage of the algorithm the
mote is currently running.

Broadcast P1 containing mote 1 current
state

current stat®

Broadcast P1 containing mote 2 current
state

Fig. 3: Simple example of mote communication state updates

After this, the mote is free to communicate with another
mote, and as such starts a timer and also waits for a
potential P1 packet, just as in stage O.

Fig. 3 illustrates a simple example of how the motes
communicate to update their states. Assume that we have 3
motes: 1, 2, and 3. All motes are initially in stage 0, waiting
to either receive a packet or for their individual timers to fire.
After a time, the timer on mote 1 fires and mote 1 broadcasts
P1 to all its neighbors. Both mote 2 and mote 3 receive the
broadcast. Mote 2 receives P1 first, and sends P2 in reply.
Mote 1 receives the reply and updates its state accordingly.
Shortly after that, mote 3 also sends P2, however since mote
1 received mote 2’s reply first, it drops the reply of mote 3.
Next, Mote 1 sends P3 to mote 2, who receives it and updates
its state as well.

Note that we have not discussed packet loss in our example.
Packets P2 and P3 are automatically acknowledged and resent
if lost. We make use of the acknowledgement features built
into the radio unit of our IRIS motes in order to accomplish
this, and we leave the details out of our description of the
protocol for the sake of clarity. P1 is not acknowledged
because it is a broadcast packet.

B. Estimating Convergence

In standard binary consensus, nodes continue to run the
algorithm even after convergence has occurred. This is because
individual nodes have no way of knowing that the algorithm
has converged. From an individual node’s perspective, the
algorithm does not have a stop condition.

In a wireless sensor network, this is unacceptable. In order
to save power, it is vital that sensor motes know when to stop
communicating. As such, we have designed a tunable heuristic
that will allow motes to estimate when convergence occurs.

Whenever a mote updates its state, it also keeps track of
the last IV states that it has held. In the event that the mote
has not significantly changed its guess for the last N state
changes (meaning that all of the old states € {0,ep} or €
{e1,1}) then the mote estimates that convergence may have
occurred. In this situation the mote will disable the timer it
uses to randomly wake-up and broadcast P1. In the event

1339

T A
@ :
Spiral & :
Staircase 1op '
Step H
) J/ ; Wall
- 1 =
H v ; 17m
;‘ B Door g i22m
; “--Am-’
10m
|
wall &l i

~[S

Fig. 4: Deployment configuration of IRIS motes

the network has actually converged, very quickly all motes
will disable their timers and communication will cease. In the
event the mote was incorrect; however, and the network has not
converged then the mote is still able to respond to P1 packets
it receives and participate. If, during one of these responses,
it goes through a significant state change, it will reactivate its
timer.

It is important to note that while this heuristic allows
the algorithm to stop sending packets, it also removes the
guarantee that convergence will occur correctly because there
is a possibility that all motes could incorrectly assume con-
vergence. This means that the value chosen for N is very
important. If it is too low, then “false convergence” could
occur. If it is too high, then needless packets are sent. The
issue of choosing NN is discussed further in Section IV.

IV. EXPERIMENTS

We have implemented our algorithm in the IRIS family of
sensor motes from the MEMSIC corporation [7], [8]. We used
a development version of TinyOS (between versions 2.1.1 and
2.1.2). Our implementation required about 400 lines of nesC
code, including appropriate comments.

We then tested our implementation both in hardware as well
as in the TinyOS simulator TOSSIM. In this section we will
discuss our testing methodologies and results.

A. Hardware

The binary consensus algorithm implementation was tested
in 11 IRIS motes. The motes were placed indoors in a wide
room as well as on an accompanying spiral staircase. Fig. 4
shows the layout of the motes deployment as well as the
dimensions of the room where they were placed. The goal of
the placement was to ensure that the network, while connected,
was not fully-connected. Similar configurations containing
fewer motes were also tested.

Five trials (signified T1 - TS in the table) were performed for
each configuration of motes. Each trial contained a different
distribution of initial states (either 1 or 0) for the motes. In
T1, initial states were distributed in such a way that if a mote
had a value of O then its neighbor would have a value of 1.
This configuration is close to optimal for the algorithm, as the
mote will directly communicate with the neighbor motes that

TABLE II: Convergence time and N values for hardware
motes

Motes | T1 T2 T3 T4 TS AVG N
5 335s | 36s | 395s | 4055 | 41.8s | 383s | 5
7 45 s 57s | 625 63 s 81s 63 s 7
11 92 s 98 s 100 s 116 s 146 s 110 s 10

hold the opposite state and the majority value will be spread
through the network faster. In T5, all Os were concentrated
to one side of the network while the 1s were concentrated to
the other. This mimics a worst case scenario. In both cases,
the number of 1s in the network is very close (within 1 or
2) to the number of Os in the network. T2 - T4 made use
of distributions that slowly shift from T1 to T5. (T1 is the
“easiest” distribution, T2 is slightly more difficult, etc.)

In order to verify the correctness of the algorithm as well as
to measure the time to convergence, one additional mote was
programmed as a base station using the BaseStation15.4 appli-
cation provided as part of TinyOS [9]. The mote programmed
with this application was connected to a laptop via a serial
link and was able to ”sniff” all packets sent and received in
the network.

The time to convergence was calculated manually by mon-
itoring the packets sent and received from the serial readings
received at the base station. The motes were turned on and a
manual timer was started once the packets started to appear in
the monitor. After reaching our heuristic for consensus, motes
will stop initiating communication and eventually no packets
will be sent over the network. We considered the network
converged at the time the last packet was sent by any mote in
the network. In addition, the correctness of convergence was
verified.

Beyond just convergence time, the value for the tunable
convergence heuristic, IV, was also experimented with. In our
testing we observed that a suitable value for N was related to
both the size of the network and the initial distribution of 1 and
0 states within the network. For each network configuration,
a suitable N was experimentally chosen which ensured the
network converged properly.

Table II shows the results of the hardware testing for 5,
7, and 11 motes. As would be expected, as the number of
motes increases so does the convergence time. In addition,
as the distribution of initial states becomes more difficult, the
convergence time increases as well.

B. Simulation

In order to test our algorithm with a larger number of
motes in other topologies, we also made use of the TinyOS
SIMulator (TOSSIM) to gather additional results. TOSSIM
simulates motes running the TinyOS platform, complete with
network functionality and packet loss.

When simulating packet loss, TOSSIM takes as input a
noise model as well as signal strength between motes. For
our experiments we made use of the TOSSIM supplied meyer-
heavy noise model originally derived from experiments done at
the Meyer Library at Stanford University. The model includes

1340

g

Y
.

?ﬁz

(b) Max 3 neighbors

topology
T —_—
YR
. o
/ \
. o
S

(c) Ring topology
Fig. 5: Sample topologies simulated in TOSSIM

hardware noise floor readings and points of interference [10].
For the signal strength between motes we made a simplifying
assumption of -55 dB for all connections.

We tested a variety of topologies. First, we replicated the
topology of our hardware testbed used above for 5, 7 and
11 motes. We also simulated both max-3 neighbors and ring
topologies for 5, 7, 11, 20 and 30 motes. Samples of the
topologies can be found in Fig. 5.

The distribution of initial states for trials T1 - TS5 follows
the same pattern described for hardware testing. (T1 resembles
the optimal initial state distribution of 1s and Os while T5
resembles the worst case.)

The H-Sim section of Table III shows the hardware topology
simulation results for 5, 7, and 11 motes. Recall that this
topology matches that of the real hardware network described
above, so we would expect similar results as in the hardware
experiments. Comparing the results of the hardware and the
simulation, we can see that the simulation convergence time is
much larger than that of the real hardware. After investigation,
we determined that this is due to the fact that the meyer-
heavy noise profile results in a simulated network with much
higher packet loss than found in our hardware test. This
results in much higher convergence times due to the extensive
retransmission that must occur for lost packets.

The Max-3 section of Table III shows the results for the
max-3 neighbors topology. Fig. 5b shows a max-3 neighbors
topology with various “areas” labeled. As would be expected,
as the number of motes increases so does the convergence
time as well as the required NN. In TI1, the distribution of
0’s and 1's are spread uniformly across the network, and the
convergence time is fast and the required N value is low. For
TS5, however, entire “cells” of motes (such as 1, 2, 3, etc. in
the figure) are all assigned the same state, with adjacent cells
having opposite assignments. In this case, the motes require
more time to converge and have a higher N value.

TABLE III: Convergence time and N values for simulation
experiments

Motes | T1 T2 T3 T4 TS AVG | N
] 5 5548 | 67s 69 s 74 s 80 s 69 s 7
B |7 109s | 165s | 173s | 2225 | 290s | 192s | 20
= 11 180 s 220s | 317s | 453s | 530s | 340s 25
5 39 s 40 s 45 s 49 s 60 s 466s | 7
o |7 76 s 95s 110s | 110s | 113s | 100s | 10
5|1 79 s 79 s 118s | 133s | 153s | 112s | 10
= | 20 108s | 195s | 227s | 240s | 353s | 201s | 15
30 242s | 251s | 268s | 275s | 3425 | 2745 | 20
5 33 s 40 s 43 s 44 s 56 s 432s | 5
o | 7 43 s 49s | 59s | 665 110s | 83 s 5
-E 11 67 s 82's 87 s 104s | 165s | 101s | 7
20 113s | 180s | 246s | 2935 | 480s | 262s | 20
30 208s | 360s | 409s | 534s | 560s | 432s | 25

The Ring section of Table III shows the results for the
ring topology. For small numbers of motes (5, 7 and 11) the
convergence time as well as the [V value are better than in
max-3 neighbors. However, as the number of motes increases,
the time of convergence as well as the value of N increase
rapidly as well. In the worst case, reaching ¢ =560 seconds for
30 motes. Much like the previous experiment, the initial states
also impact convergence time. For example, with 20 motes, the
difference in time between T1 (where all initial states were
alternated among neighbors) and T5 (where the left and right
halves of the rings had the initial states concentrated) was
around 400%.

The simulation results also show that for small numbers of
motes (5, 7 and 11) the convergence time as well as the N
value is better in ring topology than in max-3 neighbors topol-
ogy. For larger numbers of motes; however, this advantage is
lost. In this case, max-3 neighbors converges faster and has a
smaller N value than ring. This is due to the fact that as the
ring becomes larger, it takes significantly more time for state
changes to propagate completely around the ring.

V. DISCUSSION

In this section we will discuss the complexity of our
algorithm, potential improvements, and related work.

A. Complexity Analysis

The complexity of our algorithm varies depending on the
topology of the network. In the case of a fully connected
network, consider that the network consists of N motes. On
average, each mote would send packets to (N — 1) other
motes within the network. This makes the average complexity
for this case:

O((N)(N — 1)))

Which reduces to:
O(N?) 2
B. Related Work

There is a plethora of related work on binary consensus [3],
[4], [5], [6], [2], [11]. Mostefaoui et al. [11] proposed an
algorithm in asynchronous systems with crash failures. In their

1341

algorithm, every process runs a series of binary consensus sub-
routines sequentially to solve multivalued consensus. Binary
consensus is deployed as distributed averaging on a network.
The applications of this algorithm include coordination of
autonomous agents, estimation, and distributed data fusion on
ad-hoc or social networks. In [5], the algorithm is proven to
converge to the correct solution with probability 1. In [2] the
authors derive an upper-bound on the expected convergence
time for a variety of network topologies, including complete
graph, star, and Erdos-Renyi random graphs.

There is a large amount of existing work on routing pro-
tocols [12], [13], [14] in WSNs. In theory, these protocols
could be used to create the effect of a fully connected topology
and allow a different design to our algorithm. This paper is
concerned with developing a binary consensus algorithm that
functions without requiring the complexity of a full routing
protocol. In future work, an alternative algorithm making use
of a full routing protocol could be compared to this one in
terms of energy efficiency and accuracy.

Most similar in concept to this work, Kenyeres et al. [15]
performed a hardware implementation of the average consen-
sus algorithm proposed in [16]. In average consensus nodes
are attempting to converge on the average of all values held
by nodes. They detect consensus by defining an accuracy
parameter and declaring a counter that is increased whenever
a node’s value is changed. They assume that if the value of
the node is changed in small intervals less than the defined
accuracy parameter, or if the value is the same 3 times, then
convergence has been achieved. Their work makes a crucial
simplifying assumption that ours does not: They assume that
the network topology is fully connected (every node can
communicate directly with every other node). This assumption
greatly simplifies their algorithm, but limits the size of the
network it can support.

C. Limitations and Future Work

Our algorithm does note not guarantee a correct conver-
gence. This is due to the fact that convergence is detected in
our implementation based on the heuristic value /N. Choosing
an appropriate value of N reduces the probability of incorrect
convergence. Our algorithm testing showed successful results
of a correct convergence in both hardware and simulation,
however care must be taken to choose a correct value of N
when deploying this algorithm.

Future work in this area should include an analysis of this
algorithm in the presence of an attacker, evaluation on a larger
hardware testbed, a more thorough analysis of the effects of
the N value, and applying the concepts from this algorithm
to other consensus algorithms.

VI. CONCLUSION

In this work, we have adapted the binary consensus algo-
rithm for use in wireless sensor networks by specifying how
motes find partners to update state with as well as by adding
a heuristic for individual nodes to determine convergence.
We have evaluated our algorithm in hardware using 11 IRIS

sensor motes and have further supported our results using the
TOSSIM simulator for other topologies. The hardware as well
as the simulation results show that the convergence speed
depends on the topology type, the number of nodes present
in the network, and the distribution of the initial 0 and 1
states. Our simulation results showed that the max-3 neighbor
topology converges faster than the ring topology for networks
with more than 11 nodes, while the ring topology converges
faster when the number of nodes is less.

ACKNOWLEDGMENT

This publication was made possible by the support of the
NPRP grant 09-1150-2-448 from the Qatar National Research
Fund. The statements made herein are solely the responsibility
of the authors.

REFERENCES

[1] Y. Ruan and Y. Mostofi, “Binary consensus with soft information pro-
cessing in cooperative networks,” in Proceedings of the IEEE Conference
on Decision and Control (CDC 2008). 1EEE, 2008, pp. 3613-3619.

[2] M. Draief and M. Vojnovic, “Convergence speed of binary interval
consensus,” in Proceedings of the Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOC®M 2010), San Diego
California, March 15-19, 2010.

[3] A. Kashyap, T. Bagar, and R. Srikant, “Quantized consensus,” Automat-
ica, vol. 43, no. 7, pp. 1192-1203, 2007.

[4] E. Perron, D. Vasudevan, and M. Vojnovic, “Using three states for
binary consensus on complete graphs,” in Proceedings of the Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2009). IEEE, 2009, pp. 2527-2535.

[5] F. Benezit, P. Thiran, and M. Vetterli, “Interval consensus: from
quantized gossip to voting,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2009).
IEEE, 2009, pp. 3661-3664.

[6] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, “On distributed
averaging algorithms and quantization effects,” IEEE Transactions on
Automatic Control, vol. 54, no. 11, pp. 2506-2517, 2009.

[7] CrossBow Technology Inc., “IRIS wireless measurement system
datasheet,” http://www.xbow.com/Product s/Productpdffile s/Wirelesspdf/
IRISDatasheet.pdf.

[8] Crossbow Technology Inc., “Professional kit for wireless sensor net-
works,” http://www.xbow.com.

[9] TinyOS Community Wiki, “Mote-PC serial communication,”
http://docs.tinyos.net/tinywiki/index.php?title=Mote- PC_serial_
communication_and_SerialForwarder&redirect=no.

, “TOSSIM simulator,” http://docs.tinyos.net/tinywiki/index.php/

TOSSIM.

A. Mostefaoui, M. Raynal, and F. Tronel, “From binary consensus

to multivalued consensus in asynchronous message-passing systems.”

Information Processing Letters, vol. 73, no. 5-6, pp. 207-212, 2000.

K. Akkaya and M. Younis, “A survey on routing protocols for wireless

sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325 — 349,

2005. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1570870503000738

L. J. Garca Villalba, A. L. Sandoval Orozco, A. Trivio Cabrera, and

C. J. Barenco Abbas, “Routing protocols in wireless sensor networks,”

Sensors, vol. 9, no. 11, pp. 8399-8421, 2009. [Online]. Available:

http://www.mdpi.com/1424-8220/9/11/8399

S. Singh, M. Singh, and D. Singh, “Routing protocols in wireless sensor

networks—a survey,” [nternational Journal of Computer science and

engineering Survey (IJCSES), vol. 1, no. 2, pp. 63-83, 2010.

J. Kenyeres, M. Kenyeres, M. Rupp, and P. Farkas, “WSN implementa-

tion of the average consensus algorithm,” in Proceedings of the Wireless

Conference 2011 - Sustainable Wireless Technologies (European Wire-

less). VDE, 2011, pp. 1-8.

R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in

networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,

pp. 215-233, 2007.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

1342

