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Abstract-In this work, we adapt the binary consensus algo­
rithm for use in wireless sensor networks. Binary consensus is 

used to allow a collection of distributed entities to reach consensus 
regarding the answer to a binary question and the final decision is 
based on the majority opinion. Binary consensus can playa basic 
role in increasing the accuracy of detecting event occurrence. 
Existing work on the algorithm focuses on simulation of the 
algorithm in a purely theoretic sense. In this work, we modify 
the algorithm to function in wireless sensor networks by adding a 
method for nodes to determine who to communicate with as well 
as adding a heuristic for nodes to know when the algorithm has 
completed. We implement and test our algorithm in real wireless 
sensor motes and further support our results with a wireless 
mote simulator. 

Index Terms-Binary Consensus, TinyOS, Wireless Sensor 
Networks. 

I. INTRODUCTION 

Algorithms for cooperative decision making have received 

significant attention in recent years from the theoretical com­

puter science community. In these algorithms, a network of 

agents seeks to reach a decision and ensure that all nodes in 
the network know the final decision. One such algorithm in 

this area is binary consensus [1], [2]. Under binary consensus, 

the nodes in the network must simply agree on whether 
a statement is TRUE or FALSE. For example, a network 

of nodes capable of detecting natural gas could use binary 

consensus to answer the question "Is the amount of gas in the 
air greater than 10,000 ppm?" in order to help detect a gas 

leak in a gas processing center. 

In the binary consensus problem, each node has an initial 

state of either 0 (false) or 1 (true), and the nodes should, 

in a distributed fashion, decide which one of these values is 
currently held by the majority of the nodes in the network. 

The existing algorithm for binary consensus has two lim­
itations. First, it doesn't specify how nodes find partners to 

run the algorithm with. Second, it doesn't provide a way 
for an individual node to determine when consensus has 
been reached. In order to implement the algorithm in a real 

distributed network, these limitations must be overcome. 

Wireless sensor networks consisting of small, embedded 

devices (called motes) provide an excellent platform for binary 
consensus. Motes contain sensors that can be used collect data 

about their environments, and can communicate with each 

other wirelessly. Due to limitations regarding their size and 

power, sensor motes are computationally weak and should 

limit the number of packets they send. 

In this paper, we propose a set of modifications to binary 

consensus that will allow it to operate in the context of 

wireless sensor motes having the limitations described above. 
Our modifications consist of changing how motes decide who 

to communicate with and also adding a heuristic to help 

motes estimate when consensus has been achieved. We have 
implemented our algorithm in a set of TinyOS based sensor 

motes and verified our algorithm functions both in hardware 
and in simulation. 

II. BACKGROUND 

In this section we will give a brief overview of binary 
consensus and potential applications of it to wireless sensor 

networks (WSNs). Due to space constraints we do not provide 

an intensive background on WSNs, but instead assume the 
reader is familiar with the topic. 

A. Binary Consensus 

There are a variety of algorithms that are meant to allow 
a network of distributed nodes to reach consensus in a com­

putation. In this work, we are specifically concerned with the 
problem of binary consensus [3], [4], [5], [6], where each 

node in the network holds one of two states and the algorithm 

allows all nodes to learn which state is held by the majority of 
nodes. There are many applications of such an algorithm, such 

as determining if the majority of sensors in a network have 

observed a certain event. Two strengths of binary consensus 
are that it is guaranteed to the correct conclusion [5], and that 

there is an upper-bound on the time to convergence [2]. 

Under binary consensus, nodes in the network start with 

their initial state and then update their state with each other 
based on an updating protocol. Convergence occurs when 

all nodes agree on the majority opinion. When two nodes 

communicate and run the updating protocol, they compare 
current states and then each assume a new state based on what 

they have seen. While the algorithm is running a node may be 
in one of four states, which can be described informally as: 

1) 0 - The node believes the majority opinion is most likely 

false. 
2) eo - The node believes the majority opinion might be 

false. 
3) el - The node believes the majority opinion might be 

true. 
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Fig. 1: Example of binary consensus algorithm functionality 

4) 1 - The node believes the majority opinion is most likely 
true. 

The updating protocol, as quoted from [2], is as follows: 

Each node is in one of four states: 0, eo, el, 
and 1. The states satisfy the following order 
o < eo < e1 < 1. At each contact of 

a pair of nodes, their respective states x and y 
(without loss of generality) ordered such that x ::::; y, 
are updated according to the following mapping 

(x,y) H (x',y') defined by 

(O,eo) -+ (eo,O) 
(O,ed -+ (eo,O) 
(0,1) -+ (el,eO) 

(eo, ed -+ (el,eO) 
(eo, 1) -+ (1, ed 
(e1' 1) -+ (1, ed 
(s,s) -+ (s,s),for s = 0,eo,e1,1. 

Convergence occurs when all nodes have states E {O, eo} 
or E {e 1, I}. This means that if all nodes in the network have 

state 0 or eo, then the network has converged and the majority 

of nodes initially held the value O. Likewise, if all nodes in the 
network have state el or 1, then the network has converged 

and the majority of nodes initially held the value 1. 
The following example illustrates the functionality of the 

algorithm. Consider that there is a network with 4 nodes, 1, 

2, 3 and 4 having initial states of (1; 0; 0; 0) respectively 

as shown in Fig. lea). The first interaction happens between 
nodes 1 and 2 and the state of node 1 becomes eo while the 

state of node 2 will be e 1. (This is according to the rules 
given above.) So the new sequence of states will be (eo; 
el; 0; 0). Next, the second interaction is between nodes 3 

and 4 as shown in Fig. l(b); they communicate and nothing 
happens since they both hold the same state. Now, nodes 1 

and 2 communicate again as depicted in Fig. l(c), and their 

states are swapped leading to (e1; eo; 0; 0). Nodes 2 and 3 
communicate as illustrated in Fig. led) and also swap their 

states: (el; 0; eo; 0). Finally, node 1 communicates with node 

2 as shown in Fig. l(e) leading to the converged states (0; eO; 
eO; 0) illustrated in Fig. 1(f). We consider this set of states 

TABLE I: Packets used during mote-to-mote communication. 
M1 and M2 are motes in the communication. 

I Packet I Payload I Description 

PI MI State M I sends this packet to all motes in range. 
P2 M2 State M2 replies to MI by sending this packet. 
P3 - M I sends this packet to M2 in order to confirm 

that its state update was successful. 

converged because all nodes have value 0 or eo. This means 

that the majority of nodes initially held state O. 
It is important to note that even though convergence has 

occurred, the nodes continue to communicate and exchange 

states. This is because individual nodes do not have global 

knowledge of the states of all others, and therefore cannot be 
certain whether convergence has occurred. Absolute certainty 

regarding convergence would require global knowledge. 

B. The Usage of Binary Consensus in Real World Applications 

There are several applications in which the binary consensus 

algorithm may be used to accomplish a certain decision. 

Consider a scenario when having a network of sensors 

capable of detecting the presence of an object using a camera. 

Then binary consensus algorithm can be applied to such a 
network in order to increase the accuracy of the final decision 

by taking the opinion of the majority motes. Security, military 
and hazardous locations are some examples of such scenario. 

Another scenario where binary consensus can be used is 

in detecting gas leaks. For example, if there is a network 
consisting of gas sensors, and some sensors detect that there 

is gas leaking in one of the gas tanks, then binary consensus 

can be applied to such network to increase the accuracy of the 
final decision which based on the sensors' majority opinion. 

III. DESIGN AND IMPLEMENTATION 

While the binary consensus algorithm described in [2] and 
Section II-A provides a complete specification of how nodes 

should update their states, it leaves two important things un­

stated which are vital for implementing the algorithm in WSN. 
First, the algorithm does not discuss how individual nodes 
find a partner to update states with. Second, the algorithm 

does not provide a method for individual nodes to determine 
when convergence has occurred. In this section we will discuss 

modifications to the binary consensus algorithm that will allow 
us to provide both of these pieces of missing functionality. 

A. Mote-to-Mote Communication 

The motes that are part of a WSN do not, by default, have 
any awareness of the identities of any other motes in the 

network. Motes learn the identities of those around them by 

simply broadcasting and listening to messages. In this case, 
how does a mote determine who to communicate with and 

update its state? In our solution motes will randomly broadcast 
to their neighbors (other motes within range of receiving their 

wireless packets) in order to find partners. 
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Fig. 2: Stage transition diagram of the communication algo- Fig. 3: Simple example of mote communication state updates 

rithm 

Fig. 2 illustrates a stage transition diagram of our commu­

nication algorithm 1. Table I describes the types of packets sent 
and received during the algorithm. Our stages can be described 

as follows: 

• Stage 0: After initialization, all motes start at Stage O. 

During this stage, a mote will determine its initial state 

(0 or 1) and set a random timer that will decide when 

the mote will wake-up and broadcast information to its 
neighbors. If a mote is still in this stage when that timer 

fires, then it will transition to stage 3. If, instead, it 

receives a PI packet from another mote, then it will 
transition to stage 1. 

• Stage 1: After receiving PI, the mote will reply with 
a P2 packet containing its current state. This signifies 

to the sender that this mote is available to exchange 

state information. After sending P2 the mote will wait 
for a reply. During this time the mote will ignore any 

packets from other motes. After receiving a reply, the 

mote transitions to stage 2. If no reply is received after 
a suitable timeout, the mote returns to stage O. 

• Stage 2: When the mote receives P3, it will update its 
state using the rules previously described. At this stage 

both motes in the communication have updated their 

states. After this, the mote is free to communicate with 

another mote, and as such starts a timer and also waits 

for a potential PI packet, just as in stage O. 

• Stage 3: In the event a mote has not been contacted by 
others, then eventually its own random timer will fire. In 

this case, the mote transitions to stage 3. After the timer 
fires, the mote will broadcast PI and will wait to receive 

a packet of type P2. Once it receives it, it moves on to 

stage 4. 
• Stage 4: After receiving P2, which contains the other 

mote's current state, the mote will update its state using 

the rules previously described. Next, it will send P3. 
lThe astute reader will note that this is a state transition diagram with the 

word "stage" substituted for "state". This is to prevent confusion between the 
state of the mote (meaning 0, eo, q, or 1) and the stage of the algorithm the 
mote is currently running. 

After this, the mote is free to communicate with another 

mote, and as such starts a timer and also waits for a 
potential PI packet, just as in stage O. 

Fig. 3 illustrates a simple example of how the motes 

communicate to update their states. Assume that we have 3 
motes: 1, 2, and 3. All motes are initially in stage 0, waiting 

to either receive a packet or for their individual timers to fire. 

After a time, the timer on mote 1 fires and mote 1 broadcasts 
PI to all its neighbors. Both mote 2 and mote 3 receive the 
broadcast. Mote 2 receives PI first, and sends P2 in reply. 
Mote 1 receives the reply and updates its state accordingly. 

Shortly after that, mote 3 also sends P2, however since mote 

1 received mote 2's reply first, it drops the reply of mote 3. 
Next, Mote 1 sends P3 to mote 2, who receives it and updates 

its state as well. 
Note that we have not discussed packet loss in our example. 

Packets P2 and P3 are automatically acknowledged and resent 
if lost. We make use of the acknowledgement features built 

into the radio unit of our IRIS motes in order to accomplish 

this, and we leave the details out of our description of the 
protocol for the sake of clarity. PI is not acknowledged 

because it is a broadcast packet. 

B. Estimating Convergence 

In standard binary consensus, nodes continue to run the 

algorithm even after convergence has occurred. This is because 
individual nodes have no way of knowing that the algorithm 
has converged. From an individual node's perspective, the 

algorithm does not have a stop condition. 
In a wireless sensor network, this is unacceptable. In order 

to save power, it is vital that sensor motes know when to stop 
communicating. As such, we have designed a tunable heuristic 

that will allow motes to estimate when convergence occurs. 
Whenever a mote updates its state, it also keeps track of 

the last N states that it has held. In the event that the mote 

has not significantly changed its guess for the last N state 
changes (meaning that all of the old states E {O, eo} or E 

{el' I}) then the mote estimates that convergence may have 
occurred. In this situation the mote will disable the timer it 

uses to randomly wake-up and broadcast PI. In the event 
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the network has actually converged, very quickly all motes 

will disable their timers and communication will cease. In the 

event the mote was incorrect; however, and the network has not 

converged then the mote is still able to respond to PI packets 

it receives and participate. If, during one of these responses, 
it goes through a significant state change, it will reactivate its 

timer. 
It is important to note that while this heuristic allows 

the algorithm to stop sending packets, it also removes the 
guarantee that convergence will occur correctly because there 

is a possibility that all motes could incorrectly assume con­

vergence. This means that the value chosen for N is very 
important. If it is too low, then "false convergence" could 

occur. If it is too high, then needless packets are sent. The 
issue of choosing N is discussed further in Section IV. 

IV. EXPERIMENTS 

We have implemented our algorithm in the IRIS family of 

sensor motes from the MEMSIC corporation [7], [8]. We used 
a development version of TinyOS (between versions 2.1.1 and 

2.1.2). Our implementation required about 400 lines of nesC 

code, including appropriate comments. 
We then tested our implementation both in hardware as well 

as in the TinyOS simulator TOSSIM. In this section we will 

discuss our testing methodologies and results. 

A. Hardware 

The binary consensus algorithm implementation was tested 
in 11 IRIS motes. The motes were placed indoors in a wide 

room as well as on an accompanying spiral staircase. Fig. 4 

shows the layout of the motes deployment as well as the 
dimensions of the room where they were placed. The goal of 

the placement was to ensure that the network, while connected, 
was not fully-connected. Similar configurations containing 

fewer motes were also tested. 
Five trials (signified Tl - T5 in the table) were performed for 

each configuration of motes. Each trial contained a different 

distribution of initial states (either I or 0) for the motes. In 
Tl, initial states were distributed in such a way that if a mote 

had a value of 0 then its neighbor would have a value of 1. 
This configuration is close to optimal for the algorithm, as the 

mote will directly communicate with the neighbor motes that 

TABLE II: Convergence time and N values for hardware 
motes 

Motes T1 T2 T3 T4 TS AVG N 
5 33.5 8 36 s 39.5 s 40.5 8 41.8 s 38.3 8 5 
7 45 8 57 s 628 63 S 81 8 63 8 7 
11 928 98 S 100 8 116 s 1468 1108 10 

hold the opposite state and the majority value will be spread 
through the network faster. In T5, all Os were concentrated 

to one side of the network while the Is were concentrated to 
the other. This mimics a worst case scenario. In both cases, 

the number of Is in the network is very close (within 1 or 

2) to the number of Os in the network. T2 - T4 made use 
of distributions that slowly shift from Tl to T5. (Tl is the 

"easiest" distribution, T2 is slightly more difficult, etc.) 
In order to verify the correctness of the algorithm as well as 

to measure the time to convergence, one additional mote was 

programmed as a base station using the BaseStationl5.4 appli­
cation provided as part of TinyOS [9]. The mote programmed 

with this application was connected to a laptop via a serial 

link and was able to "sniff' all packets sent and received in 
the network. 

The time to convergence was calculated manually by mon­

itoring the packets sent and received from the serial readings 
received at the base station. The motes were turned on and a 

manual timer was started once the packets started to appear in 
the monitor. After reaching our heuristic for consensus, motes 

will stop initiating communication and eventually no packets 

will be sent over the network. We considered the network 
converged at the time the last packet was sent by any mote in 

the network. In addition, the correctness of convergence was 

verified. 
Beyond just convergence time, the value for the tunable 

convergence heuristic, N, was also experimented with. In our 
testing we observed that a suitable value for N was related to 

both the size of the network and the initial distribution of I and 

o states within the network. For each network configuration, 
a suitable N was experimentally chosen which ensured the 

network converged properly. 
Table II shows the results of the hardware testing for 5, 

7, and 11 motes. As would be expected, as the number of 
motes increases so does the convergence time. In addition, 
as the distribution of initial states becomes more difficult, the 

convergence time increases as well. 

B. Simulation 

In order to test our algorithm with a larger number of 

motes in other topologies, we also made use of the TinyOS 

SIMulator (TOSSIM) to gather additional results. TOSSIM 
simulates motes running the TinyOS platform, complete with 

network functionality and packet loss. 
When simulating packet loss, TOSSIM takes as input a 

noise model as well as signal strength between motes. For 

our experiments we made use of the TOSSIM supplied meyer­

heavy noise model originally derived from experiments done at 

the Meyer Library at Stanford University. The model includes 
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hardware noise floor readings and points of interference [10]. 

For the signal strength between motes we made a simplifying 
assumption of -55 dB for all connections. 

We tested a variety of topologies. First, we replicated the 

topology of our hardware testbed used above for 5, 7 and 

11 motes. We also simulated both max-3 neighbors and ring 
topologies for 5, 7, 11, 20 and 30 motes. Samples of the 

topologies can be found in Fig. 5. 

The distribution of initial states for trials Tl - T5 follows 

the same pattern described for hardware testing. (Tl resembles 
the optimal initial state distribution of Is and Os while T5 

resembles the worst case.) 

The H-Sim section of Table III shows the hardware topology 
simulation results for 5, 7, and 11 motes. Recall that this 

topology matches that of the real hardware network described 

above, so we would expect similar results as in the hardware 

experiments. Comparing the results of the hardware and the 

simulation, we can see that the simulation convergence time is 

much larger than that of the real hardware. After investigation, 
we determined that this is due to the fact that the meyer­

heavy noise profile results in a simulated network with much 
higher packet loss than found in our hardware test. This 

results in much higher convergence times due to the extensive 

retransmission that must occur for lost packets. 

The Max-3 section of Table III shows the results for the 
max-3 neighbors topology. Fig. 5b shows a max-3 neighbors 

topology with various "areas" labeled. As would be expected, 

as the number of motes increases so does the convergence 
time as well as the required N. In Tl, the distribution of 

0' s and l's are spread uniformly across the network, and the 

convergence time is fast and the required N value is low. For 
T5, however, entire "cells" of motes (such as 1, 2, 3, etc. in 

the figure) are all assigned the same state, with adjacent cells 
having opposite assignments. In this case, the motes require 

more time to converge and have a higher N value. 

TABLE III: Convergence time and N values for simulation 
experiments 

Motes T1 T2 T3 T4 TS AVG N 
E 5 55.4 s 67 s 69 s 74 s 80 s 69 s 7 
Vi 7 L09 s 165 s 173 s 222 s 290 s 192 s 20 :i: II 180 s 220 s 317 s 453 s 530 s 340 s 25 

5 39 s 40 s 45 s 49 s 60 s 46.6 s 7 
'" 7 76 s 95 s 110 s Ito s 113 s toO s 10 
.< '" II 79 s 79 s 118 s 133 s 153 s 112 s LO 
::E 20 L08 s 195 s 227 s 240 s 353 s 201 s 15 

30 242 s 251 s 268 s 275 s 342 s 274 s 20 
5 33 s 40 s 43 s 44 s 56 s 43.2 s 5 

00 7 43 s 49 s 59 s 66 s Ito s 83 s 5 
t: II 67 s 82 s 87 s L04 s 165 s LOI s 7 C2 

20 113 s 180 s 246 s 293 s 480 s 262 s 20 
30 298 s 360 s 409 s 534 s 560 s 432 s 25 

The Ring section of Table III shows the results for the 
ring topology. For small numbers of motes (5, 7 and 11) the 
convergence time as well as the N value are better than in 

max-3 neighbors. However, as the number of motes increases, 
the time of convergence as well as the value of N increase 

rapidly as well. In the worst case, reaching t =560 seconds for 

30 motes. Much like the previous experiment, the initial states 
also impact convergence time. For example, with 20 motes, the 

difference in time between Tl (where all initial states were 

alternated among neighbors) and T5 (where the left and right 
halves of the rings had the initial states concentrated) was 

around 400%. 

The simulation results also show that for small numbers of 

motes (5, 7 and 11) the convergence time as well as the N 
value is better in ring topology than in max-3 neighbors topol­

ogy. For larger numbers of motes; however, this advantage is 

lost. In this case, max-3 neighbors converges faster and has a 
smaller N value than ring. This is due to the fact that as the 

ring becomes larger, it takes significantly more time for state 

changes to propagate completely around the ring. 

V. DISCUSSION 

In this section we will discuss the complexity of our 

algorithm, potential improvements, and related work. 

A. Complexity Analysis 

The complexity of our algorithm varies depending on the 
topology of the network. In the case of a fully connected 

network, consider that the network consists of N motes. On 
average, each mote would send packets to (N - 1) other 

motes within the network. This makes the average complexity 

for this case: 

O((N)(N - 1)) (1) 

Which reduces to: 

(2) 

B. Related Work 

There is a plethora of related work on binary consensus [3], 
[4], [5], [6], [2], [11]. Mostefaoui et al. [11] proposed an 

algorithm in asynchronous systems with crash failures. In their 
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algorithm, every process runs a series of binary consensus sub­
routines sequentially to solve multivalued consensus. Binary 

consensus is deployed as distributed averaging on a network. 

The applications of this algorithm include coordination of 
autonomous agents, estimation, and distributed data fusion on 

ad-hoc or social networks. In [5], the algorithm is proven to 
converge to the correct solution with probability 1. In [2] the 

authors derive an upper-bound on the expected convergence 

time for a variety of network topologies, including complete 
graph, star, and Erdos-Renyi random graphs. 

There is a large amount of existing work on routing pro­

tocols [12], [13], [14] in WSNs. In theory, these protocols 

could be used to create the effect of a fully connected topology 

and allow a different design to our algorithm. This paper is 

concerned with developing a binary consensus algorithm that 
functions without requiring the complexity of a full routing 

protocol. In future work, an alternative algorithm making use 
of a full routing protocol could be compared to this one in 

terms of energy efficiency and accuracy. 

Most similar in concept to this work, Kenyeres et al. [15] 

performed a hardware implementation of the average consen­
sus algorithm proposed in [16]. In average consensus nodes 

are attempting to converge on the average of all values held 
by nodes. They detect consensus by defining an accuracy 

parameter and declaring a counter that is increased whenever 

a node's value is changed. They assume that if the value of 
the node is changed in small intervals less than the defined 

accuracy parameter, or if the value is the same 3 times, then 

convergence has been achieved. Their work makes a crucial 
simplifying assumption that ours does not: They assume that 

the network topology is fully connected (every node can 
communicate directly with every other node). This assumption 

greatly simplifies their algorithm, but limits the size of the 

network it can support. 

C. Limitations and Future Work 

Our algorithm does note not guarantee a correct conver­

gence. This is due to the fact that convergence is detected in 

our implementation based on the heuristic value N. Choosing 
an appropriate value of N reduces the probability of incorrect 

convergence. Our algorithm testing showed successful results 
of a correct convergence in both hardware and simulation, 

however care must be taken to choose a correct value of N 
when deploying this algorithm. 

Future work in this area should include an analysis of this 

algorithm in the presence of an attacker, evaluation on a larger 

hardware testbed, a more thorough analysis of the effects of 
the N value, and applying the concepts from this algorithm 
to other consensus algorithms. 

VI. CONCLUSION 

In this work, we have adapted the binary consensus algo­
rithm for use in wireless sensor networks by specifying how 

motes find partners to update state with as well as by adding 
a heuristic for individual nodes to determine convergence. 
We have evaluated our algorithm in hardware using 11 IRIS 

sensor motes and have further supported our results using the 
TOSSIM simulator for other topologies. The hardware as well 

as the simulation results show that the convergence speed 

depends on the topology type, the number of nodes present 
in the network, and the distribution of the initial 0 and 1 
states. Our simulation results showed that the max-3 neighbor 
topology converges faster than the ring topology for networks 

with more than 11 nodes, while the ring topology converges 

faster when the number of nodes is less. 
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