Clustered Binary Consensus in Sensor Motes

Noor Al-Nakhala Ryan Riley Tarek Elfouly
Qatar University Qatar University Qatar University
Doha, Qatar Doha, Qatar Doha, Qatar
nalnakhala@qu.edu.qa ryan.riley @qu.edu.qa tarekfouly @qu.edu.qa

Abstract—In this work, we extend and adapt the binary
consensus algorithm to operate using clusters in a wireless sensor
network. Binary consensus is a decision making algorithm used to
cause distributed entities to agree on the majority opinion held by
the group when posed with a true or false question. Clustering
is a common technique used in WSNs to increase the overall
lifetime of the network by reducing energy consumed due to
communication. Our clustered binary consensus implementation
is tested using a large WSN testbed, and the experimental results
show that incorporating clustering into the binary consensus
algorithm reduces the time required for motes to reach consensus
and lowers the number of packets sent in the network by
approximately 94 %.

Index Terms—Binary Consensus, TinyOS, Wireless Sensor
Networks.

I. INTRODUCTION

Cooperative decision making algorithms are used to solve
the problem of consensus on a distributed computing network
without making use of a central sink. In trying to reach
consensus, a network of agents are attempting to corporately
and individually determine a value that is contributed to
by all motes in the network. For example, a network of
temperature sensing motes could use a cooperative decision
making algorithm to determine the average temperature seen
by all motes in the network. One specific algorithm in this field
is binary consensus [1], [2]. In binary consensus, all motes
are attempting to learn the majority opinion of a yes or no
question. Continuing the temperature example, all motes might
want to know the answer to the question “Do the majority of
motes in the network see a temperature higher than 27C?”

Work in the area of distributed, cooperative decision making
algorithms tends to focus on formal mathematical models
and studies involving simulation [3]. This is because of the
many complexities involved in testing the algorithms on actual
distributed computing devices such as wireless sensor motes.
Real world factors such as energy usage, lost packets, mote
reach-ability, and others make the work more difficult than in
simulation.

In our previous work [4] we adapted the binary consensus
algorithm to operate in a WSN. Our implementation involved
all motes communicating randomly with their neighbors and
using a set of predefined rules [1] to exchanges their current
states and eventually reach consensus. The implementation
was tested using a variety of network topologies such as ring,
max-3 neighbors and random. The experiments focused on

exploring the convergence time of the network with varying
topologies, initial state distributions, and number of motes.

In this work, we further develop binary consensus in
WSNs by reducing energy consumption and convergence time
through the use of clustering. This involves adapting the
algorithm to allow a cluster head to efficiently compute the
correct states of its cluster members and exchange those states
properly with other cluster heads. We test our implementation
using a 139-mote TinyOS-based testbed and verify that our
new implementation is indeed faster and more energy efficient
than our previous work.

II. RELATED WORK

In this section we will present related work in the areas of

binary consensus, implementations of consensus algorithms,
energy Usage in WSNs and clustering in WSNs.
Binary Consensus There is a significant amount of related
work in the area of binary consensus [1], [5], [6], [7], [8],
[9]. Mostefaoui et al. [9] studied the algorithm with crash
failures to solve multivalued consensus. This is achieved by
running a series of binary consensus subroutines in order
to determine the average. They used binary consensus as
distributed averaging on a network. The use of this algorithm
might include social networks, distributed data fusion, and
coordination of autonomous agents.

In [7], they proved that the algorithm converges correctly
with probability 1.

An upper-bound on the convergence time of binary con-
sensus is derived in [1] for a variety of topologies such as
complete graph, star, and Erdos-Renyi random graphs.
Consensus Algorithm Implementations In [10], the authors
have done a hardware implementation of the average consen-
sus algorithm proposed in [11]. In average consensus nodes
converge to the average of all the values held by the network.
In their solution, the algorithm reaches consensus by defining
an accuracy parameter and declaring a counter that will incre-
ment once the mote’s value is changed. In their assumption,
if the value changes in small intervals less than the accuracy
parameter, or if the value did not change 2 times, then the
motes have converged. They made a simplifying assumption
of a fully connected topology which limited the size of the
network. Moreover, the usage of their algorithm in WSNs is
limited because their proposed algorithm is synchronous and
forces the updates to be synchronous.

Another work done in the area of hardware implementation
of consensus algorithms is proposed in [12]. The authors
performed a hardware implementation of the decentralized
consensus algorithm. The decentralized consensus algorithm
is also known as self-organization since the nodes have the
ability to self organize and collect data over the network. The
authors have continued the theoretical work done in [13] to
function well in a hardware implementation with discrete time.
They have also adjusted the number of iterations appearing
in [14] in order to achieve consensus in less time. They
implemented their approach in 12 sensor motes for fully and
partially connected topologies.

Energy Usage in WSNs Significant research effort has fo-
cused on finding ways to optimize sensor energy consumption
in the network by making it a priority to minimize the number
of packet sent within the sensor network. For example, [15]
produces a model that controls the number of packets sent in
the network resulting in the reduction of the energy consumed.
This is achieved by providing a way for the transmitter to
dynamically regulate its transmission power in a way that the
requested signal to noise ratio can be accepted at the receiver.
In the end, total energy consumption in the sensor network
was reduced by 15% to 38%.

In [16] the authors propose an adaptive energy saving and
reliable routing protocol which aims to adjust the node routing
to other nodes since each node may contain several routes to
the destination. In this solution, only one route for a destination
is kept in the routing table and the selection of best route is
based on link weight.

Watteyne et al. [17] propose a reactive approach to neighbor
detection that reduces energy usage by removing periodic
Hello messages between neighbors using a handshaking
scheme combined with a energy efficient MAC protocol.

Clustering There has been a lot of work in the area of
clustering. The most famous WSN clustering algorithm is
LEACH [18]. In LEACH the nodes decide to be a CH based
on a probability and the normal nodes join their clusters based
on the minimum communication energy. CH selection changes
periodically between the nodes by choosing a random number
between 0 and 1. The chance for a CH to be selected again
if the number is less than the calculated threshold. Because
selection of the CH is based on probability, the chance of
selecting a node with low energy as a CH is increased. As
when the CH dies, the whole cluster becomes useless.

In [19] the authors proposed HEED, which improves the
life time of the network over LEACH. The CH is selected
by adding extra network information such as residual energy.
Then the CHs send messages to their neighbors including a
secondary constraint that measures the node degree. This is
used to let the normal nodes chose the best cluster to join.
After that, the selection of the CHs in later rounds is based
on the probability correlated with residual energy. In HEED,
the selection of low energy nodes as CHs in heterogeneous
environments may give larger probability than selecting the
high energy nodes.

II1. BACKGROUND

In this section we will give a brief overview of binary
consensus and our previous work on binary consensus in
wireless sensor networks.

A. Binary Consensus

While there are many distributed, cooperative decision mak-
ing algorithms currently being researched, in this work we
focus on the problem of binary consensus [5], [6], [7], [8].
In binary consensus, each node holds one of the two states,
either 0 or 1, and the algorithm allows each individual node
to know which value is held by the majority of nodes in
the network. Previous theoretical research has demonstrated
important properties of the algorithm. In [1] it was shown
that there is an upper-bound to convergence time and in [7] it
was proven that binary consensus always reaches the correct
conclusion.

In binary consensus, nodes inside the network start with
their initial assumption, 0 or 1, and then they communicate
with each other and update their states based on an updating
protocol. Convergence occurs when all the nodes inside the
network agree on the majority opinion. In general, when two
nodes in the network communicate together they update their
current state based on the state of their partner. Then, they
communicate with a different partner and updates their state
again. After this has occurred enough times, all nodes end up
agreeing on the majority opinion.

There are four valid states that a node might hold at any
given moment [4]:

1) 0 — The node believes the majority opinion is most
likely false.

2) eg — The node believes the majority opinion might
be false.

3) e; — The node believes the majority opinion might
be true.

4) 1 - The node believes the majority opinion is most
likely true.

When two motes communicate together in order to exchange
and update their states, they follow the following updating
protocol, quoted from [1]:

Each node is in one of four states: 0, eg, eq,
and 1. The states satisfy the following order
0 < e < e < 1. At each contact of
a pair of nodes, their respective states z and y
(without loss of generality) ordered such that x < y,
are updated according to the following mapping
(x,y) — (2',y') defined by

(0,e0) — (e0,0)
(0,61) — (6(),0)
(0,1) — (e1,e0)
(60,61) — (61,60)
(60, 1) — (1,61)
(61, 1) — (1,61)
(575) - (575)7for5:0;e();6171

If all nodes inside a network have states belonging to 0 or eg,
then the network has converged to opinion 0, which means 0
was initially held by the majority of nodes. Similarly, if all
the nodes hold states belonging to 1 or e, then the network
has converged to opinion 1, which means 1 was initially held
by the majority of nodes.

B. The Usage of Binary Consensus in Real World Applications

When applied to real scenarios, binary consensus can be
used in situations where motes individually determine a binary
answer to a question, and yet must determine the decision
held by most motes in the network. For example, consider a
scenario where there is a network able to detect the presence of
an object by using camera. In this case, the binary states would
be “I see the object” or “I don’t see it”. Binary consensus could
be used to determine when a majority of sensors see the item.
Another scenario could involved a network of sensors capable
of detecting the spread of gas leaks in a refinery situation. In
this, the binary states would be whether or not a mote senses
gas. Binary consensus could help determine when the leaking
gas has spread to the majority of sensors.

C. Our Previous Work

In [4], we took a mathematical model for binary consen-
sus [1] and adapted it for use in WSNs. This involved mod-
ifying the algorithm to include a stop condition (the original
algorithm runs forever, which is inefficient in WSNs) and a
method for motes to determine who to exchange states with
(the original algorithm assumed a fully connected network,
which is unreasonable in WSNs).

A stop condition was added by including a tunable heuristic
variable, N, which is used to allow a mote to estimate when
convergence has occurred. If a mote has not substantially
changed its state in the last IV state updates, then it assumes
convergence has occurred and stops initiating communication
with other motes. It will still respond to other motes, how-
ever. In this way, all motes in the network eventually stop
communicating and convergence is finalized.

Motes determine who to communicate with by randomly
selecting a free neighbor. This is done by having motes
periodically wake up, broadcast their state, and wait for a
response. When motes receive a broadcast from a neighbor,
they reply after a random timeout value. This ensures that,
over time, a mote communicates with all of its neighbors.

We tested our algorithm successfully on 11 hardware sensor
motes and further supported our results with simulation by
testing our algorithm in a max-3 neighbors topology, a ring
topology and a simulated hardware topology with 30 motes. In
follow-up testing, we extended our results to test our algorithm
on a large hardware sensor motes of 139 motes and we were
able to further lower the convergence time.

IV. COMMUNICATION

In order to adapt binary consensus to properly make use of a
cluster configuration, a number of modifications are required.

’ Q \
/ \
/ \
/ ’ \
| . 1
[O =)

I}
\\ Cluster 1 /

\

N Cluster 2,7
N -
~o -
s~ N
’ AN

; O™

\
! \
! - -]
1 O O]
\ !
\
\ /

\

Cluster 4 Cluster 3|

Fig. 1: Cluster formation

Stage 3
Stage1 Receive P1) « Receive P1 9
« Timeout Receive P3
A
Receive P1
o
<
§
<
States "_g %
Ve
~ v

Fig. 2: Intra-cluster communication stage transition diagram

First, communication must be split into inter-cluster and intra-
cluster. Second, the state update rules and calculations must be
modified to be run by cluster heads on behalf of their cluster
members.

We would like to note that the technique used to produce
clusters is not the focus of this work. We assume that the motes
are already grouped into clusters using an existing clustering
scheme, and we will focus on how clustering impacts binary
consensus.

A. Inter-Cluster Communication

When the algorithm begins, all the motes within a cluster
send their current state directly to their cluster head (CH).
Motes communicate only with their CH, not directly with each
other.

Fig 1 shows the clustering model we are assuming. The
network is split into clusters where each cluster has a CH that
is able to directly communicate with each of its members.
We do not consider how clusters are formed in this work.
We assume that they already exist, and our algorithm simply
makes use of them. Clusters could be formed using existing
clustering techniques such as LEACH [18] or HEED [19].

B. Intra-Cluster Communication

After all the motes have sent their states to the CH, the
CHs communicate together using a modified version of binary

TABLE I: Packets used during intra-cluster communication.
CH1 and CH2 are cluster heads in the communication.

| Packet | Payload | Description |

P1 CHI members’ states | CHI sends this packet to all CHs in
range.

P2 CH2 members’ states | CH2 replies to CHI by sending this
packet.

P3 - CHI1 sends this packet to CH2 in
order to confirm that its states update
was successful.

consensus in order to reach convergence for the network as a
whole.

Because the CHs don’t have an intrinsic knowledge of the
identity of each other, in our system they perform a random
broadcast to their neighbors in order to find a CH partner to
update states with.

Fig. 2 shows a stage transition diagram for an individual
CH running the algorithm. Table I describes the types of
packets sent and received during the algorithm. The stages
are described as follows:

o Stage 0: This stage starts after all the normal motes have
sent their states to their respective CH. Each CH runs a
consensus algorithm (described later in Section V) that
calculates the converged states of all motes within the
cluster. Next, the CH always transitions to Stage 1.

o Stage I: In this stage, the CH starts a random timer that
will decide when it should wake up and perform a P1
broadcast in an attempt to find a neighboring CH partner
to exchange states with. If a CH stays in this stage when
the timer fires, it will transition to Stage 4. However, if it
receives a broadcast (P1) from another CH, then it will
transition to Stage 2.

o Stage 2: When a CH in Stage 1 receives P1, it transitions
to Stage 2. The CH will reply to the sender of the broad-
cast with a P2 containing the current binary consensus
states of all of its members. It then waits for a reply. If
it receives P3 in reply, then it transitions to Stage 3. If
not, then after a timeout period it assumes that its partner
no longer wishes to communicate with it, and transitions
back to Stage 1.

o Stage 3: Once the CH receives P3, it knows that its
partner does want to update states. In addition, it also
knows the current states held by its partner (they were
sent previously with P1). At this point, the CH computes
the new states of itself and its partner using the algorithm
in Section V. The mote then starts a random wake-
up timer and resumes listening for another partner to
exchanges states with.

e Stage 4: This stage is entered if a mote’s random timer
goes off and it needs to broadcast to its neighbors. In
this stage the mote broadcasts P1, which contains all of
its current states. Once it receives a P2 reply from a
neighbor, it shifts to Stage 5 in order to proceed with
exchanging states with that partner.

e Stage 5: This stage strongly resembles Stage 3, just from

Pt Chy

Save State
°nd pg 4, .

Sey
Se

Save State
Seng Py
0o ¢,
H

s, Save State
end Py 1 cuy
2

_Seng ——
0% oy, | SaveState

Save State

Save State
Calculate New States for

Calculate New States for
All Cluster Members
All Cluster Members

Broadcast P1 containing GH1 members SN
current states
P2

Chi2 mermbers

Save State

Calculate New States for
All Cluster Members'

‘containing CH2
Reply by 5N ™% oy rent sale

mbers current states.

CH3 me
\y by sending P2 containing
Reply

Broadcast P1 containing CH2 members
current states

Fig. 3: Example of communication

the perspective of the other partner. In this stage the CH
uses the algorithm of Section V to compute new states
for itself and its partner. It then updates its own states,
sends P3 to its partner in order to confirm the update
has occurred, and starts a random wake-up timer while
listening for another partner to exchange states with.

C. Example

Fig. 3 illustrates a simple example covering both inter- and
intra-cluster communication.

Assume that we have 3 CHs: 1, 2, and 3. Each CH belongs
to one cluster and performs the task of updating states for its
members.

After initialization, each normal mote sends a packet con-
taining its initial state to its CH. For example, normal motes
belonging to CHI1 send their states to CHI1 and it saves the
state of each member. Then, each CH computes the converged
states for all members belonging to its cluster and starts a
random timer to start the intra-cluster communication.

In this example, CH1’s timer goes off before any of the
other CHs. So, it broadcasts P1 to all of its CH neighbors.
CH2 and CH3 both receive the broadcast from CHI1 and both
reply. However, the reply from CH2 is received first, so the
reply from CH3 is ignored.

CHI receives the P2 reply from CH2 and computes its own
new states based on the states of CH2. Next, CH1 sends P3
to CH2, who receives it and computes its own new states.

In this example we have not discussed packet loss for the
sake of clarity. We use the acknowledgement feature that
is already built in the radio unit of the motes in order to
automatically acknowledge and resend lost packets.

V. BINARY CONSENSUS CLUSTERING RULES

Now that we have discussed how motes communicate, we
will present the computations performed by CHs during that
communication.

In standard binary consensus, individual motes exchange
and update states based on fixed rules. In clustered binary
consensus, those rules are modified to allow a CH to efficiently
execute them on behalf of all the motes in its cluster.

There will be two different types of computations. First,
a CH may compute the binary consensus states for all of
its members (inter-cluster computation). Second, a CH may
compute the binary consensus states for all of its members and
the members of a partner cluster (intra-cluster computation).

A. Inter-Cluster Updating Rules

Within a cluster, the initial state of each member will be
either 0 or 1. The role of the CH is to calculate the new
states of all the members based on the majority opinion within
the cluster. The CH is effectively performing standard binary
consensus on behalf of its members. This prevents members
within a cluster from needing to communicate directly and
perform the computation themselves.

Given a set of 0 and 1 states S = (s1,82,83,...,8,), a
new set of states X = (z1,2,2s,...,2,) i computed that
reflects the converged set of states that would occur within
the cluster if all motes within the cluster were allowed to run
binary consensus to completion.

The states in X are defined by the following equations:

N=M-m (1)

Where M is the number of nodes that initially hold the
majority opinion in S, m is the number of nodes initially
hold the minority opinion in S, and N is the number of states
in X that hold the majority opinion (0 or 1) from S.

U=T-N 2)

Where U is the number of nodes that should hold undecided
state ey or e; based on the majority opinion of S, and T is
the number of members inside a cluster.

For example, assume there exists a cluster C' consists of 6
members m1, m2, m3, m4, mb, m6, initially holding states
(0,0,0,0,1,1). In this case, the majority of nodes in the
cluster hold the opinion 0. The number of nodes initially
holding 0 is four, while the number of nodes holding the
minority opinion is two. Using equations 1 and 2 above we
find that N = 2 and U = 4. This means that in the final
set of states, two motes should hold value 0 (the majority
opinion) and four motes should hold value eg (the undecided
state closest to the majority opinion).

The new states will be (0, 0, eg, g, €o, €9). This set of states
reflects that the cluster, if it were to run standard binary
consensus, would converge to 0 as the majority state.

B. Intra-Cluster Updating Rules

Now that we see how a CH computes converged states, we
will look at how the states of two different clusters can be
updated together. A CH performing this computation would
have two sets of states to compute and merge: Its own states,
and the states of its partner.

Performing this calculation is straightforward. The CH
simply merges the two sets of states into one list, performs
that same computation as used for inter-cluster updating, and
then splits the final list between itself and its partner.

For example, assume there exists two cluster C'1 and
C?2, each consisting of 6 members, holding states C'1 =
(0,0, €9, €0, €0,€0) and C2 = (1,1,1,1,e1,e1). The states
of both clusters are concatenated together to form one list
C= (1, 17 1, 1, €1,€1, O7 0, €0, €0, €0, 60).

The number of nodes initially hold the majority opinion
1 is four, while the number of nodes holding the minority
opinion 0 is two. Therefore, once again using equations 1
and 2 we find that N = 2 and U = 10. This implies that the
new states in cluster C' are:

C= (1,1,61,61,61,61,61,61,61,61,61,61)

Next, C' is simply split back into C'1 and C'2 with states:
Cl= (1, 1,61,61,61,61)
c2 = (61,61,61,61,61,61)

VI. EXPERIMENTS

We implemented clustered binary consensus in TinyOS2.x.
We tested our algorithm using the Indriya mote testbed at the
National University of Singapore [20]. Indriya contains 139
TelosB motes deployed across three floors of the School and
Computing.

We tested our algorithm using all 139 motes, but with
each experiment varied the number of clusters. Tests were
performed with 10, 14, 19, 24, 28, 33 and 40 clusters. Each test
was repeated 5 times to ensure consistent results. The initial
states of 0 and 1 were distributed randomly in such a way that
65% of the total motes held the majority opinion. The reason
for choosing 65% is to have a network with a clear majority
opinion, although the impact of initial state distribution and
how it affects the convergence has been researched in [4]. The
tunable convergence heuristic, N, was set at 10 for all tests.
The value of N was chosen manually by experimentation.

A. Cluster Size and Convergence Time

Fig. 5 depicts the convergence time results for 139 motes
using 10, 14, 19, 24, 28, 33 and 40 clusters. As can be seen, the
convergence time slowly increases as the number of clusters
increases until 24 clusters, and then it begins to decrease.
At first glance this may seen counter-intuitive, as one would
expect convergence time to continue to increase as the number
of CHs running the clustered binary consensus algorithm
increases. However, the decrease after 24 clusters is caused by
the fact that the network starts to become more dense, which
causes binary consensus to operate more efficiently because
the number of neighboring CHs seen by each CH increases.

B. Clustered vs. Non-Clustered Binary Consensus

In order to compare clustered binary consensus with stan-
dard binary consensus, we ran experiments using our original
implementation on the testbed. Fig. 4 shows these results. The

45
20 39.4
35 3314
30 29.6 29

§ 25.8 5,

c 25

o

£ 20

"5
10

5
0
25 50 75 100 125 139
No. of Motes

Fig. 4: Convergence time without clustering

effects of network density can be seen in these results as well
(notice the distinct U-shape of the graph).

From the graph, we can see that the network converges
faster as the number of motes increases from 25 to 100. This
is due to the fact that when we have 25 motes distributed
randomly on three floors, we get a sparse topology with small
number of connections between the motes. Thus the conver-
gence time increases. When the number of motes increases,
the topology gets denser and converges more quickly. This is
because in dense networks, the number of links between the
motes increases so each mote will have more neighbors and
the distance between the motes sitting on opposite sides of the
network becomes less. This means that fewer state exchanges
are required for the states of motes on opposite side of the
network to be mixed, which results in faster convergence. After
100 motes, the density continues to increase but moves beyond
the optimal density, so the convergence time is primarily
influenced but the number of motes [4].

Comparing the results of convergence time when using
clustering in Fig. 5 and our previous results in Fig. 4, we can
see that the network converges faster when using clustering.
For example, when we tested binary consensus with 139
motes without using clustering the convergence time reached
39.4 seconds. However, when we tested the algorithm using
clustering the convergence time, in the worst case, was 21.4
seconds. This is due to the fact that when using clustering,
the number of packets sent in the network is much less than
the number of packets sent without clustering. With clustering,
the members inside the cluster will only send their states to
the CH, and the CH will take the role of computing the new
states and communicating with other CHs. This reduces total
packets sent as well as the convergence time.

C. Packets Sent

To test the potential energy savings of clustered binary
consensus, the number of packets required for convergence
was measured for both the regular and clustered versions.
In [21] it is shown that the energy used to transmit 1 bit is the
same as used to execute 3000 lines of instructions. As such,
we assume that the number of packets sent in the network can
be effectively used to approximate the energy usage.

60

50

40

Time in Sec.

10 15 20 25 30 35 40
No. of Clusters

Fig. 5: Convergence time for 139 motes using clustering

16000
13564

14000

12000

10000

8000

Time in Sec.

6000

4000

1402 1520 1719 1826

10 14 19 24 28 33 40 139
Clusters Clusters Clusters Clusters Clusters Clusters Clusters Motes
Without
Clusters

Fig. 6: Total number of packets sent to reach convergence

Fig. 6 shows the numbers of packets transmitted within the
network when implementing our algorithm on 139 motes using
10, 14, 19, 24, 18, 33, and 40 clusters and when implementing
it on 139 motes without clusters. Our implementation using
clusters shows a noticeable enhancement in terms of energy
savings. For example, the total packets sent when using 14
clusters for 139 motes is 801 packets. In contrast, the total
packets sent in the case of 139 motes without clustering is
13564 packets. This is a reduction of 94%. This results in a
huge power savings that increases the lifetime of the network.
This savings is due to the fact that most of the motes only send
their states at the beginning to the CH and then go to sleep.
After that, only the CHs transmit or receive any packets.

The advantage of using a clustering schema with distributed
algorithms will be most seen when working with large net-
works of motes. Without clustering, distributed consensus on
large networks will require a significant number of packets
to be sent and will drastically increase the convergence time.
With clustering, however, normal motes send their states to
CHs only, who are responsible for communicating with the
other CHs, significantly reducing the number of packets sent.
In this way, clustered consensus allows for more efficient use
of large networks than non-clustered variants.

VII. CONCLUSION

In this work, we have designed and implemented a clustered
binary consensus algorithm for wireless sensor networks. We
have tested our algorithm using 10, 14, 19, 24, 18, 33 and 40
clusters on 139 TelosB motes. By using a clustering approach
we were able to reduce both the power consumed and the
time to convergence when compared to a non-clustering binary
consensus algorithm.

Future work in this area should include analyzing the
algorithm assuming the presence of an attacker and applying
the concept of clustering to other consensus algorithms such
as the multi-valued and average consensus algorithms,

ACKNOWLEDGMENT

This publication was made possible by the support of the
NPRP grant 09-1150-2-448 from the Qatar National Research
Fund. The statements made herein are solely the responsibility
of the authors. We would like to thank the School of Comput-
ing at the National University of Singapore for providing the
INDRIYA testbed.

REFERENCES

[1] M. Draief and M. Vojnovic, “Convergence speed of binary interval
consensus,” in Proceedings of the Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2010), San Diego
California, March 15-19, 2010.

[2] Y. Ruan and Y. Mostofi, “Binary consensus with soft information pro-
cessing in cooperative networks,” in Proceedings of the IEEE Conference
on Decision and Control (CDC 2008). 1EEE, 2008, pp. 3613-3619.

[3] A. Boulis, “Castalia: revealing pitfalls in designing distributed algo-
rithms in wsn,” in Proceedings of the 5th international conference on
Embedded networked sensor systems. ACM, 2007, pp. 407-408.

[4] N. Al-Nakhala, R. Riley, and T. Elfouly, “Binary consensus in sensor

motes,” in 9th IEEE International Wireless Communications and Mobile

Computing Conference (IWCMC 2013),Cagliari, Italy. 1EEE, 2013.

A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Automat-

ica, vol. 43, no. 7, pp. 1192-1203, 2007.

[6] E. Perron, D. Vasudevan, and M. Vojnovic, “Using three states for
binary consensus on complete graphs,” in Proceedings of the Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2009). IEEE, 2009, pp. 2527-2535.

[7] F. Benezit, P. Thiran, and M. Vetterli, “Interval consensus: from

quantized gossip to voting,” in Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP 2009).

IEEE, 2009, pp. 3661-3664.

A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, “On distributed

averaging algorithms and quantization effects,” IEEE Transactions on

Automatic Control, vol. 54, no. 11, pp. 2506-2517, 2009.

A. Mostefaoui, M. Raynal, and F. Tronel, “From binary consensus

to multivalued consensus in asynchronous message-passing systems.”

Information Processing Letters, vol. 73, no. 5-6, pp. 207-212, 2000.

J. Kenyeres, M. Kenyeres, M. Rupp, and P. Farkas, “WSN implementa-

tion of the average consensus algorithm,” in Proceedings of the Wireless

Conference 2011 - Sustainable Wireless Technologies (European Wire-

less). VDE, 2011, pp. 1-8.

R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in

networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,

pp. 215-233, 2007.

L. Chen, G. Carpenter, S. Greenberg, J. Frolik, and X. Wang, “An

implementation of decentralized consensus building in sensor networks,”

Sensors Journal, IEEE, vol. 11, no. 3, pp. 667-675, 2011.

S. Barbarossa and G. Scutari, “Bio-inspired sensor network design,”

Signal Processing Magazine, IEEE, vol. 24, no. 3, pp. 26-35, 2007.

L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”

Systems & Control Letters, vol. 53, no. 1, pp. 65-78, 2004.

[5

—_

[8

=

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

F. Shebli, I. Dayoub, A. M’foubat, A. Rivenq, and J. Rouvaen, “Min-
imizing energy consumption within wireless sensors networks using
optimal transmission range between nodes,” in Signal Processing and
Communications, 2007. ICSPC 2007. IEEE International Conference
on. IEEE, 2007, pp. 105-108.

R. Singh, H. Singh, and R. Kaler, “An adaptive energy saving and reli-
able routing protocol for limited power sensor networks,” in Advances
in Computer Engineering (ACE), 2010 International Conference on.
IEEE, 2010, pp. 79-85.

T. Watteyne, A. Bachir, M. Dohler, D. Barthel, and 1. Auge-Blum, “1-
hopmac: An energy-efficient mac protocol for avoiding 1-hop neighbor-
hood knowledge,” in Sensor and Ad Hoc Communications and Networks,
2006. SECON’06. 2006 3rd Annual IEEE Communications Society on,
vol. 2. IEEE, 2006, pp. 639-644.

M. Handy, M. Haase, and D. Timmermann, “Low energy adaptive clus-
tering hierarchy with deterministic cluster-head selection,” in Mobile and
Wireless Communications Network, 2002. 4th International Workshop
on. IEEE, 2002, pp. 368-372.

O. Younis and S. Fahmy, “Heed: a hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,” Mobile Computing,
IEEE Transactions on, vol. 3, no. 4, pp. 366-379, 2004.

M. Doddavenkatappa, M. C. Chan, and A. Ananda, “Indriya: A low-
cost, 3d wireless sensor network testbed,” in Testbeds and Research
Infrastructure. Development of Networks and Communities. Springer,
2012, pp. 302-316.

L. Yong-Min, W. Shu-Ci, and N. Xiao-Hong, “The architecture and
characteristics of wireless sensor network,” in Computer Technology
and Development, 2009. ICCTD’09. International Conference on, vol. 1.
IEEE, 2009, pp. 561-565.

