
Clustered Binary Consensus in Sensor Motes

Noor Al-Nakhala

Qatar University

Doha, Qatar

nalnakhala@qu.edu.qa

Ryan Riley

Qatar University

Doha, Qatar

ryan.riley@qu.edu.qa

Tarek Elfouly

Qatar University

Doha, Qatar

tarekfouly@qu.edu.qa

Abstract—In this work, we extend and adapt the binary
consensus algorithm to operate using clusters in a wireless sensor
network. Binary consensus is a decision making algorithm used to
cause distributed entities to agree on the majority opinion held by
the group when posed with a true or false question. Clustering
is a common technique used in WSNs to increase the overall
lifetime of the network by reducing energy consumed due to
communication. Our clustered binary consensus implementation
is tested using a large WSN testbed, and the experimental results
show that incorporating clustering into the binary consensus
algorithm reduces the time required for motes to reach consensus
and lowers the number of packets sent in the network by
approximately 94%.

Index Terms—Binary Consensus, TinyOS, Wireless Sensor
Networks.

I. INTRODUCTION

Cooperative decision making algorithms are used to solve

the problem of consensus on a distributed computing network

without making use of a central sink. In trying to reach

consensus, a network of agents are attempting to corporately

and individually determine a value that is contributed to

by all motes in the network. For example, a network of

temperature sensing motes could use a cooperative decision

making algorithm to determine the average temperature seen

by all motes in the network. One specific algorithm in this field

is binary consensus [1], [2]. In binary consensus, all motes

are attempting to learn the majority opinion of a yes or no

question. Continuing the temperature example, all motes might

want to know the answer to the question “Do the majority of

motes in the network see a temperature higher than 27C?”

Work in the area of distributed, cooperative decision making

algorithms tends to focus on formal mathematical models

and studies involving simulation [3]. This is because of the

many complexities involved in testing the algorithms on actual

distributed computing devices such as wireless sensor motes.

Real world factors such as energy usage, lost packets, mote

reach-ability, and others make the work more difficult than in

simulation.

In our previous work [4] we adapted the binary consensus

algorithm to operate in a WSN. Our implementation involved

all motes communicating randomly with their neighbors and

using a set of predefined rules [1] to exchanges their current

states and eventually reach consensus. The implementation

was tested using a variety of network topologies such as ring,

max-3 neighbors and random. The experiments focused on

exploring the convergence time of the network with varying

topologies, initial state distributions, and number of motes.

In this work, we further develop binary consensus in

WSNs by reducing energy consumption and convergence time

through the use of clustering. This involves adapting the

algorithm to allow a cluster head to efficiently compute the

correct states of its cluster members and exchange those states

properly with other cluster heads. We test our implementation

using a 139-mote TinyOS-based testbed and verify that our

new implementation is indeed faster and more energy efficient

than our previous work.

II. RELATED WORK

In this section we will present related work in the areas of

binary consensus, implementations of consensus algorithms,

energy Usage in WSNs and clustering in WSNs.

Binary Consensus There is a significant amount of related

work in the area of binary consensus [1], [5], [6], [7], [8],

[9]. Mostefaoui et al. [9] studied the algorithm with crash

failures to solve multivalued consensus. This is achieved by

running a series of binary consensus subroutines in order

to determine the average. They used binary consensus as

distributed averaging on a network. The use of this algorithm

might include social networks, distributed data fusion, and

coordination of autonomous agents.

In [7], they proved that the algorithm converges correctly

with probability 1.

An upper-bound on the convergence time of binary con-

sensus is derived in [1] for a variety of topologies such as

complete graph, star, and Erdos-Renyi random graphs.

Consensus Algorithm Implementations In [10], the authors

have done a hardware implementation of the average consen-

sus algorithm proposed in [11]. In average consensus nodes

converge to the average of all the values held by the network.

In their solution, the algorithm reaches consensus by defining

an accuracy parameter and declaring a counter that will incre-

ment once the mote’s value is changed. In their assumption,

if the value changes in small intervals less than the accuracy

parameter, or if the value did not change 2 times, then the

motes have converged. They made a simplifying assumption

of a fully connected topology which limited the size of the

network. Moreover, the usage of their algorithm in WSNs is

limited because their proposed algorithm is synchronous and

forces the updates to be synchronous.



Another work done in the area of hardware implementation

of consensus algorithms is proposed in [12]. The authors

performed a hardware implementation of the decentralized

consensus algorithm. The decentralized consensus algorithm

is also known as self-organization since the nodes have the

ability to self organize and collect data over the network. The

authors have continued the theoretical work done in [13] to

function well in a hardware implementation with discrete time.

They have also adjusted the number of iterations appearing

in [14] in order to achieve consensus in less time. They

implemented their approach in 12 sensor motes for fully and

partially connected topologies.

Energy Usage in WSNs Significant research effort has fo-

cused on finding ways to optimize sensor energy consumption

in the network by making it a priority to minimize the number

of packet sent within the sensor network. For example, [15]

produces a model that controls the number of packets sent in

the network resulting in the reduction of the energy consumed.

This is achieved by providing a way for the transmitter to

dynamically regulate its transmission power in a way that the

requested signal to noise ratio can be accepted at the receiver.

In the end, total energy consumption in the sensor network

was reduced by 15% to 38%.

In [16] the authors propose an adaptive energy saving and

reliable routing protocol which aims to adjust the node routing

to other nodes since each node may contain several routes to

the destination. In this solution, only one route for a destination

is kept in the routing table and the selection of best route is

based on link weight.

Watteyne et al. [17] propose a reactive approach to neighbor

detection that reduces energy usage by removing periodic

Hello messages between neighbors using a handshaking

scheme combined with a energy efficient MAC protocol.

Clustering There has been a lot of work in the area of

clustering. The most famous WSN clustering algorithm is

LEACH [18]. In LEACH the nodes decide to be a CH based

on a probability and the normal nodes join their clusters based

on the minimum communication energy. CH selection changes

periodically between the nodes by choosing a random number

between 0 and 1. The chance for a CH to be selected again

if the number is less than the calculated threshold. Because

selection of the CH is based on probability, the chance of

selecting a node with low energy as a CH is increased. As

when the CH dies, the whole cluster becomes useless.

In [19] the authors proposed HEED, which improves the

life time of the network over LEACH. The CH is selected

by adding extra network information such as residual energy.

Then the CHs send messages to their neighbors including a

secondary constraint that measures the node degree. This is

used to let the normal nodes chose the best cluster to join.

After that, the selection of the CHs in later rounds is based

on the probability correlated with residual energy. In HEED,

the selection of low energy nodes as CHs in heterogeneous

environments may give larger probability than selecting the

high energy nodes.

III. BACKGROUND

In this section we will give a brief overview of binary

consensus and our previous work on binary consensus in

wireless sensor networks.

A. Binary Consensus

While there are many distributed, cooperative decision mak-

ing algorithms currently being researched, in this work we

focus on the problem of binary consensus [5], [6], [7], [8].

In binary consensus, each node holds one of the two states,

either 0 or 1, and the algorithm allows each individual node

to know which value is held by the majority of nodes in

the network. Previous theoretical research has demonstrated

important properties of the algorithm. In [1] it was shown

that there is an upper-bound to convergence time and in [7] it

was proven that binary consensus always reaches the correct

conclusion.

In binary consensus, nodes inside the network start with

their initial assumption, 0 or 1, and then they communicate

with each other and update their states based on an updating

protocol. Convergence occurs when all the nodes inside the

network agree on the majority opinion. In general, when two

nodes in the network communicate together they update their

current state based on the state of their partner. Then, they

communicate with a different partner and updates their state

again. After this has occurred enough times, all nodes end up

agreeing on the majority opinion.

There are four valid states that a node might hold at any

given moment [4]:

1) 0 – The node believes the majority opinion is most

likely false.

2) e0 – The node believes the majority opinion might

be false.

3) e1 – The node believes the majority opinion might

be true.

4) 1 – The node believes the majority opinion is most

likely true.

When two motes communicate together in order to exchange

and update their states, they follow the following updating

protocol, quoted from [1]:

Each node is in one of four states: 0, e0, e1,

and 1. The states satisfy the following order

0 < e0 < e1 < 1. At each contact of

a pair of nodes, their respective states x and y

(without loss of generality) ordered such that x ≤ y,

are updated according to the following mapping

(x, y) 7→ (x′, y′) defined by

(0, e0) → (e0, 0)
(0, e1) → (e0, 0)
(0, 1) → (e1, e0)

(e0, e1) → (e1, e0)
(e0, 1) → (1, e1)
(e1, 1) → (1, e1)
(s, s) → (s, s), for s = 0, e0, e1, 1.



If all nodes inside a network have states belonging to 0 or e0,

then the network has converged to opinion 0, which means 0
was initially held by the majority of nodes. Similarly, if all

the nodes hold states belonging to 1 or e1, then the network

has converged to opinion 1, which means 1 was initially held

by the majority of nodes.

B. The Usage of Binary Consensus in Real World Applications

When applied to real scenarios, binary consensus can be

used in situations where motes individually determine a binary

answer to a question, and yet must determine the decision

held by most motes in the network. For example, consider a

scenario where there is a network able to detect the presence of

an object by using camera. In this case, the binary states would

be “I see the object” or “I don’t see it”. Binary consensus could

be used to determine when a majority of sensors see the item.

Another scenario could involved a network of sensors capable

of detecting the spread of gas leaks in a refinery situation. In

this, the binary states would be whether or not a mote senses

gas. Binary consensus could help determine when the leaking

gas has spread to the majority of sensors.

C. Our Previous Work

In [4], we took a mathematical model for binary consen-

sus [1] and adapted it for use in WSNs. This involved mod-

ifying the algorithm to include a stop condition (the original

algorithm runs forever, which is inefficient in WSNs) and a

method for motes to determine who to exchange states with

(the original algorithm assumed a fully connected network,

which is unreasonable in WSNs).

A stop condition was added by including a tunable heuristic

variable, N , which is used to allow a mote to estimate when

convergence has occurred. If a mote has not substantially

changed its state in the last N state updates, then it assumes

convergence has occurred and stops initiating communication

with other motes. It will still respond to other motes, how-

ever. In this way, all motes in the network eventually stop

communicating and convergence is finalized.

Motes determine who to communicate with by randomly

selecting a free neighbor. This is done by having motes

periodically wake up, broadcast their state, and wait for a

response. When motes receive a broadcast from a neighbor,

they reply after a random timeout value. This ensures that,

over time, a mote communicates with all of its neighbors.

We tested our algorithm successfully on 11 hardware sensor

motes and further supported our results with simulation by

testing our algorithm in a max-3 neighbors topology, a ring

topology and a simulated hardware topology with 30 motes. In

follow-up testing, we extended our results to test our algorithm

on a large hardware sensor motes of 139 motes and we were

able to further lower the convergence time.

IV. COMMUNICATION

In order to adapt binary consensus to properly make use of a

cluster configuration, a number of modifications are required.

CH1

CH3

Cluster 1

Cluster 3

CH2

Cluster 2

CH4

Cluster 4

Fig. 1: Cluster formation

Update States
Start Random 

Timer

Stage 3

Send P2

Stage 2

Start Random 
Timer

Stage 1

Update States

Send P3

Start Random 
Timer

Stage 5

Broadcast P1

Stage 4

Tim
er Fires

Ti
m

er
 F

ir
es

Receive P1

Receive P1

Receive P3Timeout

Receive P1

T
im

e
r 

F
ir

e
s

R
e

ce
iv

e
 P

2

Calculate Cluster
States

Stage 0

Fig. 2: Intra-cluster communication stage transition diagram

First, communication must be split into inter-cluster and intra-

cluster. Second, the state update rules and calculations must be

modified to be run by cluster heads on behalf of their cluster

members.

We would like to note that the technique used to produce

clusters is not the focus of this work. We assume that the motes

are already grouped into clusters using an existing clustering

scheme, and we will focus on how clustering impacts binary

consensus.

A. Inter-Cluster Communication

When the algorithm begins, all the motes within a cluster

send their current state directly to their cluster head (CH).

Motes communicate only with their CH, not directly with each

other.

Fig 1 shows the clustering model we are assuming. The

network is split into clusters where each cluster has a CH that

is able to directly communicate with each of its members.

We do not consider how clusters are formed in this work.

We assume that they already exist, and our algorithm simply

makes use of them. Clusters could be formed using existing

clustering techniques such as LEACH [18] or HEED [19].

B. Intra-Cluster Communication

After all the motes have sent their states to the CH, the

CHs communicate together using a modified version of binary



TABLE I: Packets used during intra-cluster communication.

CH1 and CH2 are cluster heads in the communication.

Packet Payload Description

P1 CH1 members’ states CH1 sends this packet to all CHs in
range.

P2 CH2 members’ states CH2 replies to CH1 by sending this
packet.

P3 - CH1 sends this packet to CH2 in
order to confirm that its states update
was successful.

consensus in order to reach convergence for the network as a

whole.

Because the CHs don’t have an intrinsic knowledge of the

identity of each other, in our system they perform a random

broadcast to their neighbors in order to find a CH partner to

update states with.

Fig. 2 shows a stage transition diagram for an individual

CH running the algorithm. Table I describes the types of

packets sent and received during the algorithm. The stages

are described as follows:

• Stage 0: This stage starts after all the normal motes have

sent their states to their respective CH. Each CH runs a

consensus algorithm (described later in Section V) that

calculates the converged states of all motes within the

cluster. Next, the CH always transitions to Stage 1.

• Stage 1: In this stage, the CH starts a random timer that

will decide when it should wake up and perform a P1
broadcast in an attempt to find a neighboring CH partner

to exchange states with. If a CH stays in this stage when

the timer fires, it will transition to Stage 4. However, if it

receives a broadcast (P1) from another CH, then it will

transition to Stage 2.

• Stage 2: When a CH in Stage 1 receives P1, it transitions
to Stage 2. The CH will reply to the sender of the broad-

cast with a P2 containing the current binary consensus

states of all of its members. It then waits for a reply. If

it receives P3 in reply, then it transitions to Stage 3. If

not, then after a timeout period it assumes that its partner

no longer wishes to communicate with it, and transitions

back to Stage 1.

• Stage 3: Once the CH receives P3, it knows that its

partner does want to update states. In addition, it also

knows the current states held by its partner (they were

sent previously with P1). At this point, the CH computes

the new states of itself and its partner using the algorithm

in Section V. The mote then starts a random wake-

up timer and resumes listening for another partner to

exchanges states with.

• Stage 4: This stage is entered if a mote’s random timer

goes off and it needs to broadcast to its neighbors. In

this stage the mote broadcasts P1, which contains all of

its current states. Once it receives a P2 reply from a

neighbor, it shifts to Stage 5 in order to proceed with

exchanging states with that partner.

• Stage 5: This stage strongly resembles Stage 3, just from

Broadcast P1 containing CH1 members

Reply by sending P2 containing CH2 members 

current states

Reply by sending P3

Reply by sending P2 containing CH3 members current states

Broadcast P1 containing CH2 members

current states

Normal

Mote 

Save State

Save State

 Calculate New States for

All Cluster Members

CH1 CH2 CH3

current states

CH1 discards 

the packet of

CH3

Send P0 to CH1

Normal

Mote 

Send P0 to CH1

Normal

Mote 

Send P0 to CH2

Normal

Mote 

Send P0 to CH2

Save State

Normal

Mote 

Send P0 to CH2

Save State

Save State

 Calculate New States for

All Cluster Members

 Calculate New States for

All Cluster Members

Normal

Mote 

Send P0 to CH3

Normal

Mote 

Send P0 to CH3

Normal

Mote 

Send P0 to CH3

Save State

Save State

Save State

Normal

Mote 

Send P0 to CH3

Save State

Fig. 3: Example of communication

the perspective of the other partner. In this stage the CH

uses the algorithm of Section V to compute new states

for itself and its partner. It then updates its own states,

sends P3 to its partner in order to confirm the update

has occurred, and starts a random wake-up timer while

listening for another partner to exchange states with.

C. Example

Fig. 3 illustrates a simple example covering both inter- and

intra-cluster communication.

Assume that we have 3 CHs: 1, 2, and 3. Each CH belongs

to one cluster and performs the task of updating states for its

members.

After initialization, each normal mote sends a packet con-

taining its initial state to its CH. For example, normal motes

belonging to CH1 send their states to CH1 and it saves the

state of each member. Then, each CH computes the converged

states for all members belonging to its cluster and starts a

random timer to start the intra-cluster communication.

In this example, CH1’s timer goes off before any of the

other CHs. So, it broadcasts P1 to all of its CH neighbors.

CH2 and CH3 both receive the broadcast from CH1 and both

reply. However, the reply from CH2 is received first, so the

reply from CH3 is ignored.

CH1 receives the P2 reply from CH2 and computes its own

new states based on the states of CH2. Next, CH1 sends P3
to CH2, who receives it and computes its own new states.

In this example we have not discussed packet loss for the

sake of clarity. We use the acknowledgement feature that

is already built in the radio unit of the motes in order to

automatically acknowledge and resend lost packets.

V. BINARY CONSENSUS CLUSTERING RULES

Now that we have discussed how motes communicate, we

will present the computations performed by CHs during that

communication.



In standard binary consensus, individual motes exchange

and update states based on fixed rules. In clustered binary

consensus, those rules are modified to allow a CH to efficiently

execute them on behalf of all the motes in its cluster.

There will be two different types of computations. First,

a CH may compute the binary consensus states for all of

its members (inter-cluster computation). Second, a CH may

compute the binary consensus states for all of its members and

the members of a partner cluster (intra-cluster computation).

A. Inter-Cluster Updating Rules

Within a cluster, the initial state of each member will be

either 0 or 1. The role of the CH is to calculate the new

states of all the members based on the majority opinion within

the cluster. The CH is effectively performing standard binary

consensus on behalf of its members. This prevents members

within a cluster from needing to communicate directly and

perform the computation themselves.

Given a set of 0 and 1 states S = (s1, s2, s3, ..., sn), a
new set of states X = (x1, x2, x3, ..., xn) is computed that

reflects the converged set of states that would occur within

the cluster if all motes within the cluster were allowed to run

binary consensus to completion.

The states in X are defined by the following equations:

N = M −m (1)

Where M is the number of nodes that initially hold the

majority opinion in S, m is the number of nodes initially

hold the minority opinion in S, and N is the number of states

in X that hold the majority opinion (0 or 1) from S.

U = T −N (2)

Where U is the number of nodes that should hold undecided

state e0 or e1 based on the majority opinion of S, and T is

the number of members inside a cluster.

For example, assume there exists a cluster C consists of 6

members m1, m2, m3, m4, m5, m6, initially holding states

(0, 0, 0, 0, 1, 1). In this case, the majority of nodes in the

cluster hold the opinion 0. The number of nodes initially

holding 0 is four, while the number of nodes holding the

minority opinion is two. Using equations 1 and 2 above we

find that N = 2 and U = 4. This means that in the final

set of states, two motes should hold value 0 (the majority

opinion) and four motes should hold value e0 (the undecided

state closest to the majority opinion).

The new states will be (0, 0, e0, e0, e0, e0). This set of states
reflects that the cluster, if it were to run standard binary

consensus, would converge to 0 as the majority state.

B. Intra-Cluster Updating Rules

Now that we see how a CH computes converged states, we

will look at how the states of two different clusters can be

updated together. A CH performing this computation would

have two sets of states to compute and merge: Its own states,

and the states of its partner.

Performing this calculation is straightforward. The CH

simply merges the two sets of states into one list, performs

that same computation as used for inter-cluster updating, and

then splits the final list between itself and its partner.

For example, assume there exists two cluster C1 and

C2, each consisting of 6 members, holding states C1 =
(0, 0, e0, e0, e0, e0) and C2 = (1, 1, 1, 1, e1, e1). The states

of both clusters are concatenated together to form one list

C = (1, 1, 1, 1, e1, e1, 0, 0, e0, e0, e0, e0).
The number of nodes initially hold the majority opinion

1 is four, while the number of nodes holding the minority

opinion 0 is two. Therefore, once again using equations 1

and 2 we find that N = 2 and U = 10. This implies that the

new states in cluster C are:

C = (1, 1, e1, e1, e1, e1, e1, e1, e1, e1, e1, e1)

Next, C is simply split back into C1 and C2 with states:

C1 = (1, 1, e1, e1, e1, e1)
C2 = (e1, e1, e1, e1, e1, e1)

VI. EXPERIMENTS

We implemented clustered binary consensus in TinyOS2.x.

We tested our algorithm using the Indriya mote testbed at the

National University of Singapore [20]. Indriya contains 139

TelosB motes deployed across three floors of the School and

Computing.

We tested our algorithm using all 139 motes, but with

each experiment varied the number of clusters. Tests were

performed with 10, 14, 19, 24, 28, 33 and 40 clusters. Each test

was repeated 5 times to ensure consistent results. The initial

states of 0 and 1 were distributed randomly in such a way that

65% of the total motes held the majority opinion. The reason

for choosing 65% is to have a network with a clear majority

opinion, although the impact of initial state distribution and

how it affects the convergence has been researched in [4]. The

tunable convergence heuristic, N , was set at 10 for all tests.

The value of N was chosen manually by experimentation.

A. Cluster Size and Convergence Time

Fig. 5 depicts the convergence time results for 139 motes

using 10, 14, 19, 24, 28, 33 and 40 clusters. As can be seen, the

convergence time slowly increases as the number of clusters

increases until 24 clusters, and then it begins to decrease.

At first glance this may seen counter-intuitive, as one would

expect convergence time to continue to increase as the number

of CHs running the clustered binary consensus algorithm

increases. However, the decrease after 24 clusters is caused by

the fact that the network starts to become more dense, which

causes binary consensus to operate more efficiently because

the number of neighboring CHs seen by each CH increases.

B. Clustered vs. Non-Clustered Binary Consensus

In order to compare clustered binary consensus with stan-

dard binary consensus, we ran experiments using our original

implementation on the testbed. Fig. 4 shows these results. The



����
����

���� ����

����

����

�

�

��

��

��

��

��

��

��

��

�� �� �� ��� ��� ���

�
��

�
��
�
��
�
�

�����������	

Fig. 4: Convergence time without clustering

effects of network density can be seen in these results as well

(notice the distinct U-shape of the graph).

From the graph, we can see that the network converges

faster as the number of motes increases from 25 to 100. This

is due to the fact that when we have 25 motes distributed

randomly on three floors, we get a sparse topology with small

number of connections between the motes. Thus the conver-

gence time increases. When the number of motes increases,

the topology gets denser and converges more quickly. This is

because in dense networks, the number of links between the

motes increases so each mote will have more neighbors and

the distance between the motes sitting on opposite sides of the

network becomes less. This means that fewer state exchanges

are required for the states of motes on opposite side of the

network to be mixed, which results in faster convergence. After

100 motes, the density continues to increase but moves beyond

the optimal density, so the convergence time is primarily

influenced but the number of motes [4].

Comparing the results of convergence time when using

clustering in Fig. 5 and our previous results in Fig. 4, we can

see that the network converges faster when using clustering.

For example, when we tested binary consensus with 139

motes without using clustering the convergence time reached

39.4 seconds. However, when we tested the algorithm using

clustering the convergence time, in the worst case, was 21.4

seconds. This is due to the fact that when using clustering,

the number of packets sent in the network is much less than

the number of packets sent without clustering. With clustering,

the members inside the cluster will only send their states to

the CH, and the CH will take the role of computing the new

states and communicating with other CHs. This reduces total

packets sent as well as the convergence time.

C. Packets Sent

To test the potential energy savings of clustered binary

consensus, the number of packets required for convergence

was measured for both the regular and clustered versions.

In [21] it is shown that the energy used to transmit 1 bit is the

same as used to execute 3000 lines of instructions. As such,

we assume that the number of packets sent in the network can

be effectively used to approximate the energy usage.

9
11.4

15.2

21.4 21 20.4 19.4

0

10

20

30

40

50

60

10 15 20 25 30 35 40

T
im

e
 i

n
 S

e
c
.

No. of Clusters

Fig. 5: Convergence time for 139 motes using clustering

��� ��� ����
���� ���� �	�� ����

�
���

�

����

����

����

����

�����

�����

�����

�����

��

��
�����

��

��
�����

��

��
�����

��

��
�����

��

��
�����





��
�����

��

��
�����

�
�

�����

�����
�

��
�����

�
��

�
��
�
��
�
�
	

Fig. 6: Total number of packets sent to reach convergence

Fig. 6 shows the numbers of packets transmitted within the

network when implementing our algorithm on 139 motes using

10, 14, 19, 24, 18, 33, and 40 clusters and when implementing

it on 139 motes without clusters. Our implementation using

clusters shows a noticeable enhancement in terms of energy

savings. For example, the total packets sent when using 14

clusters for 139 motes is 801 packets. In contrast, the total

packets sent in the case of 139 motes without clustering is

13564 packets. This is a reduction of 94%. This results in a

huge power savings that increases the lifetime of the network.

This savings is due to the fact that most of the motes only send

their states at the beginning to the CH and then go to sleep.

After that, only the CHs transmit or receive any packets.

The advantage of using a clustering schema with distributed

algorithms will be most seen when working with large net-

works of motes. Without clustering, distributed consensus on

large networks will require a significant number of packets

to be sent and will drastically increase the convergence time.

With clustering, however, normal motes send their states to

CHs only, who are responsible for communicating with the

other CHs, significantly reducing the number of packets sent.

In this way, clustered consensus allows for more efficient use

of large networks than non-clustered variants.



VII. CONCLUSION

In this work, we have designed and implemented a clustered

binary consensus algorithm for wireless sensor networks. We

have tested our algorithm using 10, 14, 19, 24, 18, 33 and 40

clusters on 139 TelosB motes. By using a clustering approach

we were able to reduce both the power consumed and the

time to convergence when compared to a non-clustering binary

consensus algorithm.

Future work in this area should include analyzing the

algorithm assuming the presence of an attacker and applying

the concept of clustering to other consensus algorithms such

as the multi-valued and average consensus algorithms,

ACKNOWLEDGMENT

This publication was made possible by the support of the

NPRP grant 09-1150-2-448 from the Qatar National Research

Fund. The statements made herein are solely the responsibility

of the authors. We would like to thank the School of Comput-

ing at the National University of Singapore for providing the

INDRIYA testbed.

REFERENCES

[1] M. Draief and M. Vojnovic, “Convergence speed of binary interval
consensus,” in Proceedings of the Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM 2010), San Diego
California, March 15-19, 2010.

[2] Y. Ruan and Y. Mostofi, “Binary consensus with soft information pro-
cessing in cooperative networks,” in Proceedings of the IEEE Conference

on Decision and Control (CDC 2008). IEEE, 2008, pp. 3613–3619.

[3] A. Boulis, “Castalia: revealing pitfalls in designing distributed algo-
rithms in wsn,” in Proceedings of the 5th international conference on

Embedded networked sensor systems. ACM, 2007, pp. 407–408.

[4] N. Al-Nakhala, R. Riley, and T. Elfouly, “Binary consensus in sensor
motes,” in 9th IEEE International Wireless Communications and Mobile

Computing Conference (IWCMC 2013),Cagliari, Italy. IEEE, 2013.

[5] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” Automat-

ica, vol. 43, no. 7, pp. 1192–1203, 2007.

[6] E. Perron, D. Vasudevan, and M. Vojnovic, “Using three states for
binary consensus on complete graphs,” in Proceedings of the Annual

Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM 2009). IEEE, 2009, pp. 2527–2535.

[7] F. Benezit, P. Thiran, and M. Vetterli, “Interval consensus: from
quantized gossip to voting,” in Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP 2009).
IEEE, 2009, pp. 3661–3664.

[8] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, “On distributed
averaging algorithms and quantization effects,” IEEE Transactions on

Automatic Control, vol. 54, no. 11, pp. 2506–2517, 2009.

[9] A. Mostefaoui, M. Raynal, and F. Tronel, “From binary consensus
to multivalued consensus in asynchronous message-passing systems.”
Information Processing Letters, vol. 73, no. 5-6, pp. 207–212, 2000.

[10] J. Kenyeres, M. Kenyeres, M. Rupp, and P. Farkas, “WSN implementa-
tion of the average consensus algorithm,” in Proceedings of the Wireless

Conference 2011 - Sustainable Wireless Technologies (European Wire-

less). VDE, 2011, pp. 1–8.

[11] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 215–233, 2007.

[12] L. Chen, G. Carpenter, S. Greenberg, J. Frolik, and X. Wang, “An
implementation of decentralized consensus building in sensor networks,”
Sensors Journal, IEEE, vol. 11, no. 3, pp. 667–675, 2011.

[13] S. Barbarossa and G. Scutari, “Bio-inspired sensor network design,”
Signal Processing Magazine, IEEE, vol. 24, no. 3, pp. 26–35, 2007.

[14] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[15] F. Shebli, I. Dayoub, A. M’foubat, A. Rivenq, and J. Rouvaen, “Min-
imizing energy consumption within wireless sensors networks using
optimal transmission range between nodes,” in Signal Processing and

Communications, 2007. ICSPC 2007. IEEE International Conference

on. IEEE, 2007, pp. 105–108.
[16] R. Singh, H. Singh, and R. Kaler, “An adaptive energy saving and reli-

able routing protocol for limited power sensor networks,” in Advances

in Computer Engineering (ACE), 2010 International Conference on.
IEEE, 2010, pp. 79–85.

[17] T. Watteyne, A. Bachir, M. Dohler, D. Barthel, and I. Auge-Blum, “1-
hopmac: An energy-efficient mac protocol for avoiding 1-hop neighbor-
hood knowledge,” in Sensor and Ad Hoc Communications and Networks,
2006. SECON’06. 2006 3rd Annual IEEE Communications Society on,
vol. 2. IEEE, 2006, pp. 639–644.

[18] M. Handy, M. Haase, and D. Timmermann, “Low energy adaptive clus-
tering hierarchy with deterministic cluster-head selection,” in Mobile and

Wireless Communications Network, 2002. 4th International Workshop

on. IEEE, 2002, pp. 368–372.
[19] O. Younis and S. Fahmy, “Heed: a hybrid, energy-efficient, distributed

clustering approach for ad hoc sensor networks,” Mobile Computing,

IEEE Transactions on, vol. 3, no. 4, pp. 366–379, 2004.
[20] M. Doddavenkatappa, M. C. Chan, and A. Ananda, “Indriya: A low-

cost, 3d wireless sensor network testbed,” in Testbeds and Research

Infrastructure. Development of Networks and Communities. Springer,
2012, pp. 302–316.

[21] L. Yong-Min, W. Shu-Ci, and N. Xiao-Hong, “The architecture and
characteristics of wireless sensor network,” in Computer Technology

and Development, 2009. ICCTD’09. International Conference on, vol. 1.
IEEE, 2009, pp. 561–565.


