IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, 1, JANUARY 2014 1

Data-Centric OS Kernel Malware Characterization

Junghwan Rhedylember, IEEE Ryan Riley,Member, IEEE Zhigiang Lin, Member, IEEE Xuxian Jiang,
Dongyan Xu,Member, IEEE,

Abstract—Traditional malware detection and analysis ap-

based on such code properties effectively detect or prekient

proaches have been focusing on code-centric aspects of maliciouglass of malware attacks [14], [20], [42], [43], [45], [51].

programs such as detection of the injection of malicious code
or matching malicious code sequences. However, modern mal
ware has been employing advanced strategies such as reusin

In response to these techniques, alternate attack vectoes w

gdevised to avoid violation of code integrity and therefdrede

legitimate code or obfuscating malware code to circumvent the Such detection approaches. For instance, return-to-tiacks

detection.

[8], [33], return-oriented programming [6], [23], [46], @n

As a new perspective to complement code-centric approaches,jump-oriented programming [10], [16], [17], [21], [27] ree

we propose a data-centric OS kernel malware characterization

architecture which detects and characterizes malware attacks

based on the properties of data objects manipulated during the

existing code to create malicious logic. Additionally, kek
malware can be launched via vulnerable code in program

attacks. This framework consists of two system components with bugs [31], [49], [50], third-party kernel drivers, and memo

novel features.
First, a runtime kernel object mapping system which has an
un-tampered view of kernel data objects resistant to manipulatio

by malware. This view is effective at detecting a class of malware

that hides dynamic data objects.

interfaces [18] which can allow manipulation of kernel code
and data using legitimate code (i.e., kernel or driver code)

In order to detect such attacks, another group of defense
techniques focus on identifying malware based on behav-

Second, a new kernel malware detection approach that gener- 107 [3], [4], [12], [25], [26]. These approaches generatel-ma

ates malware signatures based on the data access patterns dfiec

ware signatures by using a pattern of malware code sequence

to malware attacks. This approach has an extended coverage tha (e.g., instruction sequences or system call sequencesittthm

detects not only the malware with the signatures but also the
malware variants which share the attack patterns by modeling
the low level data access behaviors as signatures.

Our experiments against a variety of real-world kernel rootkits
demonstrate the effectiveness of data-centric malware signates.

Index Terms—OS Kernel Malware Characterization, Data-
Centric Malware Analysis, Virtual Machine Monitor

I. INTRODUCTION

malware behavior. However, some malware employ techniques
that obfuscate or vary the patterns of code execution. For
example, code obfuscation [11], [13], [47], [53] and code em
ulation [48] techniques can confuse behavior-based malwar
detectors and hence avoid detection.

This arms-race between malware and malware detectors
centers aroungroperties of malicious codénjection/integrity
of code or the causal sequences of malicious code patterns.
While the majority of existing work focuses on trepde

Modern malware use a variety of techniques to cauggalware executes, relatively little work has been done Whic
divergence in the attacked program’s behavior and achig¢@uses on thelata it modifies.

the attacker’s goal. Traditional malicious programs sush

a Data-centric approaches require neither the detection of

computer viruses, worms, and exploits have been using casigle injection nor malicious code patterns. Therefore they

injection attacks which inject malicious code into a progra
perform a nefarious function. Intrusion detection apphesc

Manuscript received February 28, 2013; revised July 4, 288 October
8, 2013; accepted November 7, 2013. Date of publication Noee2®, 2013.
This work was supported in part by US National Science FotiowldNSF)
under grant 1049303 and US Air Force Office of Scientific ReseAFOSR)
under contract FA9550-10-1-0099. The associate editordaoating the
review of this manuscript and approving it for publicationsaarof. C.-C.
Jay Kuo.

J. Rhee is with NEC Laboratories America, Princeton, NJ, 08&4mail:
rhee@nec-labs.com.

R. Riley is with the Department of Computer Science and Enginge
Qatar University, PO Box 2713, Doha, Qatar. E-mail: ryaey@qu.edu.qa.

Z. Lin is with the Department of Computer Science, the Univgrsif

Texas at Dallas, 800 W. Campbell RD, Richardson, TX 75080. E-ma

zhigiang.lin@utdallas.edu.

X. Jiang is with the Department of Computer Science, North [Be&Gtate
University, 890 Oval Drive, Campus Box 8206, Raleigh, NC Z&.68-mail:
jlang@cs.ncsu.edu.

D. Xu is with the Department of Computer Science and CERIASd&eir
University, 305 N. University Street, West Lafayette, IN987. E-mail:
dxu@cs.purdue.edu.

Color versions of one or more of the figures in this paper ardlabla
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2013.2291964

are not directly subvertible using code reuse or obfuspatio
techniques. However, detecting malware based on data modifi
cations has a unique challenge that makes it distinct frate-co
based approaches. Unlike code, which is typically expected
to be invariant, data status can be dynamic. Correspongding|
conventional integrity checking cannot be applied to data
properties. In addition, monitoring data objects of an afieg
system (OS) kernel has additional challenges because an OS
may be the lowest software layer in conventional computing
environments, meaning that there is no monitoring layeowel

it.

In this paper, we present a novel schemata-centric OS
kernel malware characterizatiowhich enables the detection
and characterization of OS kernel malware based on the
properties of kernel data structures. Additionally, wespré a
prototype calledDataGene and evaluate it against a set of real
world kernel malware samples. This system consists of two
essential components to monitor and analyze data propertie
of OS kernels.

The first component is kernel object mapping systetimat

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9,0 1, JANUARY 2014

Data Access Kernel Malware Detection Kernel Memory Pool
OS Kernel Behavior [=» basedon Data Access Guest Data
inVM Signhature Behavior Similarity <7 Allocation VM Kernel Object.] Type
T { Callis) g fl Address: [A, A+size)
: i : kmallog[size) {1
M Livle ObS Kernel Malware Detection S'te Déallocaticiy=: _::j'_'_____,...._._.ﬁ_.,.__; '
. Kernel Object > based on Un-tampered L kfreé (A): o = - i Debug
Hypervisor > Map Data Liveness Status 3) VMM [A [AcSize[Call Site] info
Kernel Object Map

Fig. 1: Data-Centric OS Kernel Malware Characterization
'9 ! W 1zal Fig. 2: Live Kernel Object Mapping System

Il. DATA-CENTRIC KERNEL MALWARE

externally identifies dynamic kernel objects of the moratbr
CHARACTERIZATION

OS at runtime. This component enables an external monitor

to recognize the access behavior to data objects. We make ud@ this section, we present the overall design of data-
of memory allocation events to build the object map. sonf@ntric kernel malware characterization. Fig. 1 illustsabur
malware hides itself by manipulating data structures, amd c@Pproach.

experiments show that this map can reliably detect suchkatta Tracking OS data allocations and uses is difficult because
since its view is not manipulated by malware. the OS is traditionally the lowest software layer in a con-

ventional computer system. To overcome this challenge, we

W't_h th's map in place, we then presemmalware char- make use of virtualization technology. A guest OS runs on top
acterization approach based on kernel object access pudter hypervisor which transparently and efficiently capsure

This approach can'generate a s?gnature of a malwgre’s uniqf'hgmory related OS events to generate a kernel object map.
data access behavior. By matching data behavior mgnaiUresrhiS map is able to provide the live status of dynamic kernel

can detect classes of kernel malware that share commorkattgﬁjects_ Many kernel rootkits are stealthy and attempt to
patterns on kemel data structures. hide themselves. Many of these attacks are implemented by
Contributions: The contributions of this paper are summamanipulating data structures and making them appear dead
rized as follows: (freed) to the OS when they are in fact alive (allocated).
DataGene enables the detection of such malware based on
« Reliable Detection of Kernel Object Hiding Attacks. the status of data liveness. This component is to be presente
Kernel object hiding attacks attempt to hide data objecis Section Il in details.
by manipulating pointers reaching such objects. Our This map, which accurately identifies static and dynamic
kernel object mapping approach recognizes data objektgnel data objects, enables the monitoring and analysis of
based on memory allocation events, not inter-memokgrnel memory access patterns. Using this information we
pointers. Therefore, such attacks do not tamper with tipgopose a new approach to characterize and detect kernel
identification of data objects in our mapping scheme. Ownnalware.DataGene monitors kernel memory access behavior
experiments show that our approach successfully detestech as reads and writes on OS kernel objects and systemat-
kernel data hiding rootkits that manipulate data objedatally extracts memory reference patterns specific to mawa
pointers in order to evade traditional rootkit detectors. attacks by comparing benign kernel execution and malicious
« Conception of Malware Signature Based on Data kernel execution compromised by kernel rootkits. By matghi
Access Behavior During Attacks. We propose a new these signatureBataGene enables the detection of kernel
malware signature based on the unique patterns of kernghlware and their variants. This functionality will be prated
data accesses that occur during an attack. This technigiesection V.
can complement code-based malware signatures.
« Detection of Malware Variants Having Similar Data I1. LIVE KERNEL OBJECTMAPPING

Access Pattemns. .Our approach_ determines malware DataGene uses the properties of kernel data objects for
attaqk; by extracting and matching data access pattemélware characterization. In this section, we introduce th
spe_cmc 0 _m_alware attacks. Kemel malware aiming j5cation-driven mapping scheme which enables the aeati
similar malicious f_eatures o_ften manipulates COMMOL 4 jive, dynamic map of kernel data object.
data structures. This mechanism can detect such malware
variants having similar data access patterns.
A. Allocation-driven Mapping Scheme

This paper is organized as follows. In Section I, we presentAllocation-driven mapping is a kernel memory mapping
the problem statement. Section Il introduces the appraachlseheme that generates a synchronous map of kernel objects by
based on data properties. Sections Il and IV present ttalslet capturing the kernel object allocation and deallocatioreets
of those approaches. Sections V and VI present implementdthe monitored OS kernel. Fig. 2 illustrates how this sceem
tion and evaluation of our system. Section VIl presentatesl works. Whenever a kernel object is allocated or deallocated,
approaches in kernel malware defense and analysis. Séxtiorthe virtual machine monitor (VMM) intercedes and captures

concludes this paper. its address range and the information to derive the data type

RHEE et al. DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 3

of the object subject to the event in order to update the kermeturn address is the address of the instruction after the ca
object map. instruction. The captured call site is stored in the kerogbct

This approach does not rely on any content of the kernmlap so that the type can be determined during offline source
memory which can potentially be manipulated by kernelode analysis.
malware. Therefore, the kernel object map providesuan The address and size of objects being allocated or deallo-
tampered viewof kernel memory wherein the identificationcated can be derived from the arguments and return value.
of kernel data is not affected by the manipulation of memoifjor an allocation function, the size is typically given as a
contents by kernel malware. This tamper-resistant prgpsrt function argument and the memory address as the return.value
especially effective to detect sophisticated kernel &tabat For a deallocation function, the address is typically given
directly manipulate kernel memory to hide kernel objects. as a function argument. These values can be determined by

The key observation is that allocation-driven mapping cafhe VMM by leveraging function call conventions. Function
tures theliveness statusf the allocated dynamic kernel ob-arguments are delivered through the stack or registers, and
jects. For malware writers, this property makes it signiftta they are captured by inspecting these locations at the entry
more difficult to manipulate this view. In Section VI-B, weof memory allocation/deallocation calls. To capture thene
show how this mapping can be used to automatically detatiue, we need to determine where the return value is stored
data hiding attacks without using any knowledge specific toaad when it is stored there. Integers up to 32-bits as well as
kernel data structure. 32-bit pointers are delivered via tiX register and all values

There are a number of challenges in implementing a lithat we would like to capture are either of those types. The
kernel object map based on allocation-driven mapping. Faturn value is available in this register when the allawati
example, kernel memory allocation functions do not providenction returns to the caller. In order to capture the metur
a simple way to determine the type of the object beingalues at the correct time the VMM uses a virtual stack. When
allocatedt One solution is to use static analysis to rewrita memory allocation function is called, the return address i
the kernel code to deliver the allocation types to the VMMextracted and pushed on to this stack. When the address of the
but this would require the construction of a new type-erébleode to be executed matches the return address on the stack,
kernel, which is not readily applicable to off-the-shelstgms. the VMM intercedes and captures the return value from the
Instead, we use a technique that derives data types by udifX register.
runtime context (i.e., call stack information). Specifigathis 2) Dynamic Data Type Inferenc&he object type informa-
technique systematically captures code positions for nigmaion related to kernel memory allocation events is deteeaiin
allocation calls and translates them into data types soQ@&at using static analysis of the kernel source code offline.tFirs
kernels can be transparently supported without any chamgethe allocation call site of a dynamic object is mapped to the
the source code. source code using debugging information found in the kernel
binary. This code assigns the address of the allocated nyemor
to a pointer variable at the left-hand side of the assignment

B. Techniques , . X
) _ . statement. Since this variable’s type can represent the dfp
We employ a number of techniques to implement allocatiogse gjiocated memory, it is derived by traversing the deelar

driven mapping. First, a set of kernel functions (such &gy of this pointer and the definition of its type. Specifigal
kmal | oc) are designated as kernel memory allocation fungyring the compilation of kernel source code, a parser sets
tions. If one of these functions is called, we say that §fe gependencies among the internal representations ¢fRs)
allocation event has occurred. Next, whenever this evesursc g,ch code elements. Therefore, the type can be found by
at runtime, the VMM intercedes and captures the allocatgdliowing the dependencies of the generated IRs. There are
memory address range and the code location calling th&yeral patterns regarding how these components aredelate

memory allocation function. This code location is referted , the source code and such details are specifically describe
as anallocation call siteand we use it as a unique identifier, [39].

for the allocated object’s type at runtime. Finally, the meu

code around each allocation call site is analyzed offline to

determine the type of the kernel object being allocated. IV. DATA BEHAVIOR-BASED MALWARE
1) Runtime Kernel Object Map Generatiort runtime, CHARACTERIZATION

the VMM captures all allocation and deallocation events |n this section, we present how the data behavior of kernel
by interceding whenever one of the allocation/deallocatinalware is characterized and used to determine the presence
functions is called. There are three things that need to Bemalware. The overview of this component is presented in
determined at runtime: (1) the call site, (2) the address pfg 3, and the Sub-components are as follows.
the object allocated or deallocated, and (3) the size of theas a basic unit to represent the kernel's data behavior,
allocated object. _ DataGene generates a summary of the access patterns for
To determine the call site, we use the return address of §¥¢ kernel objects accessed in a kernel execution instafee.
call to the allocation function. In the instruction streatne |dent|fy dynamic kernel memory objectS, this process takes
1 _ _ . advantage of a kernel object map (shown as The Kernel
Kernel level memory allocation functions are similar to useeleones.
Memory Mapper in Fig. 3) described in the previous section.

The functionkmal | oc, for example, does not take a type but a size to alloca)
memory. For each access on kernel memory in the guest OS, the

4 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9,0 1, JANUARY 2014

Execution Data

Behavior
Signature

[Benign Kernel

Checking
Kernel
Execution

struct
task_struct {

Kernel Execution
with Malware

The Data Behavior Aggregator

fuuld rootkit

(user level code)i

The Kernel Memory Mapper

Fig. 3: Data Behavior-based Malware Characterization I:l Kernel text I:l External code
Fig. 4. An Example of Kernel Behavior

VMM intercedes and records the relevant information about

the kernel memory access, such as the accessing code, jh&y the accessed offsets can vary for the same accessing
accessed memory type, and the accessed offset (shown as{}g Handling them as separate data behavior elements can
Data Behavior Aggregator). cause a high number of elements with slightly differentetfs

To determine malware behavior, the memory access pattef§S the same accessing code. To avoid this problem, we use
for two kinds of kernel execution instances are generated:y, -ochold ;) to convert a list of elements whose offsets

benign kernel runs and malicious kernel runs where kemgl gitferent (but with the same accessing code) to an efemen
malware is active. By taking the difference between the tWpi, o1 offset range.

sets of memory access patterns, we estimate the data behavio

specific to the kernel malware and generate its signaturea(DRefinition 2 (Kernel Execution InstanceA kernel execution
Behavior Signature). Later, in order to detect kernel medwa instance or a kernel run is an instance of the OS kernel
the generated signatures are compared to the memory ac€xesution.

patterns of a running instance of the OS (Checking Kernglinition 3 (Data Behavior Profile)For a kernel execution

Execution). instancer, a data behavior profile (DBP) is defined as a set
of DBEs observed and it is denoted Bs.

A. Data Behavior Profile Approach .
)] PP .]] A DBP represents a set of data behavior elements observed
In this section, we present basic terminologies that repres, 4 kernel execution instance. It is a summary of all obsgrve

the memory access patterns of kernel execution. kernel-mode memory access patterns in the kernel run.

Definition 1 (Data Behavior Element)A data behavior el- Fig. 4 presents kernel code showing the examples of data
ement (DBE) represents a pattern of a memory access. |tb@haVi0r elements. The rounded box shows a dynamiC kernel
defined as a quintuple, (c, o, m, i, f): the address of the co@biect allocated by the codg. This object is then accessed
that accesses memory)(the kind (read or write) of memory Py the codec, and two fields,next _t ask (offset 80) and
access), the kind (static or dynamic) of the accessed memopy €V_t ask (offset 84), are written by it. Therefore, the data
(m), the class of the accessed memaiy &nd the accessed behavior elements for this code example are as follows.

offset(s) () inside the memory of the class
. . (027170701,80),(C2,1,0761,84),
c is the address of the kernel code that reads or writes kernel

memory.o represents the kind of memory access which is 0 These elements are the access patterns in a benign kernel

for a memory read and 1 for a memory write. run. If kernel malware is active in this kernel, the access
The kind of the accessed memory, is O for a dynamic patterns can be extended due to the malware behavior. For

object and 1 for a static object. The classis defined instance, if kernel rootkitep andf uul d are active as shown

differently, depending on the memory kind. Static objeats ain the right-hand section of Fig. 4, there would be additiona

known at compile time; therefore, we are able to assign unigaccesses to theext _t ask and thepr ev_t ask fields by

numbers as their identifiers. A class of a static object cdite codecs andc,. Consequently, the data behavior profile is

represent either a static data object or a kernel functichen extended with the additional elements as follows.

kernel text. In the case of dynamic kernel objects, there are

multiple memory instances for the same data type at runtime. (c3,1,0,¢1,80), (c3,1,0,c1,84),

Dynamic kernel objects allocated by the same code correspon

toythe data instanjces of the spe?:/ific data type used inpthe (c4,1,0,¢1,80), (e4, 1,0, ¢1,84)

allocation code. Thus, we aggregate the access patterns dflere cs represents the code of thg rootkit, which is in

dynamic kernel objects that share the allocation code. Ttie form of a kernel driver. The code integrity-based rdotki

address of this allocation code is used as a unique class defense approach [42], [45] can determine this access as

such objects. malicious based on the fact that this driver code is not in
f is an offset, or a range of offsets, accessed by the caiie authorized code list. In contrast, the codecatis part

at c. We allow a range of offsets because if this object is af legitimate kernel code which is indirectly exploited to

RHEE et al. DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 5

Guest Kernel Akernel run Malware attack
VM [:] [:] [:] [:] [:] Memory Objects : ¥ >

T Ji\ J
: : Kernel Object Map 1 i |
| |) ” Ca I inthe VMM Benign patterns i Malware patterns

...

1

Aggregated - pS——
Memory Profile Boot 05 Time : utdown

Fig. 5: Aggregating Memory Accesses on Dynamic Kermel Fi9- 6: Using a Single Kernel Run for Both Benign and
Objects Regarding Allocation Sites; and c,» Malware Memory Access Patterns

overwrite this data structure. This rootkit does not vielat the stack is accessed for various purposes such as return
kernel code integrity; therefore, the approach based om cod values, function arguments, and local variables. Since the
integrity cannot detect this attack behavior. kernel control flow is highly dynamic, the set of code
In both cases, malware behavior appears only when the sites that access the stack and the accessed offsets within
malware runs. Our approach aims to capture such behavior the stack vary significantly. Also, the contents of kernel
specific to the attack in order to determine the presence of stacks are irregular at different runs. As such, a simple
malware. way to handle this problem is to exclude stacks from
In a kernel execution instance, there exist a varying number our analysis. The kernel memory mapper provides the
of dynamic kernel data instances. To compare the access identifier for kernel stacks and we solve this problem by
patterns of dynamic kernel objects in different kernel runs ~ removing the information for such dynamic objects from
it is necessary to aggregate the memory accesses on such the analysis.
objects regarding their classes. The allocation code septe « Varying Offsets in Arrays. Some data structures (e.g.,
the instantiation of a data type at a specific code position. arrays and buffers) have a range of space, a part of
By using a memory allocation code site as the classifier of Which can be used at runtime. For example, the accessed
dynamic kernel objects, we aggregate the access patterns of offsets of a buffer can be different depending on the data

dynamic instances of the same type. contained in it. This problem is handled by using multiple
Fig. 5 illustrates this aggregation process. When a dynamic instances of kernel execution. If the accessed offset of
kernel object is allocated in a guest OS kernel, the allonati memory is different in each execution, it is not used for a

code site is stored in the kernel memory map as the class malware signature because it may not be used in another
information. Whenever kernel code reads or writes a dynamic run. Only the data behavior that occurs in a consistent
kernel object, the VMM intercedes and identifies the tamjete ~ pattern when malware is active becomes a candidate for
object by using its class information from the kernel object the signature.

map. The memory access pattern is recorded in the aggregate®) Characterizing Malicious Data Behaviorln order to

memory profile. reliably characterize the data behavior of kernel malware
in dynamic execution, we use multiple kernel runs in the
B. Characterizing Malware Data Behavior signature generation stage. Let us call a DBP for a malicious

In this section we demonstrate how we characterize tKgMel runj with malwareM Dy, j, and Dp ;. represents a

behavior of kernel malware based on data behavior profilgidta behavior profile for a benign kernel executioiVe apply

We first describe the challenges and describe how we addragk operations on malicious_kernel runs anh benign runs
follows. The generated signature is calledate. behavior

them. Then, we describe how we generalize malware beha\/?ér
in order to match similar behavior in different malware. Signaturefor the malware) and shown as;.
1) Challenges and Our Solution®ataGene characterizes
malware behavior by using dynamic kernel execution. We Sw= () Duy— U Dar @
list several challenges caused by our foundation on dynamic JE[L,n] k€[1,m]
analysis. We then present our solutions for these chalienge This formula represents that, is the set of data behavior
« Variations in the Runtime Kernel Behavior. Gener- thatconsistentlyappears im malware runs, but never appears
ally, the difficulty in obtaining a complete set of kerin m benign runs. The underlying observation from this
nel execution paths is a well-known challenge for aformula is that kernel malware will consistently performlma
approach based on dynamic execution. If we focus @ious operations during attacks. This means, we can estimat
the data behavior in benign execution, it is in fact amalware behavior by taking the intersection of maliciousstu
problem because the runtime kernel behavior can Beich behavior should not occur in benign runs, so we subtract
highly dynamic across different runs. However, we focuhe union of benign runs from the derived malware behavior.
on the data behavior specific to malware that consistentlyWhen we use kernel execution instances to generate mal-
appears only when the malware is active. ware signhatures, the malicious runs and benign runs can be
« lIrregular Access Patterns on Kernel Stacks. Kernel independent. They do not need to be, however. We can use
stacks are kernel objects that have irregular access pae execution period before the attack as a benign run and
terns. Whenever a kernel function is called or returnspnsider only the new patterns after the attack as the malwar

6 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9,0 1, JANUARY 2014

kernel run if we have control on the launch of malware attacksonitor, any software virtualization system, such as VMavar
as shown in Fig. 6. This technique prunes out a significaorkstation [52], VirtualBox [24], and Parallels [34] cam b
number of benign access patterns from the malicious kermmled for implementation. We choose QEMU [5] with the
run, hence reducing risk for potential false positives. KQEMU optimizer for implementation convenience.

False positives may occur if a consistent pattern in theln this section, we will discuss more details about our
malicious runs is later observed in a newly tested benign rimplementation and the challenges associated with it.
The cause of this problem is not unknown kernel behavior, but
rather a problem of proper pruning during signature genera-
tion. By exercising a variety of workloads in multiple kefneA. Live Kernel Object Map

execution instances, we expect that such potential behforio
this error can be significantly reduced. In the kernel source code, many wrappers are used for kernel

3) Generalizing Malware Code IdentityPataGene aims memory management, some of which are defined as macros

at matching the variants of the rootkits whose signatures & 'n_“n,e functhns and others as regular functions. Macrios
available. For exampleDataGene can be used to inspectand inline functions are resolved as the core memory functio

suspicious data activity in the execution of new signedetgy CallS at compile time by a preprocessor; thus, their cadissit

(which may include hidden malicious code), the execution f€ captured in the same way as core functions. However, in

an unknown driver (which may be malware or its variant ,he case of regular wrapper functions, the call sites witbhg

or kernel execution (where legitimate kernel code can B& the wrapper code.
exploited indirectly for attacks). To solve this problem, we take two approaches. If a wrapper

In order to cover variants of malicious cod®ataGene IS Used only a few times, we consider that the type from the
does not use specific identification of kernel drivers. WheMrapper can indirectly imply the type used in the wrapper's
we generate or test signatures, we generalize the infaymatF@ller due to its limited use. If a wrapper is widely used in
specific to kernel drivers, thus allowing signatures to lste¢ Many places (e.gkmem cache_al | oc —a slab allocator),
against any driver. Specifically, when the signature foreedr W€ treat it as a memory allocation function. Commodity OSes,

based rootkit is generated, all code sites in this malicio4!ich have mature code quality, have a well defined set of
driver are substituted by a single anonymous code site, M€MOry wrapper functions that the kernel and driver code

Some rootkits allocate memory and place their code on fommonly use. In our experience, capturing such wrappers, i
and any code site in such memory is also generalized s addition to the core memory functions, can cover Fhe majorit
this process, we also generalize all benign kernel modulesd the memory allocation and deallocation operations.

the same way and subtract their memory access patterns frord/e categorize the captured functions into four classes: (1)
the candidates for the signature to collect only the belavid@ge allocation/free functions, (Xmal | oc/ kfree func-
specific to the malware. tions, (3) kmem cache_al | oc/ free functions (slab al-

If a piece of malware does not use a driver, but insted@cators), and (4vmal I oc/vfree functions (contiguous
exploits legitimate code (e.g., the rootkits using memof€mory allocators). These sets include the well defined wrap
devices or return-oriented rootkits) then this will residt Per functions as well as the core memory functions. In our
access patterns of legitimate code that are not observedP{Rtotype, we capture about 20 functions in each guest kerne
benign runs. In addition, when we match a malware signatuf8€¢ memory functions of an OS kernel can be determined
with the data behavior profile of a kernel run, we generaliZE°m its design specification (e.g., the Linux Kernel API),
the driver code in the tested run similarly for comparison. kernel source code, or tracing sample runs.

4) Matching a Malware Signature with a Kernel Rufihe Automatic translation of a call site to a data type requires a
likelihood that a malware prograf¥ is present in a tested runkernel binary that is compiled with a debugging flag (e.g.,
r is determined by deriving a set of data behavior element§ to gcc) and whose symbols are not stripped. Modern
in S); which belong to the data behavior profil®,. This OSes, such as Ubuntu, Fedora, and Windows, generate kernel
set I corresponds to the intersection 6%, and D,? (i.e., binaries of this form. Upon distribution, typically the ipjped
I={ili e Sy ANie D). kernel binaries are shipped; however, unstripped bingoes
symbol information in Windows) are optionally provided for
kernel debugging purposes. In our experiments we found that
the kernels of Debian Sarge and Redhat 8 are not compiled

We have implementeddataGene in a software virtual- with this debugging flag. Therefore, we compiled the dis-
ization system and applied it to Linux based operating sygibuted source code and generated the debug-enabledserne
tems. While our approach is general enough to work withhese kernels share the same source code with the disttibute
any OS that follows standard function call Conventions.(e.g(erneB, but the offset of the Comp”ed binary code can be
Linux, Windows, etc.), our prototype supports three o#-th sjightly different due to the additional debugging infottioa.
shelf Linux OSes of different kernel versions: Fedora Core g, static analysis we use gcc [22] compiler (version

6, Debian Sarge, and Redhat 8. For the virtual machiag 3y that we instrumented to generate IRs for the source
o _ _ L code of the experimented kernels. We place hooks in the
2The data behavior signatur€;) is a data behavior profile (i.e., a set of he ab for th decals
data behavior elements) because it is derived by the intiseand union of PArser to extract the abstract syntax trees for the codecetsm
data behavior profiles. necessary for static code analysis.

V. IMPLEMENTATION

RHEE et al. DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION

e — Number of Core Dynamic Kernel Objects
- Allocation Call Site Data Type #Objects

: 2 | fork.c: 248 task_struct 66

g fork.c:801 si ghand_struct 63
& | exec.c: 601 si ghand_struct 1

F | fork.c:819 signal _struct 66

Objects : 86908 pgt abl e. c: 229 pgd_t 54
A dot = 512 Bytes fork.c:433 mm struct 47
> | fork.c:559 mm st ruct 7

AN Ohfts Viowy g fork.c:314 vm area_struct 149

% mmap. c: 923 vm area_struct 1004
mmap. c: 1526 vm area_struct 5

mrep. c: 1722 vm area_struct 48

exec. c: 402 vm ar ea_struct 47

fork.c: 677 files_struct 54

fork.c:597 fs_struct 53

file_table.c:76 file 531

E | buffer.c: 3062 buf f er _head 828
‘Q bl ock_dev. c: 232 bdev_i node 5

i . i i o | dcache. c: 692 dentry 4203

Fig. 7: A Snapshot of a Live Kernel Object Map @ | inode - 112 e e 1900

= nanespace. c: 55 vf smount 16

i node. c: 93 proc_i node 237

. . . I'l _rw_bl k. c: 1405 | request _queue_t 18

B. Data Behavior-based Characterization I'1 _rw bl k.c:2950 | i o_cont ext 10
socket . c: 279 socket _al | oc 12
We implement the kernel object mapper and the data ag- ¥ | sock. c: 617 sock 3
gregator in the VMM. When there is a request to the VMM, Z | nel arbonr. ¢: 265 | el grbous ;
a DBP is written to a file in the host OS. In order to detect Z | tcp_ipva. c:134 t cp_bi nd_bucket 4
kernel malware, the data behavior profile can be generated on fib_hash.c:586 | fib_node 9

TABLE [: Allocation Call Sites, Derived Data Types, and the

the fly and periodically compared with the signature while th
OS is running.

During benign runs we performed various workload from 1) Runtime Tracking of Dynamic Kernel ObjectEhe live
daily commands to non-trivial application benchmarks. THeernel object map synchronously identifies dynamic kerbel o
tested workload includes kernel compilation, Apache welgects on their allocations and deallocations. Therefordike
server, UnixBench, nbench, mysql database, thttp wehsen@her kernel memory mapping approaches that sample memory
find, gzip, ssh, scp, | snod, ps, top, andl s. Some Status or traverse memory snapshots, it can continuouwesti tr
workloads were executed for several hours to allow any badkanges in kernel memory state. Fig. 7 illustrates the GUI
ground administrative operation to be performed. We alsalusinterface of our prototype. The black screen at the top shows
the workload of benign module loading and simple operatiofide guest operating system. The kernel object map is ifitesdr
making use of the dev/ kmemdevice (e.g., open and closebelow the screen. The statistics of current kernel objes a
without overwriting kernel memory). shown in the left pane.

In our experiments we measured the quality of signatures,2) ldentifying Dynamic Kernel ObjectsTo demonstrate
whether they trigger false positives, as we increased ttiee ability to inspect the runtime status of an OS kernel,
number of benign runs and malicious runs used for generatihgble | presents a list of important kernel data structures
malware signatures. We found with five or more sets of benigaptured during the execution of Debian Sarge. These data
runs and malicious runs, we could generate signatures thatstructures manage key OS status information such as process
not cause false positives in our testing with newly geneératérformation, memory mapping of each process, and the status
benign runs. Therefore, in the next section we present ttee daf file systems and the network. This information is often
of these five sets of runs. However, we believe that a lartgrgeted by kernel malware and kernel bugs [31], [35], [36],
number of runs will further improve the quality of signatsre [37], [38], [44], [49], [50]. Kernel objects are recognized
using allocation call sites shown in colun#location Call
Site during runtime. Using static analysis, this information is
translated into the data types shown in colubData Type

We h luated ¢ taini g£39]' The number of the identified objects in the inspected
¢ have evaluated our system on a Server comaining, gyime status is presented in coludi®bjects At that time

3.2th Pentium D .CPU and. 2GB RAM. The guest VMs bemﬁ?lstance, the live kernel object map had identified a total of
monitored are configured with 256MB RAM. 29488 dynamic kernel objects with their data types derived
from 231 allocation code positions.

In order to evaluate the accuracy of the identified kernel
objects, we built a reference kernel where we modify kernel

In this section, we evaluate the functionality of live kdrnememory functions to generate a log of dynamic kernel objects
object mapping with respect to the identification of kernelnd run this kernel with the live kernel object map. We observ
objects. that the dynamic objects from the log accurately match tree li

VI. EVALUATION

A. Live Kernel Object Map

8 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9,0 1, JANUARY 2014

TABLE II: Detection of DKOM Data Hiding Rootkits Using ¢ uul d) previously used in [29], [40], [44]. All of these rootk-

the Un-Tampered View of Live Kernel Objects:L(its commonly hide kernel objects by directly manipulatihg t
fuuld, HL: hide_lkm LF: linuxfu, CL: pointers of such objects. Our map successfully detected all

cl eaner, M+ nodhide, Mil: nodhidel, AD: of these attacks by detecting the data anomaly. The detailed

adore-ng-2.6, EY: ENYELKM 1.1) results are available in Table II.

Rootkit - 151 Manipulated Kemel Object In the (.ex.perirr)ent_s, we focus ona specifip attapk mechanism
Nf:‘f‘e L taskTySF;eruct - tas':k'e';’r s~ data hiding via direct kernel object manipulation (DKOM)
HL | # of hidden modules| _ modul e T hext — rather than the attack vectors of rootkits. This means that
hp # of hidden PCBs | task_struct | next_task, prev_task our system can still detect malware that uses a previously
L orhidden PCBs | task_struct | next_task. prev task ynknown attack vector in order to manipulate kerel data
kis | I (rootkit sel-hiding)| _ modul e next structures. For example, a large number of rootkits aredbase
N’m f(‘:(f):t's:i’;”f“rﬁg:‘n'g)s xgz:z 22’;: on loadable kernel module (LKM), which can be detected
AD 1 (rootkit self-hiding) modul e list.next,list.prev by code integrity approaches [42]1 [45] or with a kernel
EY | 1 (rootkit self-hiding)| modul e [ist.next,Tist. prev module signing and verification scheme. However, theret exis

alternate attack vectors such aslev/ mem /dev/ kmem
devices, return-oriented techniques [23], [46], kerngjdhand
dynamic kernel objects captured by the live memory map. Tmproven code in third-party kernel drivers which can elude
check the type derivation accuracy, we manually translate texisting kernel rootkit detection and prevention appresch
captured call sites to data types by traversing kernel ousg/e present the DKOM data hiding cases of LKM-based
code as done by related approaches [9], [15]. The typesederivootkits as part of our results because these rootkits can be
manually match the results from our automatic static codgsily converted to make use of these alternate attackrgecto
analysis. We also include results for two other rootkits that make use
of these advanced attack techniqueisde | kmandf uul d
in Table Il respectively hide kernel modules and processes
o without any kernel code integrity violation (viadev/ krem),
_ Existing memory map approaches [2], [9], [36], [44], [54hq existing rootkit defense approaches cannot propetéctle
identify memory objects by asynchronously scanning tigese attacks. However, our monitor effectively detects al
pointers in the memory image. Therefore, they are not alygom data hiding attacks regardless of attack vectors.
to detect manipulation of objects without relying on some in |, yhe experiments that detect rootkit attacks, we generate

consistency of data. In this section we present a relialolddri and comparel, and S sets every 10 seconds. When a data
kernel object detector built on top of allocation mappingtth anomaly occurs, the check is repeated in 1 second. (The

does not suffer from this limitation. _ . repeated check ensures that a kernel data structure was not
Some advanced kernel rootkits hide kernel objects by simply, oy in an inconsistent state during the first scan.) If the

removing all references to them from the kernel’s dynamg:nomaly persists, then we signal that an anomaly has been
memory. We model the behavior of this type of data hidingatected.

attack as a data _anomaly in a_list. I_f a dyna_m_ic kernel objectWith these monitoring policies, we successfully detected
does not appear in a kernel object list, then it is orphanet agy esteq DKOM hiding attacks without any false positives o
hence an anomaly. i i) false negatives.

AIIocatlon-erven mapping provides am-tampered viewf So far, we have presented the detection of kernel malware
the kernel objects not affected by _manlpulanon_ of the aCtu\ﬁ'lhich achieves its malicious functionality by hiding kerne
kernel memory content. Therefore, |fak_ernel object appear data structures. DKOM data hiding techniques are simple to
the map but _cannot be founq by traversing the kernel memo rform (i.e., isolation of data) but very challenging tde
then th_at object h"’_‘S been h|d_den. More forma[ly, fo.r a set Qlie to non-deterministic locations and values of dynamie ke
dynamic !<ernel objech of a given datg type, alivelsas the o objects. In addition to data hiding, malware can maifgul
set of objects found in th_e kernel object map. A scanned nel data to perform a variety of other types of attackdisuc
S is the set_of kernel objects found by traversing the kerng privilege escalation of a backdoor process and manipglat
memory as in the related approaches [2], [9], [36]Lland statistics and information stored in the kernel. Due to tit f

S do not match, then a data anomaly will be reported. y,5; |l these attacks are performed by a manipulation afeker
There are two dynamic kernel data lists which are favor ta, they can be modeled in terms of kernel data access
by rootkits as attack targets: the kernel module list and @ vior “In the next section, we present the detection of a

process control block (PCB) li§tHowever, other linked list- wider scope of kernel malware beyond DKOM data hiding
based data structures can be similarly supported as wedl. -I;Botkits.

basic procedure is to generate the live eaind periodically
generate and compare with the scanned %eWWe tested 8
real-world rootkits and 2 of our own rootkit$ i(nuxf u and C. Data Behavior-based Malware Characterization

3 _ L In this section we evaluate the effectiveness of malware

A process control block (PCB) is a kernel data structure aiairtg h o b d d behavi . I
administrative information for a particular process. Itsadéfpe in Linux C_ aracterization base .On ata behavior S'gnatwes m“.m
istask_struct. First, we extract the signatures of three classic rootkitd a

B. Detecting Data Hiding Malware Attacks

RHEE et al. DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 9

40000 TABLE IlIl: Details of Benign and Malicious Kernel DBPs
& o (D) and Signaturesy). CL: # of Classes, RS: # of Read
= 38000 1 Sites, WS: # of Write Sites
& Legend
= 30000 | Dynamic CL -~ 1 D/ Dynamic Objects Static Objects
£ Synamic RS S |[CLT RS JTWS| CL | RS | WS
@ 25000 - ynamic WS 1 -
= Static CL Benignruns | (JD || 221 | 13918 | 5608 | 15800 | 39283 | 11449
S 20000 | Stie RS T adore 0.3g | D | 193] 8716 | 3296 | 15800 21333| 2518
2 ' S 2 1 2 1 1 1
9]
% 15000 I 4 (D | 193 | 8720 | 3303 || 15800 | 22564 | 2515
3 SucklT g5 |13 | 8 | 1102 | 1212 6
S 10000 . (D | 192 | 8608 | 3276 || 15800 | 21306 | 2517
g modhide g1 1 0 0 0
E 5000
=z
0 e TABLE 1V: Details of the Rootkit Signatures. CL: # of
123 456 7 8 9101112131415 Classes, RD: # of Read DBEs, WD: # of Write DBEs
Data Behavior Profiles
. Rootkit Dynamic Objects Static Objects Total
Fig. 8: Cumulative Union Chara}ctenstlcs of Benlgn DBPs. Name c{ RD \}\,D L RDJ WD || DBE
CL: Classes, RS: Read Sites, WS: Write Sites. adore 0.38 || 2 | 5 | 14 1 8 7 35
SucKI T 5| 29| 12 || 1192| 11963| 6 || 12010
nodhi de 1] 0 1 0 0 0 1
o 30000 ; : ,
=
2 25000 - 1
g T features and we chose an old version, 0.38, for the signature
J 20000 to evaluate its effectiveness toward newer rootkit version
S 15000 1 (0.53 and 1.56)SucKI T is known for its attack vector, the
= / dev/ kmemdevice, that avoids using a conventional driver-
§ 10000 .] based mechanism [18]. Several other rootkits followed by
- 5000 using the same attack vectomdhi de is a rootkit packaged
£ .. with various versions of thador e rootkit to hide it from the
p=} . .
z 0 e list of kernel modules. We present our results for otherkibot
1 2 3 4 5 choices in Section VI-C3.
Data Behavior Profiles .
To generate each malware signature, we used kernel data
DyRaiE L~ Dy e Dynamic WS behavior profiles (DBP) for both benign and malicious kernel
Static CL_- Static RS -==== Static WS == execution. For benign behavior we used a diverse set of
Fig. 9: Cumulative Intersection Characteristics of DBPs foWorkloads including booting & shutdown, kernel compilatio
ador e 0.38 Rootkit Attacks. apache, mysgl, nbench, unixbench, and thttpd. To determine

how many DBPs would be necessary for analysis, we com-
puted the cumulative union behavior of profiles with a random

match them with benign and malicious kernel runs. Secorffder of workload. Figure 8 shows that after taking the union
we compare the signatures of all of the tested kernel raotkff seven DBPs, the kernel behavior patterns are stabiliaed f
to determine common data behavior across different raotkRUr workloads. This data suggests at least seven profile runs
and how such common behavior can be used to detect rooffipuld be used to derive reliable malware signatures. This
variants. Third, we list specific data elements that areeshey Nnumber, however, could vary depending on the dynamics of the
rootkit signatures, which provide an in-depth understagdif Workload. To collect stable profiles conservatively, we dal
the attack operations that are common across kernel reptk#top at seven runs. Instead, we used 15 benign runs, slightly

1) Malware Signature GenerationWhen a data behavior over the twice of the number of runs that we observed the
signature is generated, the information specific to thecimais Stable cumulative patterns, for our experiments.
code is largely generalized. Therefore, we hypothesize thaFor malicious kernel DBPs, we take the intersection of
data behavior signatures may be effective not only to detduthavior to extract consistent behavior across attackgiréi
the malware whose signature is available, but also to daterm® shows the cumulative intersection behavioradfor e 0.38
the presence of related malware. In order to validate thigotkit attacks. Since the rootkit does not vary its behaino
hypothesis, we generated the signatures of three repagisent each attack instance, the common attack behavior is coeerg
classic rootkits, and tested benign kernel runs and malicioupon quickly even with only a few malware attack samples. In
kernel runs with 16 rootkits. particular, the rootkits that we chose for signatures comigno

To generate malware signatures, we chose three rootkiiBpw stable behavior only with two runs. Similar to our
adore 0.38, SucKl T, and nodhi de. We chose these practice used for the benign case, we conservatively dellec
three for the following reasons: Tredor e rootkit has been about twice this many runs. Hence, we used five malicious
studied in several rootkit defense approaches [35], [3&],[kernel runs to generate malware signatures.
[44]. This rootkit has several versions with differences in Table Il shows the summary of benign and malicious kernel

10 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9,0 1, JANUARY 2014

execution instancesY) and the generated signature®).(In rootkits have behavior similar to other rootkits which were
all data behavior profiles measured, we set the threshold fested, and there is no reason to believe that they would be
aggregating offsetsI{) as 15. Thus, we consider an objecimore difficult to detect.
as an array if more than 15 offsets within the object are Table V presents the number of matched data behavior
swept over by the common codgpically, different data fields elements between signatures and kernel runs with rootKits (
have corresponding sets of accessing code because most ARIs left-hand columns show the information about signature
access relevant data fields and do not scan the whole diwaname {/) of the rootkit used for the signature and the size
object through. For some array-like data fields or stringsf the signature|S,,|). The remaining 16 columns present the
Ty lowers the granularity of analysis by managing a setumber of data behavior elements common in the compared
of addresses as a range instead of many individual itersfgnature (based on the rootkit in the row heading) and the
The value 15 was determined for our experiments througernel run (where the rootkit in the column heading is agtive
empirical testing. We consider a tested run to include malware if it contains
Table IV presents the details of our three sample rootkits. DBE that matches a known malware signature. In our
The data behavior signatures of thelor e, SucKl T, and experiments, all kernel runs with rootkits share elemerits w
nodhi de rootkits have 35, 12010, and 1 data behaviane or more signatures (shown in the row at the bottom of the
elements (DBEs), respectivelucKI T has a significantly table), leading to the detection of all 16 kernel rootkits.
high number of elements because it scans kernel memory tdne potential question regarding malware signatures would
collect information about the attack targets (e.g., théesys be the selection of kernel rootkits for signatures. To ustderd
call table), and this behavior is observed as reading nuuseravhich signatures would be effective on which rootkits, we
static objects with a variety of offsets. Ti®dhi de rootkit performed a more comprehensive set of experiments using
simply manipulates the kernel module list; thus, it has onlgifferent rootkits for signatures. We first generated thetkib
one element. signatures of all 16 kernel rootkits using five maliciousriar
2) False Positive AnalysisTo evaluate the false positivesruns and 15 benign kernel runs. Then we applied them to the
of the generated signatures, we compared the signaturks Wwernel runs (different sets from the ones used for signature
new benign kernel execution instances. In these extraghengeneration) contaminated by 16 kernel rootkits.
kernel runs we ran additional workloads not included during The comparison result is presented in Table VI. When the
our initial signature generation phase in order to ensureemaootkits in the signature and the tested run are matched, the
code paths and data operations were executed than prgvioushtire signature is matched (# matched DBE|S5,|, the
In this experiment, no false positive cases were found, whioumbers are shown in italics). The bottom row shows that
confirms that our signature generation procedure capturegieen a rootkit in the column heading, how many rootkit
reasonably close set of the data behavior specific to theekersignatures other than its own signature can detect theitootk
rootkits and that the tested runs did not contain any dafhis number varies from 2 to 10 depending on how many
behavior that appears in the signatures. similar rootkits exist in the set of our experiments. On ager
3) Detecting Rootkits using Data Behavior Signatures:more than six rootkit signatures are able to detect a given
Malicious kernel runs were next tested by using three sigotkit.
natures to determine any running malware based on thet) Similarities Among Data Behavior Signatureb this
similarity of the data access patterns between the compasattion we quantitatively analyze the similarities in dag¢aav-
signature and the kernel run. We tested a total of 80 kernel across rootkits by generating and comparing the sigaatu
runs of 16 rootkits having a variety of targets and attaakf the tested rootkits.
vectors. For instance, seven rootkitsu(l d, hi de_I km We calculated the similarities among signatures by compar-
hp, i nuxfu, cl eaner, nodhi de, and nodhi del) di- ing the signatures of 16 kernel rootkits with one anothem. Ou
rectly manipulate kernel objects (DKOM [7]). Four rootkitsexperiments reveal that each rootkit shares its data bahavi
(fuul d, hi de_I| km SucKI T, andsuper ki t) manipulate with 2~10 other rootkits (more than six rootkits on average)
kernel memory by using thédev/ kmem memory device, which is consistent with the results of the cross comparison
among which two rootkitsf(uul d andhi de_| km directly in the previous section.
manipulate only kernel data and do not violate kernel codeThe rootkits show similar data behavior not only among
integrity. Therefore, they are not detected by code intggri close variants, (e.g., different versions aflor e) but also
based defense systems [42], [45]. across rootkits having different attack mechanisms. Famex
For this testing we use a slightly different set of rootkitple, the/ dev/ kmembasedSucKI T shows similarities with
than the DKOM hiding rootkits evaluated in Section VI-Bdriver-based rootkits such &sar k andki s, despite the fact
(Table 11). Among these, two rootkitgdor e- ng- 2. 6 and that they are not derived from one another.
ENYELKM 1. 1, are not included in this evaluation due to the The strong similarities of data behavior across rootkits
fact that they require a specific OS platform that is suppbrtare visualized in Fig. 10. The family ofdor e rootkits
by the live kernel object map, but not by the system asame strongly related in general. Thedore-ng 1.56 is
whole. Incompatibilities such as this are not uncommon tonnected to other versions with less strong connections,
rootkit defense research, and we have parallel work [41] thhick dashed arrows, because in nevaelor e versions, the
is meant to address this issue for future research in the ar@#ernal attack vector is substantially changed to use mhyma
We would like to note that, at a fundamental level, these twabjects instead of static objects. A group of rootkits using

RHEE et al. DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 11

TABLE V: The Number of Matched Data Behavior Elements Betwaéree Rootkit Signatures and the Kernel Runs with
16 Kernel Rootkits (Average of 5 RunshPl: ador e 0.38,AD2: ador e 0.53,AD3: ador e- ng 1.56,FL: f uul d, HL:
hi de_| km SK: SucKI T, ST: superki t, LF: I i nuxfu, CL: cl eaner, MH: nodhi de, MHL: nodhi del)

Signature 65) # of matched DBEs betwee$,; and the kernel runs with the rootkits shown beld#)

M \ | S| ADl\ADZ\ADS\FL\HL\ SK \ ST \hp\kbdv:%\knark\LF\Rial \CL\kis\M—!\M—ﬂ

ADL 35 35 30 14 0 0 2 2 2 5 20 3 4 0 2 0 0

SK 12010 2 1 1 16 | 16 | 12010 11983| O 0 1 0 0 0 16 0 0

MH 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
Detected VIVIVI VIV VY v |V v v VIV VIV VIV

of effective Sy, 2 2 2 1 1 2 2 1 1 2 1 1 1 2 1 1

TABLE VI: The Number of Common Data Behavior Elements Betwé® Rootkit Signatures and the Kernel Runs with 16
Kernel Rootkits (Average of 5 Runs)AD1: ador e 0.38,AD2: ador e 0.53,AD3: ador e- ng 1.56,FL: fuul d, HL:
hi de_I km SK: SucKI T, ST: superKki t, LF: |i nuxfu, CL: cl eaner, M+ nodhi de, MH1: nodhi del)

Signature £y/) # of matched DBEs betwee$,; and the kernel runs with the rootkits shown beldw)

M [Sar| AD1 | AD2 | AD3 | FL | HL SK ST | hp | kbdv3 [knark [LF | Rial |CL| kis | M4 | ML
AD1 35 35 30 14 | 0 0 2 2 2 5 20 3 4 0 2 0 0
AD2 46 30 | 46 24 | 0 0 1 1 2 5 19 2 4 0 2 0 0
AD3 97 14 24 97 0 0 1 1 2 4 9 6 0 2 2 0 0
FL 19 0 0 0 19 | 13 16 16 0 0 0 0 0 0 0 0 0
HL 3406 0 0 0 13 | 3406 13 13 0 0 0 0 0 0 0 0 0
SK 12010 2 1 1 16 13 | 12010 11983| O 0 1 0 0 0 16 0 0
ST 11998 2 1 1 16 13 | 11983 11998| O 0 1 0 0 0 1 0 0
hp 17 2 2 2 0 0 0 0 17 0 1 5 0 0 1 0 0

kbdv3 16 5 5 4 0 0 0 0 0 16 4 0 0 0 0 0 0
knar k 67 20 19 9 0 0 1 1 1 4 67 1 4 0 2 0 0

LF 24 3 2 6 0 0 0 0 5 0 1 24 0 0 1 0 0
Ri al 46 4 4 0 0 0 0 0 0 0 4 0 46 0 0 0 2
CL 3 0 0 2 0 0 0 0 0 0 0 0 0 3 0 1 1
ki s 31203 2 2 2 0 0 16 1 1 0 2 1 0 0 | 31203| O 2
VH 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
VH1 6 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 6

of effective Sy, 10 10 10 | 3 3 8 8 6 4 10 6 4 3 9 2 4

1
=
P N

o LSucKITy
R ——]

L kbav3

Fig. 10: Similarities Among the Data Behavior of Rootkityp@s of Arrows [I|: # of Matched Elements): Thin Solid (0
< |I] < 5), Thick Dashed (5= |I| < 25), and Thick Solid |(| >= 25)

the/ dev/ kmemmemory device (i.e.SucKI T, hi de_| km 5) Extracting Common Data Behavior Elementst this
fuul d, andsuperki t) have a strong relationship to onesection we demonstrate the details of common rootkit astack
another.SucKI T and super kit are especially connectedwhich are systematically extracted based on similarities i
by using thick solid arrows because they share a majority afotkit data behaviors. The data behavior elements (DBES)
data behavior. Some rootkits have relationships with ifie from the signatures of all experimented rootkits are ranked
kinds of rootkits. For example, tHd s rootkit is connected to with the order of the appearance in rootkits’ signatur®y. (
other driver-based rootkits such as #or e rootkits and the The top DBEs are presented in Table VIl after being classified
knar k rootkit, but it is also closely related todev/ knem into several categories.

based rootkits such as tigicKI T.

o . The first three columns present the information regarding
In summary, the data behavior is not only common in trV:l")otkits which share data behavior elements. The nunber

family of rootkits or similar kinds, but also is availablerass and the names of rootkits whose signatures share a DBE are

different kinds of rootkits. The signatures of these rEiatqisted. A short description of the DBE is provided in the next

rootkits can be interchangeably used to detect one anOther(;qumn.

12

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9,0 1, JANUARY 2014

TABLE VII: Top Common Data Behavior Elements Among the Sigmes of 16 Rootkits
Rootkits Accessing code Accessed data

N | Rootkits with common behavior Rootkit behavior Code ¢) o m | Data classi) Field,Offset (f)

7 | AD1, AD2, ADB, hp, knark, LF, ki s | Reading a process's ID 5 R D | task_struct pid

6 | AD1, AD2, ADB, SK, ST, knar k Reading a process’s flag 5 R D | task_struct flags

5 | AD1, AD2, AD3, kbdv3, knar k Privilege escalation e w D | task_struct uid, euid, gid, egid

5 | AD1, AD2, AD3, hp, LF Listing processes e R D | task_struct next _task

4 | ADL, SK, ST, ki s Setting an address space 5 W D | task_struct addr _limt

4 | AD1, AD2, AD3, knar k Privilege escalation 5 Y D | task_struct suid, fsuid, fsgid

3 | AD1, AD2, AD3 Privilege escalation € w D | task_struct cap_effective

3 | AD1, AD2, AD3 Privilege escalation € w D | task_struct cap_i nheritable

3 | AD1, AD2, AD3 Privilege escalation € w D | task_struct cap_permtted

3 | AD1, AD2, kbdv3 Reading a user’s ID 5 R D | task_struct uid

3 | AD1, AD3, LF Reading a process’ name 5 R D | task_struct conm

2 | hp, LF Hiding a process 5 w D | task_struct next _task, prev_task

4 | FL, HL, SK, ST Manipulation via/ dev/ kmem || read_kmem wri t e_knem RWI[D |file f_pos

4 | FL, HL, SK, ST Manipulation via/ dev/ kmem || menory_| seek W D |file f_pos

3 | FL, SK, ST Manipulation via/ dev/ kmem || do_wri t e_mem RW| D |file f_pos

3 | CL, VH, VHL Hiding a kernel module & W D | nodul e next

2 | kis, MHL Hiding a kernel module € W S | modul e_l i st 0

4 | AD1, AD2, knark, Ri al Hijacking a system call e W S | sys_call_table # 141

3 | AD1, AD2, knar k Hijacking a system call 5 w S | sys_call_table # 2,37,120,220

3 | AD1, AD2, Ri al Hijacking a system call 5 w S | sys_call _table #6

2 |Rial,M1 Hijacking a system call e w S | sys_call _table #5

2 | knark, Ri al Hijacking a system call e w S | sys_call_table #3

2 | SK, ST Hijacking a system call 5 % S | sys_call_table # 59

2 | SK, ST Hijacking a system call __generic_copy_fromuser Y S | sys_call_table # 59

2 | AD1, AD2 Hijacking a system call € w S | sys_call_table # 39

2 | AD2, AD3 Hijacking a hook € W S | proc_root _i node_operations | | ookup

The next five columns present the contents of the DBEs: / 5.99

. . o 6 5.48
the accessing code)(the kind of memory acces®)(such g 517
. . T
as a read (R) or a write (W); the kind of accessed memory g %5
(m) such as a dynamic object (D) or a static object (S); the § T4 349
accessed memory’s clas$, (which is converted to a data type 3 & 3
. . . Q0 o

for dynamic data or a variable name for static data; and the £ = ,
accessed offset(s)). The offset is converted to a field name § = 129 122 11 117 133
if it corresponds to a specific field. If the accessed object is 2 1]
the system-call table, a system-call number (#) is preddnge 0 -

dividing the offset by the size of a pointer.
a) Attacks on Process Control Blocks (PCB3he first

category at the top of Table VII lists the data behavior th&ti9-
targets a process control block. This is a core data strictur
that maintains administrative information about procssse

Compile
B Unmodified QEMU

Therefore, it is a major target of rootkits. Table VII shows
that seven rootkits read the process ID numbers in PCBs

UnixBench nbench

DataGene-Map

bzip2 find

M DataGene-DBP

11: Performance Comparison of QEMU abdtaGene
(DataGene-Map: Kernel Object Map, and
DataGene-DBP: Data Behavior Profile)

during attacks. Several rootkits, such as the familpdbr e d) Attacks on Static Kernel Objectsfhe last category
rootkits, thekbdv3 rootkit, and theknar k rootkit, provide is the manipulation of static kernel objects. Several ribotk

a back-door that permits the root privilege to an ordinafyijack system-calls by replacing system-call table estvigth
user (privilege escalation). Thiep and | i nuxf u rootkits the addresses of malicious functions. This behavior isuragt
manipulate the pointers connecting PCBs. This behavior bg the manipulation of the system-call table by several code
for hiding PCBs from the view of OS. sites, depending on the attack vector. In the case of driver-

b) Attacks using /dev/kmeriThe second category showsbased rootkits, sgch behavior is captured as access by the
the rootkit behavior that manipulates kernel memory by gisifgeneralized rootkit codes. The rootkits based on memory
a memory device (e.g/,dev/ kmen. This device allows a devices (e.g./ dev/ kmen) use legitimate kernel code for
user program to read and write kernel memory like a fil@anipulation (e.g., _generic_copy_from user).
putting the kernel integrity at risk. The kernel runs com-
promised byf uul d, hi de_I km SucKI T, andsuper ki t i
rootkits commonly show specific data behavior that the merk: Performance Evaluation

ory related kernel functions acceks| e objects. SinceDataGene primarily targets non-production environ-

c) Attacks on the Kernel Module LisThe next category ments such as malware analysis honeypots, performance is no
lists rootkit attacks on the kernel module list. Tinext a primary concern. Still, we would like to provide a general
pointer field ofrodul e objects are written by thel eaner, idea of the cost of data-centric malware characterization.
nodhi de, and nodhi del rootkits. Thenodul e objects We evaluated the performance bDhtaGene compared to
constitute the list of kernel modules and they are connectedmodified QEMU. We performed five benchmarks : compil-
by this next pointer. The rootkit attacks that hide a moduléng the kernel source code, nbendlzi p2, thef i nd utility,
appear as direct manipulation of this field. and UnixBench.

RHEE et al. DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 13

Fig. 11 presents the performance overhead of unmodi-rootkit’s attack behavior is not similar to any behavior in
fied QEMU, DataGene with the live kernel object map existing signatures or it does not involve kernel data s=®s
(DataGene-Map), and DataGene with data behavior pro- such malware is out of coverage BfataGene since such
file support(DataGene-DBP). All performance numbers arebehavior does not match thgataGene’s signature.
normalized to the result of unmodified QEMU and a lower Many existing rootkits that share common attack goals often
number represents a faster execution. exhibit similar data access patterns because essentigge t

In DataGene-Map, the VMM only intercedes when the malicious programs generate a false view by manipulating
kernel executes kernel memory allocation and deallocatitegitimate kernel data structures relevant to the goals:. Ou
code. Therefore it has a< 1.42x overheadDataGene-DBP approach can detect rootkits by focusing on the commonlattac
intercedes on every kernel mode memory access to genetatgets described in the malware signatures even though suc
a data behavior profile which is the summary of all kernebotkits have different functionalities.
mode memory access patterns. Therefore DataGene has Obfuscating data access patterns involves comparatively
a higher performance overhead of15.99x. more sophistication than code obfuscation because malware

Kernel compilation, UnixBench, anfli nd intensively use is required to use alternate legal code to access kernel data
system resources such as file systems, pipes, and processymnd the diversification of a malware’s own code patterns.
Such activities invoke kernel services such as system cdfigch attack attempts can be detected by employing defense
and page fault handling which indirectly triggers kerretdl approaches related to control flow integrity [1].
memory activities, which causes a overhead greater tharDataGene is mainly designed for kernel malware analysis
5x. The nbench benchmark involves only user-level CPWhere a potential attack sample is analyzed to determine
workload. BothDataGene-Map andDataGene-DBP do not whether it is malware based on its data behavior. In such an
have additional overhead for this case. Tz p2 benchmark analysis/classification environment with controlled cguafa-
involves both file system access and user-level computatidions, it is possible to produce no false alarms as presented
Therefore it causes a lower overhead compared to kerioeir experiments. However, if this technique is further aime
compilation, UnixBench, andli nd. towards a production environment where a wider diversity of
workload could be generated, false alarms may occur due to
the fact that our technique is founded on dynamic execution.

Broadly, DataGene can be categorized as a behavior-

Since DataGene operates in the VMM beneath the hardbased approach due to its use of memory access behavior.
ware interface, we assume that kernel malware cannot ljireaiowever, this approach is clearly distinguished from tra-
accessDataGene code or data. However, it can exhibitditional behavior-based methods. Traditional code beiravi
potentially obfuscating behavior to confuse the view sedyised approaches use code sequences as patterns. Since code
by DataGene. Here we describe several scenarios in whicéxecution follows a program control flow specified in the
malware can affecDataGene and our counter-strategies toprogram semantics, this approach is intuitively undedsiate.
detect them. Unlike the program control flow; however, data accesses are

First, malware can implement its own custom memomot a single continuous flow. From the data point of view,
allocators to bypasPataGene observation. This attack be-the accesses from various code can be interleaved making
havior can be detected based on the observation that angequence not stable as a consistent pattern for a behavior
memory allocator must use internal kernel data structuses dignature DataGene solves this problem by using a different
manage memory regions or its memory may be accidentaigpect of program behavior. Instead of simply using the code
re-allocated by the legitimate memory allocator. Themeforto create malware signatures, we model data accesses with tw
we can detect unverified memory allocations by comparirgntities: the subject (the accessing code) and the objeet (t
the resource usage described in the kernel data structuiesessed data). This allows us to determine the patterns of
with the amount of memory being tracked iataGene. relationship between subjects and objects, and hencede®vi
Any deviance may indicate the presence of a custom memenypre robust signatures.
allocator. Regarding DataGene’s effectiveness when compared to

In a different attack strategy, malware could manipulatsode behavior-based approaches, there are more corstraint
valid kernel control flow and jump into the body of a memora malware author must consider when designing an evasion
allocator without entering the function from the beginningechnique. For example, one evasion technique for a stdndar
This behavior can be detected by extendiDgtaGene to code behavior-based approach would be to find a functionally
verify that the function was entered properly. For examplgimilar code sequence from the existing code and use that
the VMM can set a flag when a memory allocation functioimstead of including your own code. Return-oriented andgum
is entered and verify the flag before the function returns lgyriented programming would be such examples. In contrast,
interceding before the return instruction(s) of the fumetilf data access behavior has multiple dimensions to consider:
the flag was not set prior to the check, the VMM detects a&cessing code, specific field of data, and the source of
suspicious memory allocation. data (allocation). First of all, regarding the accessinge;o

DataGene is a signature-based approach that detects knowar approach has an advantage sib@daGene normalizes
and unknown rootkits based on kernel data access patteawsessing code to detect malware variants as shown in 8ectio
similar to the signatures of previously analyzed rootkifs. V. Second, specific fields being accessed should be praserve

VIl. DISCUSSION

14 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9,0 1, JANUARY 2014

for the data object to be valid so that legitimate code cao alsf their attack vectors. Thus it can handle these challengin
properly use them. Third, using a custom allocator could ber@otkits based on their unique data behavior.
feasible attack, but such an unknown memory allocation @oul This approach also determines benign or malicious driver
be trackable by the OS as previously discussed. By checkiomde based on policies (e.g., a white list and code-signing
the allocation code of data objects in kernel data strustur¢30]). Such policies often are not based on systematic exami
foreign objects could be detected. nation of code behavior, rather they are based on trustiag th
Sections VI-B and VI-C, for instance, presdritde | km OS developers or vendors. This kind of classification of code
and f uul d which could not be detected by existing codedoes not guarantee safety from undesired effects. Fomiosta
based approaches because they perform attacks on datadgeen in Sony’s rootkit incident [32], the code from third
utilizing legitimate code. These rootkits highlight theique party vendors may include potentially malicious code.
detection capability of the data-centric malware deferse aernel Rootkit Profilers. Kernel rootkit profilers [44], [54]
proach. provide a variety of aspects of rootkit behavior by tracking
the memory access targets of malware code or examining
VIIl. RELATED WORK user space impact. The profiling result of these approaches

DataGene introduces a new approach that generates tifeSpecific to the analyzed malware. In contrdsataGene
signature of kernel malware by using their unique data accéises the generalized memory access patterns of malware

patterns_ There are several approaches relatddataGene and eXploreS common characteristics across multlple itsotk

in the area of malware analysis and detection. Therefore, it has the potential to detect rootkit variants o

unknown rootkits that are similar in data behavior to cutrren

tkits.

hese profilers can be used as a componebatdGene in
lace of the kernel object mapper. Such an implementation ca

and system-call graphs) [3], [4], [12], [25], [26], and SUCIJr%:ave the following limitations, however. First, some ratsk

approaches can face the following challenges. . : . .
First, malware can obfuscate its execution to elude the co%%ve attack mechanisms (e.g., using registers) that detenets

behavior-based malware analyzers. Several papers okescﬁ’o these rootkit profilers as shown in [40]. Second, these

obfuscating techniques such as dead code insertion, c&ﬁ%ﬂlers rely on code integrity-based approach [42], [45] t

transformation, and instruction substitution [11], [18.7], recanlze.malware code. Thus, _the scope of malware to be
[53], and new techniques also have been introduced [47]IM3§1aly;ed is limited to the rootkits that violate kernel code
such technigues focus on the control dependency. AppreacH‘etegmy'
characterizing malware behavior using its control flow capignatures Based on Data Structures. Laika [15] can
face an arms-race with anti-analysis schemes such as tHé@@ct malware by determining data structures and clasgify
obfuscation techniques. their unique patterns for malware. This approach is effecti
Second, malware control flow can vary at runtime and tHer user space malware (e.g., botnet programs), which have
detection mechanism using malware code behavior shouldtBgir own memory space. However, kernel malware code and
able to handle such variations. In [3], the authors descrifata resides in kernel memory together with legitimate é&ern
several cases where the system-call trace can be incantsisteode and data. In addition, kernel malware mainly targets
such as the expiration of timeout and the delivery of signal§gitimate kernel data and uses very little of its own data.
Their system handles this problem by using a flexible matghid herefore, kernel malware may have a relatively weaker set
algorithm. of data information to determine the malware’s charadiess
Compared to these approachBataGene uses a more gen- compared to malware based on a user process.
eral characteristic, the pattern of kernel memory accesses Several approaches [19], [28] can detect kernel data struc-
characterize malware behavior. Because this approachkisavdHres based on data invariant properties such as data values
using control dependency in malware behavior, it can be-tolé@nd pointer connections. However, if a data structure ipkim
ant to obfuscation techniques and variations in the matwaréuch as a string buffer that can have arbitrary values withou

control flow. Moreover, it has an advantage that it can mat@y pointers, these signature approaches cannot be applied
common behavior across malware. comparisonPataGene does not have any restrictions on the

coverage of kernel data structures.

Malware Defense Based on Code Behavior. There has
been a variety of approaches which characterizes malwa?
behavior by using its control flow (e.g., instruction sequen

Kernel Malware Defense based on Code Integrity. An-
other approach for malware defense is based on code integrit

[42], [45]. This approach allows only authorized kernel edd IX. CONCLUSION

execute: the kernel text and white listed kernel moduless Th In this paper, we preserataGene, a new OS malware
approach is effective in preventing driver-based kernetkits characterization system based on data-centric propefifes
(i.e., kernel modules in Linux) that introduce their own eod system works by building a live kernel object map which
However, some advanced rootkits operate without expligiin reliably detect data hiding rootkit attacks due to its un
malicious code by using techniques such as kernel memdaynpered view of kernel objects. The map is then used in
devices (e.g./ dev/ kmenm) or return-oriented programmingcombination with a monitoring agent to track memory access
[23]; and this approach cannot handle such caBataGene patterns on kernel data objects. Based on these accesmpatte
uses unique data access patterns of kernel rootkits regardive propose a new malware signature approach using cortsisten

RHEE et al. DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION

patterns specific to malware attacks. We demonstrate tfg] H. Etoh.

scheme is not only effective at detecting previously evaldia

rootkits, but also their variants which often share similzﬁl]
memory access patterns. Our evaluation on real world rsotki
shows that data-centric malware characterization is highl
effective. It could be an effective solution that complelll?.en[22
code-centric approaches in the kernel malware defense. |3

REFERENCES [24]
[1] M. Abadi, M. Budiu, Ulfar Erlingsson, and J. Ligatti. Control-Flow (23]

Integrity: Principles, Implementations, and Applicatiofrs Proceedings
of the 12th ACM Conference on Computer and CommunicatiotigiBe

(CCS'05) 2005. [26]

[2] A. Baliga, V. Ganapathy, and L. Iftode. Automatic Infecenand
Enforcement of Kernel Data Structure Invariants.Pimceedings of the

24th Annual Computer Security Applications ConferenceSAC 08) [27]

[3] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Ha&, and
G. Vigna. Efficient Detection of Split Personalities in Malwe. In

Proceedings of the 17th Annual Network and Distributedesgs$ecurity [28]

Symposium (NDSS’1,02010.
[4] U. Bayer, P. Milani Comparetti, C. Hlauscheck, C. Kruegehd

E. Kirda. Scalable, Behavior-Based Malware Clustering. 1Bth
Symposium on Network and Distributed System Security (NBSS [29]
2009.

[5] F. Bellard. QEMU: A Fast and Portable Dynamic Translatoin

Proceedings of the USENIX Annual Technical Conference, BNRE

Track pages 41-46, 2005. [30]
[6] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good
Instructions Go Bad: Generalizing Return-Oriented Progning to [31]
RISC. InProceedings of the 15th ACM Conference on Computer and
Communications Security (CCS'08pages 27-38. ACM Press, Oct.[32]

2008.
[7] J. Butler. DKOM (Direct Kernel Object Manipulation). tpt//www.

blackhat.com/presentations/win-usa-04/bh-win-04doytif. [33]

[8] cOntex. Bypassing Non-executable-stack during Expt@n using

Return-to-libc. Phrack Magazine [34]
[9] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. JiaMapping [35]

Kernel Objects to Enable Systematic Integrity CheckingPioceedings
of the 16th ACM Conference on Computer and CommunicatiotisiBe

(CCS'09) 2009. (36]

[10] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. DROPe-
tecting Return-Oriented Programming Malicious Code Pmceedings
of the 5th International Conference on Information Systeasurity
(ICISS’09)

[11] M. Christodorescu and S. Jha. Static Analysis of Exaies to
Detect Malicious Patterns. IRroceedings of the 12th USENIX Security,
Symposium (Security’'032003.

[12] M. Christodorescu, C. Kruegel, and S. Jha. Mining Sfieations of
Malicious Behavior. InProceedings of the 6th Joint Meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGS&)T-
posium on the Foundations of Software Engineering (ESEENRS.

[13] C. Collberg, C. Thomborson, and D. Low. Manufacturinge@p, Re-
silient, and Stealthy Opaque Constructs.Pirinciples of Programming
Languages 1998 (POPL'98pan Diego, CA, Jan. 1998.

[14] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Bea#. Grier, (40]

P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic Aidap
Detection and Prevention of Buffer-Overflow Attacks. Pmoceedings

of the 7th USENIX Security Conferengmages 63-78, Jan. 1998. [41]

[15] A. Cozzie, F. Stratton, H. Xue, and S. T. King. DiggingrFdata

Structures. IrProceedings of the 8th USENIX Symposium on Operating?2]

Systems Design and Implementation (OSDI'G&)08.
[16] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic Integrivlea-
surement and Attestation: Towards Defense against Retriem@d

Programming Attacks. IfProceedings of the 2009 ACM workshop on[43]

Scalable trusted computing (STC'02009.
[17] M. W. L. Davi and A.-R. Sadeghi. ROPdefender: A Detecti®ool

to Defend Against Return-Oriented Programming Attacks. maeth [44]

report, Technical Report HGI-TR-2010-001, 2010.
[18] devik and sd. Linux On-the-fly Kernel Patching withoukKM. http:

Iww.phrack.com/issues.html?issue=58&id=7. [45]

[19] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. @iffi Robust
Signatures for Kernel Data Structures. Rroceedings of the 16th ACM
conference on Computer and communications security (C33,S2009.

(37]

(38]

(39]

15

GCC Extension for Protecting Applications froStack-
smashing Attacks.http://www.trl.ibm.com/ projects/security/ sspAc-
cessed May 2011.

A. Francillon, D. Perito, and C. Castelluccia. DeferglEmbedded Sys-
tems against Control Flow Attacks. Proceedings of SECUCODE’09
2009.

] Free Software Foundation. The GNU Compiler Collectidnttp://gcc.

gnu.org/.

R. Hund, T. Holz, and F. C. Freiling. Return-OrienteddRdts: By-
passing Kernel Code Integrity Protection MechanismsPiloceedings
for the 18th USENIX Security Symposium (Security'@8p9.

Innotek. Virtualbox. http://www.virtualbox.org/ Accessed May 2011.
C. Kolbitsch, P. Milani Comparetti, C. Kruegel, E. Kird4. Zhou, and
X. Wang. Effective and Efficient Malware Detection at the Brdst.
In 18th Usenix Security Symposium (Security,@)09.

C. Kruegel, W. Robertson, and G. Vigna. Detecting Kétrevel
Rootkits Through Binary Analysis. IRroceedings of the 20th Annual
Computer Security Applications Conference (ACSAC'04)

J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. DefepfReturn-
Oriented Rootkits with "Return-Less” Kernels. Proceedings of the
5th European conference on Computer systems (EUROSY 301).

Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. SigGraphutB
Force Scanning of Kernel Data Structure Instances UsinglGbased
Signatures. IrProceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS'11)

Z. Lin, R. D. Riley, and D. Xu. Polymorphing Software by fitlom-
izing Data Structure Layout. IfProceedings of the 6th International
Conference on Detection of Intrusions and Malware, and ®fahility
Assessment (DIMVA'092009.

Microsoft. Driver Signing Requirements for Windows. tght/www.
microsoft.com/whdc/driver/install/drvsign/default.mspx

MITRE Corporation. Common Vulnerabilities and Exposurehttp:
/lcve.mitre.org/.

D. Mulligan and A. K. Perzanowski. The Magnificence oé thisaster:
Reconstructing the Sony BMG Rootkit Incider2 Berkeley Tech. L.J.
1157, 2007. http://scholarship.law.berkeley.edu/facpub302.

Nergal. The Advanced Return-into-lib(c) Exploits: P&ase Study.
Phrack 11(58), 12 2001. Article 4.

Parallels. Parallels. http://www.parallels.com/.

N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. piot - A
Coprocessor-based Kernel Runtime Integrity Monitor. Pimceedings
for the 13th USENIX Security Symposium (Security'@4jgust 2004.
N. L. Petroni and M. Hicks. Automated Detection of Petesi¢ Kernel
Control-Flow Attacks. InProceedings of the 14th ACM Conference on
Computer and Communications Security (CCS'@007.

N. L. Petroni, A. Walters, T. Fraser, and W. A. ArbaughATKit: A
Framework for the Extraction and Analysis of Digital Forenflata
from Volatile System Memory. Iigital Investigation Journgl2006.
N. L. Petroni, Jr., T. Fraser, A. Walters, and W. A. Arighu An
Architecture for Specification-Based Detection of Semaiiegrity
Violations in Kernel Dynamic Data. IrProceedings of the 15th
conference on USENIX Security Symposium (SecurityZ®)6.

J. Rhee, R. Riley, D. Xu, and X. Jiang. Kernel Malware K=&
with Un-tampered and Temporal Views of Dynamic Kernel Memory. In
Proceedings of the 13th International Symposium of Recenarces
in Intrusion Detection (RAID’'1Q)Ottawa, Canada, September 2010.
J. Rhee and D. Xu. LiveDM: Temporal Mapping of Dynamic Keirn
Memory for Dynamic Kernel Malware Analysis and Debugging. fFec
nical Report 2010-02, CERIAS, 2010.

R. Riley. A Framework for Prototyping and Testing DatalDRootkit
Attacks. Computers and Security37(0):62 — 71, 2013.

R. Riley, X. Jiang, and D. Xu. Guest-Transparent Préeenof Kernel
Rootkits with VMM-based Memory Shadowing. Rroceedings of 11th
International Symposium on Recent Advances in Intrusioteden
(RAID’08), 2008.

R. Riley, X. Jiang, and D. Xu. An Architectural Approath Preventing
Code Injection Attacks. InNEEE Transactions on Dependable and
Secure Computing (TDSC2009.

R. Riley, X. Jiang, and D. Xu. Multi-Aspect Profiling oféfnel Rootkit
Behavior. InProceedings of the 4th European Conference on Computer
Systems (Eurosys’'09April 2009.

A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A YiHypervi-
sor to Provide Lifetime Kernel Code Integrity for Commodity @Se
In Proceedings of 21st Symposium on Operating Systems Hascip
(SOSP’07) ACM, 2007.

16 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9,0 1, JANUARY 2014

[46] H. Shacham. The Geometry of Innocent Flesh on the BonerrRétto-

libc without Function Calls (on the x86). IRroceedings of the 14th

ACM Conference on Computer and Communications SecuritB (@,
2007.
[47] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding MalveaAnalysis

Using Conditional Code Obfuscation. Rroceedings of the 15th Annual

Network and Distributed System Security Symposium (NBE008.
[48] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic Reser

Engineering of Malware Emulators. IRroceedings of the 2009 30th

IEEE Symposium on Security and Priva2@09.

[49] The Month of Kernel Bugs (MoKB) archive. http://projsdnfo-pull.
com/mokb/.

[50] US-CERT. US-CERT Vulnerability Notes Database. Htgpvw.kb.cert.
org/vuls/.

[51] Vendicator. Stack Shield: A “Stack Smashing” Technidemtection
Tool for Linux. http://www.angelfire.com/sk/ stackshield/info.htrAt-
cessed May 2011.

[52] VMware. VMware Workstation: Run Multiple OS, Linux, Wilows
8 & More. http://www.vmware.com/products/workstationAccessed
September 2013.

[53] C. Wang, J. Hill, J. C. Knight, and J. W. Davidson. Prdi@t
of Software-Based Survivability Mechanisms. Rroceedings of the
2001 International Conference on Dependable Systems amdoRes
(DSN’01) 2001.

[54] C. Xuan, J. A. Copeland, and R. A. Beyah. Toward RevegaKernel
Malware Behavior in Virtual Execution Environments. Bioceedings
of 12th International Symposium on Recent Advances in ditru
Detection (RAID’09) pages 304-325, 2009.

Computer Science from Purdue University in 201

cloud computing.

Junghwan Rhee (M'11) received the BS degree
from Korea University, the Masters degree from th
University of Texas at Austin, and the PhD degree i

. g~

He is a researcher at NEC Laboratories Americ
in Princeton. His research interests include malwar
analysis, system security, software debugging, a

Ryan Riley (M'13) received the BS degree in Com-
puter Engineering and the PhD degree in Computer
Science in 2009 from Purdue University. He is an
Assistant Professor of Computer Science at Qatar
University in Doha. His current research interests
include virtualization technologies, malware, and
operating system security.

Zhigiang Lin (M’12) is an Assistant Professor in
the Computer Science Department of the University
of Texas at Dallas. He received his PhD from Purdue
University in 2011. His current research focuses
on system and software security with an emphasis
on binary code reverse engineering, vulnerability
discovery, malicious code analysis, and OS kernel
protection.

Xuxian Jiang is an Associate Professor in the
Computer Science Department and a core member
of the Cyber Defense Lab at the North Carolina
State University. He received his PhD degree in
Computer Science from Purdue University in 2006.
His research interests are mainly in smartphones,
hypervisors, and malware defense.

Dongyan Xu (M'03) received the BS degree from
Zhongshan (Sun Yat-Sen) University in 1994 and the
PhD degree in Computer Science from the Univer-
sity of lllinois at Urbana-Champaign in 2001. He is a
Professor of Computer Science at Purdue University.
His current research interests include virtualization
technologies, computer malware defense, and cloud
computing. He is a recipient of the US National
Science Foundation CAREER Award.

