
Algorithmic Composition through Probabilistic Recurrence Models

Roger B. Dannenberg
Carnegie Mellon University

USA
rbd@cs.cmu.edu

Abstract
Innumerable approaches to algorithmic composition have
been described, often based on attempts to formalize music
or formalize AI techniques. A few simple ideas distilled
from experience are presented in the form of a schema for
organizing algorithmic composition programs. The schema
uses probabilistic rules or tendencies, which can be written
and combined modularly, and plans that can be created on-
the-fly to guide future choices. Plans are just a form of state
or context information that can be generated or renewed
along with music creation, making this a recurrence model
for sequence generation. Multiple passes can be used to in-
troduce top-down hierarchical composition strategies.

Keywords

Algorithmic Composition, Music, Probabilistic, Rules,
Tendencies, Planning, Context, State, Hierarchy

 Introduction
Algorithmic composition has been explored since the earli-
est days of computing. [1] There is probably at least one
piece of music to exemplify every programming language
and programming framework, not to mention every ap-
proach to creating simulations, computational models, and
artificially intelligent systems. In fact, composers often
invent their own formalisms and techniques, inspired by
their musical interests and intuition.
 Since my participation in Callejón del Ruido Festival
resulted in performances of pieces with very different ap-
proaches to algorithmic composition and interaction, it
seems fitting to offer some current ideas about music crea-
tion with computers for this report. This contribution is
inspired by recent work on generating songs in a popular
music style, but here, I will present a refined version of the
approach that I believe could be suitable for a wide variety
of musical explorations.

 In algorithmic composition, we usually want some ran-
domness in the computation. Creating just one great com-
position is wonderful, but in practice, randomness has at
least three nice properties. First, it is hard to specify output
so completely that only one output is possible. Finding the
“optimal” music according to some objective function
might produce a single result, but music is complex, so
optimization is rarely feasible, and often the “best” music
according to some simple ideas is less interesting than mu-
sic with elements of randomness. Second, randomness lets
us generate many outputs, allowing us to focus more on a
particular style or “logic” as opposed to a specific piece.
Finally, in live performance, introducing variation and the
unexpected is esthetically interesting. It is a unique capa-
bility that computers can bring to composition and perfor-
mance.
 Another important practical matter is the ability to refine
ideas and models. Typically, some initial ideas are turned
into code, executed, and the output is evaluated. If the re-
sult is great, you are done, but more often, shortcomings
are immediately apparent. We need a flexible approach
where results are easy to refine. Often, we find undesirable
output that could be avoided by the addition of constraints,
rules or tendencies. An approach that supports incremental
refinement is generally better than a monolithic algorithm
that is hard to change.
 Search is an important aspect of many AI systems, but
with music, search is often not very productive. One reason
is that many search problems are exponential. A sequence
of 20 pitches selected from a scale of 12 pitches has 1220
possibilities. Evaluating 1,000,000 sequences per second,
we could not explore all possibilities in a million centuries!
A second problem is that search assumes that you know a
good solution when you see one. Without a good evalua-
tion function, even an exhaustive search may find a poor
solution. Therefore, it is usually more practical to create
music incrementally and minimize search, iteration or
backtracking.

 The next section presents a simple probabilistic ap-
proach to algorithmic composition that has been used ef-
fectively. Music often has a hierarchical structure, so we
extend our approach to support multi-pass, top-down music
construction. Another source of structure in music is the
existence of plans that influence a sequence of future mu-
sic events. (An example is a decision to start a crescendo
and rising pitch contour whenever a sufficiently low pitch
is reached.) Once again, we extend the approach to facili-
tate plan-based music generation. Finally, we will consider
some variations and optimizations that may be useful in
practice.

Rules and Probabilities
Consider a probabilistic melody generation task. For sim-
plicity, we will assume a diatonic scale of 15 pitches (two
octaves), no rests, durations quantized to 16th notes, and a
maximum duration of the whole note. Each note is thus
selected from a space of 15´16 = 240 possibilities. We will
compute a weight for each choice and generate notes se-
quentially by making choices according to weights.
 Initially, consider setting all weights to 1. The output
will be a completely random sequence in terms of both
pitch and duration. Not very interesting. Perhaps we want
our melodies to avoid extremes of range. We could multi-
ply each weight by a Gaussian (bell) curve centered around
7 (assuming pitches are numbered 0 through 14) with a
variance of 5, i.e. the weight for pitch p becomes N(7-p,
5). This rule says nothing about duration.
 While the pitch “rule” is continuous and probabilistic,
we can also incorporate logic rules into this framework.
Suppose we decide that odd durations longer than 3 (six-
teenths) should not be used. We can write a function re-
turning 0 or 1: f(d) = (1 if (d < 5 or iseven(d)) else 0) to
express this. Again, we can multiply each weight by this
function to eliminate some of the durations. Multiplying a
weight by zero eliminates the possibility of making that
choice entirely.
 We could go on, for example, by adding a third “rule”
that prefers shorter durations to longer ones. Putting this
together, we can state the framework more formally as
follows: Our music composition system creates sequences
of tokens (we call them “tokens” because they could be
pitch/duration pairs, chords, sound types, articulations,
etc.). The system consists of a set of tokens A = {ai} and a
set of rules R = {rj}. Each rule is a function from a token to
a weight: rj: 𝐴 → ℝ, where weights are real numbers (pref-
erably expressed as probabilities in the range 0 to 1). To
select the next element of the output sequence, we first
obtain an overall weight for each token (ai) by multiplying
the weights given by each rule:

𝑤! =#𝑟"(
"

𝑎!)

Then select and output ai with probability
𝑃(𝑖) = 	𝑤! +𝑤"

"

,

Computationally, this looks like a loop (or nested loop) to
enumerate all tokens and the application of all rules. For
the pitch/duration tokens and three rules, the code looks
like Figure 1.
 Note that we can easily extend the computation with
new rules or temporarily remove individual rules by turn-
ing lines of code into comments. It may seem a bit cumber-
some to always consider all tokens and all rules. Below, we
will consider that pitch and duration could be computed
separately, saving a great deal of computation. However, a
more realistic melody generator would have rules concern-
ing both pitch and duration, e.g., “smaller intervals are
favored when durations are shorter.”

Hierarchical Composition
Sometimes, it is useful to create a high-level structure be-
fore filling in details. Before constructing a melody, we
might wish to compose a chord progression. Melody could
then be guided by the harmony in place at each beat. A
top-down music composition system like this can be creat-
ed by separating the composition process into stages. Start-
ing at the top level, each stage creates the next level of the
hierarchy. In my popular song writer, based on work by
Elowsson and Friberg [2], the first stage designs a phrase
structure, the second stage designs a rhythmic accent struc-
ture, the third stage composes a chord progression, and the
last stage writes a melody as shown in the previous section
(however, many more rules are used). We have experi-
mented with yet another level of hierarchy, generating a
“basic melody” [3] consisting of half notes before elaborat-
ing this to form the final melody. [4]
 In a multi-pass hierarchical scheme, the output of each
pass must be saved in a data structure that can be easily
accessed by the next passes. I have no general solution for
music representation. We limit our pop songs to units of
16th notes and use arrays containing data for every 16th note
(i.e., every possible time point) of the song, but even con-
ventional music that admits triplets and finer subdivisions
creates representational challenges. In general, the simplest
representation that can express your music is the best
choice: Other schemes can be more expressive, but encod-
ing and accessing music using a very general representa-
tion system can be very tedious.
 In most cases, rules need to consult previously generated
tokens. For example, a rule that favors small melodic in-

 function compute_next_note():

 for i in [0:240] w[i] = 1 –construct initial weights

 for p in [0:15]:

 for d in [1:17]:

 i = p + (d–1) ´ 16 –combine to form index

 w[i] = w[i] ´ favor_middle_register(p)

 w[i] = w[i] ´ restrict_odd_durations(d)

 w[i] = w[i] ´ favor_shorter_durations(d)

 output(weighted_selection(w))

Figure 1. Psuedo-code for probabilistic composition.

tervals over large ones must know the previous pitch to
compute the interval from that pitch to each possible next
pitch. Thus, rules are not simply functions of one token. It
would be more complete to describe rules as dependent
upon both the token ai and previously output tokens (a se-
quence of type 𝐴#):

𝑟$: 𝐴 × 𝐴# → ℝ

If we denote higher levels of the hierarchy by types B, C,
etc., then the full form of the rule is:

𝑟$: 𝐴 × 𝐴# × 𝐵 × 𝐶 × … → ℝ

In practice, these additional parameters for rj might be im-
plemented as global variables that all rules can access.
 In addition to referencing data at higher levels of a hier-
archical construction, rules can reference real-time sensor
data or human input in live performance situations, creat-
ing a path for interactive algorithmic composition and im-
provisation.

Planning
Sometimes, we want to say something about the future
rather than create output one-token-at-a-time. Essentially,
we decide to adopt and carry out a plan over the next sev-
eral tokens that will influence or even override the proba-
bilistic algorithm described so far. An example from pop
music is choosing a cadential chord progression that will
end a phrase on the tonic (I) chord. Once decided, we do
not want to deviate from the plan.
 To express plans, we add yet additional information that
rules can access. What I call plans could also be viewed
simply as state. The key idea is that, in addition to compu-
ting the next token in a music sequence, we also compute a
new plan or state, which becomes context for the next
computation. In very abstract terms, we can write:

(mk+1, statek+1) = f(m1…k, b, c, …, statek),
where m is our output sequence of music tokens, f is our
probabilistic rule system (combining all of the rj), b, c, …
are sequences computed earlier at higher levels of the mu-
sic hierarchy, and each rule rj has state as an additional
parameter. This is a recurrence relation because each
statek+1 depends on the previous statek.
 In practice, states are mainly used to represent plans and
conditions to be considered in the rules, and we implement
state as a simple data structure that can be modified at each
iteration of the music sequence computation. The computa-

tion now looks like Figure 2.
 The main change is the last line in bold. Now, each time
we compute a new output token, we can make or modify
any existing plans, as represented in some program varia-
bles. We must also modify or extend rules to consider
plans. Three approaches are: (1) in each rule, add tests as
necessary to see how the rule should be applied in the con-
text of any plans. This sacrifices some modularity, since
adding new types of plans may require changes to every
rule; (2) extend the set of rules to include plan-specific
rules. This approach is good when the plan is a general
tendency that simply biases the existing probabilities; (3)
override computed probabilities when a plan is in place. In
the extreme case, after the general rules are applied, a new
rule could reset wi and apply a completely new set of rules,
but only when a certain plan is in place.
 Plans are likely to have a finite duration. When a plan is
added to the state, the plan should include a duration or
timeout, and the update_plan() function should check for
and remove expired plans.

Search and Optimization
Earlier, I presented some drawbacks of search-based algo-
rithms. However, there is an interesting place for search in
the approach described here. Mainly, we would like to
avoid some problems that inevitably occur with this proba-
bilistic approach. First, even if we select tokens according
to weights or probabilities, it is very likely that at least one
token in a long sequence will have very low probability.
Secondly, it is possible for earlier token choices to leave no
good options later. These problems can be reduced by
composing multiple pieces and selecting the one with the
highest overall probability.1
 For example, in my work on popular song creation, I
found that occasionally, songs had several strange intervals
or rhythms that simply sounded like mistakes. I modified
the program to generate 10 songs and pick the most proba-
ble of 10, and this “filtered out” the weak ones.
 Whether it is better to use probabilities, which reflect the
amount of surprise introduced at each step, or original
weights, which can be considered a form of absolute quali-
ty assessment, is an interesting question which I have not
pursued. The best approach is likely to depend on the rules.
Also, when output lengths vary, one might want to use the
average probability or weight per token.2

1 The simplest approach to estimating overall probability of a
sequence is to simply assume that all tokens are independent and
multiply their probabilities. Since the product of hundreds of
small probabilities can be exceedingly small, one typically forms
the sum of logarithms to avoid numerical problems, taking ad-
vantage of the rule log(𝑎 × 𝑏) = log(𝑎) + log	(𝑏). If we want to
pick the result with the highest probability, it is equivalent to
picking the result with the highest sum of logs of token probabili-
ties.
2 To do this properly, divide the sum of the logs of token proba-
bilities by the length of the token sequence.

 function compute_next_note():
 for i in [0:240] w[i] = 1 –construct initial weights
 for p in [0:15]
 for d in [1:17]
 i = p + d ́16 –“flatten” p and d to index
 w[i] = w[i] ´ rule_1(p)
 w[i] = w[i] ´ rule_2(p)
 … –apply all rules to w
 output(weighted_selection(w))
 update_plan()
Figure 2. Incorporating plans as recurrent state.

 We should be careful though, because rules are unlikely
to form a sophisticated music evaluation system. Extensive
search, such as finding the most likely of 1 million songs
will not necessarily produce the best outcome. Consider
the similar approach of outputting the most likely token at
every step rather than making a weighted choice. In most
cases, this will create a “high probability” output, but it is
likely to get stuck repeating high probability tokens, and
the result will lack variety and interest.
 One more application of search has been found to be
useful. Recall that rules are allowed to forbid certain
choices by returning zero weights. Situations can arise
where rules manage to zero the weights of all tokens. This
means that, according to the rules, no acceptable choice
can be made. In my system, I detect this and simply start
over. A more sophisticated AI approach might be to back
up one or more tokens or even try to find the cause of the
impasse and correct it. However, if these problems are
common, one can study their cause and design a solution
(it might involve spotting problematic situations and form-
ing plans to guide the system past them). Alternatively, if
problems are rare, then restarting is very likely to succeed.
Either way, sophisticated search seems to be unnecessary.

The Size of A
One potential problem with this approach is that the num-
ber of different tokens can be large. For example, in Xena-
kis’ Stochastic Music Programme (SMP) [5], sounds are
described by onset time, duration, pitch, instrument, glis-
sando rate and “intensity form” (44 forms of dynamic vari-
ation such as crescendo, diminuendo, louder then softer,
etc.). Considering all combinations, there could be many
millions of sound types.
 When the token space becomes too large, we have two
basic methods to simplify the computation. First, we can
separate the dimensions of the tokens if they are independ-
ent. Imagine in our previous example if pitch and duration
were independent. Then, our nested loop to consider all
240 combinations:

 for p in [0:15] –iterate over all pitches
 for d in [1:17] –iterate over all durations
 …
could be separated into two separate loops with a total of
only 15 + 16 = 31 iterations:

 for p in [0:15] –iterate over all pitches
 pw[p] = pw[p] ´ pitch_rule_1(p)
 … – more rules for pitch weightings
 for d in [1:17] –iterate over all durations
 dw[p] = dw[p] ´ duration_rule_1(p)
 … – more rules for duration weightings

Then the output token would be determined by making two
independent weighted choices using pitch weights pw and
duration weights dw.

 The second possibility is one-way dependencies.. Sup-
pose that pitch weights do not consider the proposed dura-
tion, but duration weights vary with the proposed pitch. If
so, we can use only the pitch-weighting rules to compute
pw (as shown above) and make a weighted choice of pitch.
Now, pitch is known, so we can use it within duration rules
to compute duration weights.
 It should also be mentioned that if an attribute such as
duration can be computed independently of other attributes
(but possibly depending on them), then it can be continu-
ous rather than discrete. For example, one can compute
duration in seconds rather than a choice of n sixteenths.
Continuous values can be efficiently computed from a sin-
gle random distribution such as the Gaussian, but it is not
so simple to combine multiple rules that relate to different
factors or influences. The choice is yours.
 In Xenakis’ SMP, parameters appear to be highly inde-
pendent. E.g., the instrument choice is selected using
weights that depend only on the density, which is fixed for
the duration of each section. However, pitch and duration
are both based on the instrument. We can compute them
independently after the instrument has been selected.
 It is the composer’s choice as to how musical tokens are
represented and whether their attributes are independent.
Strong dependencies arise from concepts such as “short
note durations require smaller pitch intervals,” but many
other attributes are weakly connected, allowing us to com-
pute them separately and more efficiently.

Evaluation
I have presented a general approach to algorithmic compo-
sition that I believe has many good properties:

1. It is simple to implement, which means one can
spend more time adjusting rules and thinking about
musical concepts.

2. It is modular, allowing concepts, tendencies and
“hints” to be added in the form of independent rules.

3. It is probabilistic and non-deterministic. Multiple
runs can be used to obtain a large pallet of composi-
tional materials, and live performance systems can
offer variety and surprise.

4. One can express tendencies as well as absolute con-
straints.

5. Rules can be based on simple statistics of existing
music, so in that sense, rules can be “learned” from
data.

6. The approach is efficient because it avoids large
amounts of search. To make up for the lack of
search and backtracking, plans can be generated to
offer a degree of look-ahead and guidance.

 There are also some shortcomings:
1. Search and optimization are weakly supported, but

we argue this is usually sufficient.
2. The approach works best for computing discrete to-

kens, although any computation that computes a
continuous attribute is easily incorporated.

3. This is only a conceptual framework: There is no
language, library, or ready-made software. (Perhaps
this is also a “feature.”)

Conclusions
Innumerable approaches to algorithmic music have been
explored. Often, software is developed for just one compo-
sition. Still, many composers develop a way of working.
My work for the Callejón del Ruido Festival was formative
in my thinking about composition and particularly algo-
rithmic composition and interaction. There is nothing like a
public forum and high expectations to put one to the test,
and I am deeply grateful for the experience and learning
that resulted from this great opportunity.
 The framework described here distills and generalizes
many ideas and approaches that I have found useful over
the years. If readers find it overly simplistic, consider that
that may be its greatest advantage! If we find the design of
software to be trivial and obvious, then we stand a much
better chance of a correct and efficient implementation, not
to mention modifying and improving the first version. It is
much better to focus on music than complex AI techniques,
provided we can still express our musical intentions.
 Ultimately, composers (and perhaps listeners) must be
the judge of any approach or methodology. Programming
languages, systems and methodologies are notoriously dif-
ficult to measure, and it does not make sense to say one
approach is better than another. However, I hope that
thinking about the structure of an algorithmic composition
system as opposed to the actual algorithms will inspire
others to do the same and perhaps take away some useful
ideas for their own creative work.

Acknowledgements
Thanks to Roberto Morales for inviting this paper and for
so much work on the Festival over the years. My work
would not have been possible without the support of Car-
negie Mellon University.

References

[1] Mary Simoni and Roger B. Dannenberg, Algorithmic Compo-
sition: A Guide to Composing Music with Nyquist (Ann Arbor:
The University of Michigan Press, 2013).
[2] Anders Elowsson and Anders Friberg, “Algorithmic Composi-
tion of Popular Music,” Proceedings of the 12th International
Conference on Music Cognition and Perception and the 8th Tri-
ennial Conference of the European Society for the Cognitive Sci-
ences of Music, 2012, 276-285.
[3] Lejaren Hiller, Charles Ames and Robert Franki, “Automated
Composition: An Installation at the 1985 International Exposition
in Tsukuba, Japan,” Perspectives of New Music, Vol. 23, No. 2,
Spring – Summer, 1985, 196-215.
[4] Shuqi Dai, Zeyu Jin, Celso Gomes, and Roger B. Dannenberg,
“Controllable Deep Melody Generation via Hierarchical Music

Structure Representation,” Proceedings of the 22nd International
Society for Music Information Retrieval Conference, 2021, 143-
150.
[5] Iannis Xenakis, Formalized Music: Thought and Mathematics
in Music (Hillsdale, NY) Pendragon Press, 1992.

