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Abstract 
Innumerable approaches to algorithmic composition have 
been described, often based on attempts to formalize music 
or formalize AI techniques. A few simple ideas distilled 
from experience are presented in the form of a schema for 
organizing algorithmic composition programs. The schema 
uses probabilistic rules or tendencies, which can be written 
and combined modularly, and plans that can be created on-
the-fly to guide future choices. Plans are just a form of state 
or context information that can be generated or renewed 
along with music creation, making this a recurrence model 
for sequence generation. Multiple passes can be used to in-
troduce top-down hierarchical composition strategies. 
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 Introduction 
Algorithmic composition has been explored since the earli-
est days of computing. [1] There is probably at least one 
piece of music to exemplify every programming language 
and programming framework, not to mention every ap-
proach to creating simulations, computational models, and 
artificially intelligent systems. In fact, composers often 
invent their own formalisms and techniques, inspired by 
their musical interests and intuition. 
 Since my participation in Callejón del Ruido Festival 
resulted in performances of pieces with very different ap-
proaches to algorithmic composition and interaction, it 
seems fitting to offer some current ideas about music crea-
tion with computers for this report. This contribution is 
inspired by recent work on generating songs in a popular 
music style, but here, I will present a refined version of the 
approach that I believe could be suitable for a wide variety 
of musical explorations. 

 In algorithmic composition, we usually want some ran-
domness in the computation. Creating just one great com-
position is wonderful, but in practice, randomness has at 
least three nice properties. First, it is hard to specify output 
so completely that only one output is possible. Finding the 
“optimal” music according to some objective function 
might produce a single result, but music is complex, so 
optimization is rarely feasible, and often the “best” music 
according to some simple ideas is less interesting than mu-
sic with elements of randomness. Second, randomness lets 
us generate many outputs, allowing us to focus more on a 
particular style or “logic” as opposed to a specific piece. 
Finally, in live performance, introducing variation and the 
unexpected is esthetically interesting. It is a unique capa-
bility that computers can bring to composition and perfor-
mance. 
 Another important practical matter is the ability to refine 
ideas and models. Typically, some initial ideas are turned 
into code, executed, and the output is evaluated. If the re-
sult is great, you are done, but more often, shortcomings 
are immediately apparent. We need a flexible approach 
where results are easy to refine. Often, we find undesirable 
output that could be avoided by the addition of constraints, 
rules or tendencies. An approach that supports incremental 
refinement is generally better than a monolithic algorithm 
that is hard to change. 
 Search is an important aspect of many AI systems, but 
with music, search is often not very productive. One reason 
is that many search problems are exponential. A sequence 
of 20 pitches selected from a scale of 12 pitches has 1220 
possibilities. Evaluating 1,000,000 sequences per second, 
we could not explore all possibilities in a million centuries! 
A second problem is that search assumes that you know a 
good solution when you see one. Without a good evalua-
tion function, even an exhaustive search may find a poor 
solution. Therefore, it is usually more practical to create 
music incrementally and minimize search, iteration or 
backtracking. 



 The next section presents a simple probabilistic ap-
proach to algorithmic composition that has been used ef-
fectively. Music often has a hierarchical structure, so we 
extend our approach to support multi-pass, top-down music 
construction. Another source of structure in music is the 
existence of plans that influence a sequence of future mu-
sic events. (An example is a decision to start a crescendo 
and rising pitch contour whenever a sufficiently low pitch 
is reached.) Once again, we extend the approach to facili-
tate plan-based music generation. Finally, we will consider 
some variations and optimizations that may be useful in 
practice. 

Rules and Probabilities 
Consider a probabilistic melody generation task. For sim-
plicity, we will assume a diatonic scale of 15 pitches (two 
octaves), no rests, durations quantized to 16th notes, and a 
maximum duration of the whole note. Each note is thus 
selected from a space of 15´16 = 240 possibilities. We will 
compute a weight for each choice and generate notes se-
quentially by making choices according to weights. 
 Initially, consider setting all weights to 1. The output 
will be a completely random sequence in terms of both 
pitch and duration. Not very interesting. Perhaps we want 
our melodies to avoid extremes of range. We could multi-
ply each weight by a Gaussian (bell) curve centered around 
7 (assuming pitches are numbered 0 through 14) with a 
variance of 5, i.e. the weight for pitch p becomes N(7-p, 
5). This rule says nothing about duration. 
 While the pitch “rule” is continuous and probabilistic, 
we can also incorporate logic rules into this framework.  
Suppose we decide that odd durations longer than 3 (six-
teenths) should not be used. We can write a function re-
turning 0 or 1: f(d) = (1 if (d < 5 or iseven(d)) else 0) to 
express this. Again, we can multiply each weight by this 
function to eliminate some of the durations. Multiplying a 
weight by zero eliminates the possibility of making that 
choice entirely. 
 We could go on, for example, by adding a third “rule” 
that prefers shorter durations to longer ones. Putting this 
together, we can state the framework more formally as 
follows: Our music composition system creates sequences 
of tokens (we call them “tokens” because they could be 
pitch/duration pairs, chords, sound types, articulations, 
etc.). The system consists of a set of tokens A = {ai} and a 
set of rules R = {rj}. Each rule is a function from a token to 
a weight: rj: 𝐴 → ℝ, where weights are real numbers (pref-
erably expressed as probabilities in the range 0 to 1). To 
select the next element of the output sequence, we first 
obtain an overall weight for each token (ai) by multiplying 
the weights given by each rule: 
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Computationally, this looks like a loop (or nested loop) to 
enumerate all tokens and the application of all rules. For 
the pitch/duration tokens and three rules, the code looks 
like Figure 1. 
 Note that we can easily extend the computation with 
new rules or temporarily remove individual rules by turn-
ing lines of code into comments. It may seem a bit cumber-
some to always consider all tokens and all rules. Below, we 
will consider that pitch and duration could be computed 
separately, saving a great deal of computation. However, a 
more realistic melody generator would have rules concern-
ing both pitch and duration, e.g., “smaller intervals are 
favored when durations are shorter.” 

Hierarchical Composition 
Sometimes, it is useful to create a high-level structure be-
fore filling in details. Before constructing a melody, we 
might wish to compose a chord progression. Melody could 
then be guided by the harmony in place at each beat. A 
top-down music composition system like this can be creat-
ed by separating the composition process into stages. Start-
ing at the top level, each stage creates the next level of the 
hierarchy. In my popular song writer, based on work by 
Elowsson and Friberg [2], the first stage designs a phrase 
structure, the second stage designs a rhythmic accent struc-
ture, the third stage composes a chord progression, and the 
last stage writes a melody as shown in the previous section 
(however, many more rules are used). We have experi-
mented with yet another level of hierarchy, generating a 
“basic melody” [3] consisting of half notes before elaborat-
ing this to form the final melody. [4] 
 In a multi-pass hierarchical scheme, the output of each 
pass must be saved in a data structure that can be easily 
accessed by the next passes. I have no general solution for 
music representation. We limit our pop songs to units of 
16th notes and use arrays containing data for every 16th note 
(i.e., every possible time point) of the song, but even con-
ventional music that admits triplets and finer subdivisions 
creates representational challenges. In general, the simplest 
representation that can express your music is the best 
choice: Other schemes can be more expressive, but encod-
ing and accessing music using a very general representa-
tion system can be very tedious. 
 In most cases, rules need to consult previously generated 
tokens. For example, a rule that favors small melodic in-

    function compute_next_note(): 

        for i in [0:240] w[i] = 1 –construct initial weights 

        for p in [0:15]: 

            for d in [1:17]: 

                i = p + (d–1) ´ 16  –combine to form index 

                w[i] = w[i] ´ favor_middle_register(p) 

                w[i] = w[i] ´ restrict_odd_durations(d) 

                w[i] = w[i] ´ favor_shorter_durations(d) 

        output(weighted_selection(w)) 

 

Figure 1. Psuedo-code for probabilistic composition. 

 



tervals over large ones must know the previous pitch to 
compute the interval from that pitch to each possible next 
pitch. Thus, rules are not simply functions of one token. It 
would be more complete to describe rules as dependent 
upon both the token ai and previously output tokens (a se-
quence of type 𝐴#): 

𝑟$: 𝐴 × 𝐴# → ℝ 

If we denote higher levels of the hierarchy by types B, C,  
etc., then the full form of the rule is: 

𝑟$: 𝐴 × 𝐴# × 𝐵 × 𝐶 × … → ℝ 

In practice, these additional parameters for rj might be im-
plemented as global variables that all rules can access. 
 In addition to referencing data at higher levels of a hier-
archical construction, rules can reference real-time sensor 
data or human input in live performance situations, creat-
ing a path for interactive algorithmic composition and im-
provisation. 

Planning 
Sometimes, we want to say something about the future 
rather than create output one-token-at-a-time.  Essentially, 
we decide to adopt and carry out a plan over the next sev-
eral tokens that will influence or even override the proba-
bilistic algorithm described so far. An example from pop 
music is choosing a cadential chord progression that will 
end a phrase on the tonic (I) chord. Once decided, we do 
not want to deviate from the plan. 
 To express plans, we add yet additional information that 
rules can access.  What I call plans could also be viewed 
simply as state. The key idea is that, in addition to compu-
ting the next token in a music sequence, we also compute a 
new plan or state, which becomes context for the next 
computation. In very abstract terms, we can write: 

(mk+1, statek+1) = f(m1…k, b, c, …, statek), 
where m is our output sequence of music tokens, f is our 
probabilistic rule system (combining all of the rj), b, c, … 
are sequences computed earlier at higher levels of the mu-
sic hierarchy, and each rule rj has state as an additional 
parameter. This is a recurrence relation because each 
statek+1 depends on the previous statek. 
 In practice, states are mainly used to represent plans and 
conditions to be considered in the rules, and we implement 
state as a simple data structure that can be modified at each 
iteration of the music sequence computation. The computa-

tion now looks like Figure 2. 
 The main change is the last line in bold. Now, each time 
we compute a new output token, we can make or modify 
any existing plans, as represented in some program varia-
bles. We must also modify or extend rules to consider 
plans. Three approaches are: (1) in each rule, add tests as 
necessary to see how the rule should be applied in the con-
text of any plans. This sacrifices some modularity, since 
adding new types of plans may require changes to every 
rule; (2) extend the set of rules to include plan-specific 
rules. This approach is good when the plan is a general 
tendency that simply biases the existing probabilities; (3) 
override computed probabilities when a plan is in place. In 
the extreme case, after the general rules are applied, a new 
rule could reset wi and apply a completely new set of rules, 
but only when a certain plan is in place. 
 Plans are likely to have a finite duration. When a plan is 
added to the state, the plan should include a duration or 
timeout, and the update_plan() function should check for 
and remove expired plans. 

Search and Optimization 
Earlier, I presented some drawbacks of search-based algo-
rithms. However, there is an interesting place for search in 
the approach described here. Mainly, we would like to 
avoid some problems that inevitably occur with this proba-
bilistic approach. First, even if we select tokens according 
to weights or probabilities, it is very likely that at least one 
token in a long sequence will have very low probability. 
Secondly, it is possible for earlier token choices to leave no 
good options later. These problems can be reduced by 
composing multiple pieces and selecting the one with the 
highest overall probability.1 
 For example, in my work on popular song creation, I 
found that occasionally, songs had several strange intervals 
or rhythms that simply sounded like mistakes. I modified 
the program to generate 10 songs and pick the most proba-
ble of 10, and this “filtered out” the weak ones. 
 Whether it is better to use probabilities, which reflect the 
amount of surprise introduced at each step, or original 
weights, which can be considered a form of absolute quali-
ty assessment, is an interesting question which I have not 
pursued. The best approach is likely to depend on the rules. 
Also, when output lengths vary, one might want to use the 
average probability or weight per token.2 

 
1  The simplest approach to estimating overall probability of a 
sequence is to simply assume that all tokens are independent and 
multiply their probabilities. Since the product of hundreds of 
small probabilities can be exceedingly small, one typically forms 
the sum of logarithms to avoid numerical problems, taking ad-
vantage of the rule log(𝑎 × 𝑏) = log(𝑎) + log	(𝑏). If we want to 
pick the result with the highest probability, it is equivalent to 
picking the result with the highest sum of logs of token probabili-
ties. 
2 To do this properly, divide the sum of the logs of token proba-
bilities by the length of the token sequence. 

    function compute_next_note(): 
        for i in [0:240] w[i] = 1 –construct initial weights 
        for p in [0:15] 
            for d in [1:17] 
                i = p + d  ́16  –“flatten” p and d to index 
                w[i] = w[i] ´ rule_1(p) 
                w[i] = w[i] ´ rule_2(p) 
                … –apply all rules to w 
        output(weighted_selection(w)) 
        update_plan() 
Figure 2. Incorporating plans as recurrent state. 



 We should be careful though, because rules are unlikely 
to form a sophisticated music evaluation system. Extensive 
search, such as finding the most likely of 1 million songs 
will not necessarily produce the best outcome. Consider 
the similar approach of outputting the most likely token at 
every step rather than making a weighted choice. In most 
cases, this will create a “high probability” output, but it is 
likely to get stuck repeating high probability tokens, and 
the result will lack variety and interest. 
 One more application of search has been found to be 
useful. Recall that rules are allowed to forbid certain 
choices by returning zero weights. Situations can arise 
where rules manage to zero the weights of all tokens. This 
means that, according to the rules, no acceptable choice 
can be made. In my system, I detect this and simply start 
over. A more sophisticated AI approach might be to back 
up one or more tokens or even try to find the cause of the 
impasse and correct it. However, if these problems are 
common, one can study their cause and design a solution 
(it might involve spotting problematic situations and form-
ing plans to guide the system past them). Alternatively, if 
problems are rare, then restarting is very likely to succeed. 
Either way, sophisticated search seems to be unnecessary. 

The Size of A 
One potential problem with this approach is that the num-
ber of different tokens can be large. For example, in Xena-
kis’ Stochastic Music Programme (SMP) [5], sounds are 
described by onset time, duration, pitch, instrument, glis-
sando rate and “intensity form” (44 forms of dynamic vari-
ation such as crescendo, diminuendo, louder then softer, 
etc.). Considering all combinations, there could be many 
millions of sound types. 
 When the token space becomes too large, we have two 
basic methods to simplify the computation. First, we can 
separate the dimensions of the tokens if they are independ-
ent. Imagine in our previous example if pitch and duration 
were independent. Then, our nested loop to consider all 
240 combinations: 
 
        for p in [0:15]  –iterate over all pitches 
            for d in [1:17]  –iterate over all durations 
                … 
could be separated into two separate loops with a total of 
only 15 + 16 = 31 iterations: 
 
        for p in [0:15]  –iterate over all pitches 
            pw[p] = pw[p] ´ pitch_rule_1(p) 
            … – more rules for pitch weightings 
        for d in [1:17]  –iterate over all durations 
            dw[p] = dw[p] ´ duration_rule_1(p) 
            … – more rules for duration weightings 
 
Then the output token would be determined by making two 
independent weighted choices using pitch weights pw and 
duration weights dw. 

 The second possibility is one-way dependencies.. Sup-
pose that pitch weights do not consider the proposed dura-
tion, but duration weights vary with the proposed pitch. If 
so, we can use only the pitch-weighting rules to compute 
pw (as shown above) and make a weighted choice of pitch. 
Now, pitch is known, so we can use it within duration rules 
to compute duration weights. 
 It should also be mentioned that if an attribute such as 
duration can be computed independently of other attributes 
(but possibly depending on them), then it can be continu-
ous rather than discrete. For example, one can compute 
duration in seconds rather than a choice of n sixteenths. 
Continuous values can be efficiently computed from a sin-
gle random distribution such as the Gaussian, but it is not 
so simple to combine multiple rules that relate to different 
factors or influences. The choice is yours. 
 In Xenakis’ SMP, parameters appear to be highly inde-
pendent. E.g., the instrument choice is selected using 
weights that depend only on the density, which is fixed for 
the duration of each section. However, pitch and duration 
are both based on the instrument. We can compute them 
independently after the instrument has been selected. 
 It is the composer’s choice as to how musical tokens are 
represented and whether their attributes are independent. 
Strong dependencies arise from concepts such as “short 
note durations require smaller pitch intervals,” but many 
other attributes are weakly connected, allowing us to com-
pute them separately and more efficiently. 

Evaluation 
I have presented a general approach to algorithmic compo-
sition that I believe has many good properties: 

1. It is simple to implement, which means one can 
spend more time adjusting rules and thinking about 
musical concepts. 

2. It is modular, allowing concepts, tendencies and 
“hints” to be added in the form of independent rules. 

3. It is probabilistic and non-deterministic. Multiple 
runs can be used to obtain a large pallet of composi-
tional materials, and live performance systems can 
offer variety and surprise. 

4. One can express tendencies as well as absolute con-
straints. 

5. Rules can be based on simple statistics of existing 
music, so in that sense, rules can be “learned” from 
data. 

6. The approach is efficient because it avoids large 
amounts of search. To make up for the lack of 
search and backtracking, plans can be generated to 
offer a degree of look-ahead and guidance. 

 There are also some shortcomings: 
1. Search and optimization are weakly supported, but 

we argue this is usually sufficient. 
2. The approach works best for computing discrete to-

kens, although any computation that computes a 
continuous attribute is easily incorporated. 



3. This is only a conceptual framework: There is no 
language, library, or ready-made software. (Perhaps 
this is also a “feature.”) 

Conclusions 
Innumerable approaches to algorithmic music have been 
explored. Often, software is developed for just one compo-
sition. Still, many composers develop a way of working. 
My work for the Callejón del Ruido Festival was formative 
in my thinking about composition and particularly algo-
rithmic composition and interaction. There is nothing like a 
public forum and high expectations to put one to the test, 
and I am deeply grateful for the experience and learning 
that resulted from this great opportunity. 
 The framework described here distills and generalizes 
many ideas and approaches that I have found useful over 
the years. If readers find it overly simplistic, consider that 
that may be its greatest advantage! If we find the design of 
software to be trivial and obvious, then we stand a much 
better chance of a correct and efficient implementation, not 
to mention modifying and improving the first version. It is 
much better to focus on music than complex AI techniques, 
provided we can still express our musical intentions. 
 Ultimately, composers (and perhaps listeners) must be 
the judge of any approach or methodology. Programming 
languages, systems and methodologies are notoriously dif-
ficult to measure, and it does not make sense to say one 
approach is better than another. However, I hope that 
thinking about the structure of an algorithmic composition 
system as opposed to the actual algorithms will inspire 
others to do the same and perhaps take away some useful 
ideas for their own creative work. 
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