Practical Aspects of a Midi Conducting Program

Roger B. Dannenberg
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Email: dannenberg @cs.cmu.edu

Kenneth Bookstein
University of California, San Diego
La Jolla, CA 92093

ABSTRACT

A MIDI-based conducting program was implemented to allow a conductor to control the tempo
of a MIDI performance that accompanies a live performer. The tempo is controlled by tapping
beats on a keyboard. A number of features were added in the process of preparing for a
large-scale performance, a concerto for live piano and MIDI orchestra and chorus. This
experience led to a number of practical suggestions.

1. Introduction

From approximately December 1990 through
March 1991, the authors collaborated closely on
the development of conducting software which
was used for a concert at Alice Tully Hall in New
York. This concert featured the New York
premiere of Ronn Yedidia’s Concerto for Piano,
Electronic Instruments, Choir, and Orchestra.
Since neither an orchestra nor a choir were
available for this concert, the plan was to perform
the piece with piano and electronic instruments
only. Several synthesizers and samplers, under the
control of a live conductor, recreated the complete
orchestral score live, including the choir and all
orchestral and electronic parts.

The software, modeled after the Conductor
Program of Max Mathews [Mathews 89] and
accompaniment systems by the first author
[Dannenberg 84], evolved to meet the
requirements of a this demanding performance,
and we have learned that conducting is not as
simple as it seems. As we found with music
synthesizers [Kaplan 81], accompaniment systems
[Dannenberg 88a] and other computer music
systems, the step from the lab to the concert stage
is a giant one. This is due in part to the fact that
researchers often ‘‘idealize’” a problem or focus on
only the obvious hard parts.

We do not claim that we have developed anything
fundamentally new. The value of this work is the

fact that it results from practical experience with
professional musicians, and (to our knowledge) no
detailed descriptions of the techniques we used
have been published. In addition to this
publication, the complete source code of our
conducting system is available from the first
author and will be included in the next release of
the CMU MIDI Toolkit [Dannenberg 88b].

2. The Conducting Problem

The basic problem of Midi conducting is quite
simple. Midi data (including timing information)
is loaded into computer. A human conductor
produces ‘‘beats’” by tapping on a keyboard or
some other device that generates Midi note
messages. The messages are used to compute a
tempo and a score position. The stored Midi data
is output accordingly.

Perhaps it is more important to state what we do
not consider. We do not address the problem of
the physical conducting interface, that is, how to
map human gestures to beat times. Others have
proposed sonar sensors [Haflich 83], sensors in
batons [Keane 89], computer vision [Matsushima
89], and drums [Mathews 80]. We assume only
that a Midi message is delivered from the gesture-
sensor to the conducting software to indicate beats,
and we used a keyboard as our ‘‘gesture sensor.’’
Secondly, we are concerned only with controlling
the timing of a performance. Our system does not

ICMC

537

attempt to integrate control of dynamics or timbre
with its control over tempo.

3. System Overview
Our system is structured like a computer
accompaniment system [Dannenberg 89] in
several respects. There are two parts to the score
that is loaded into the computer. As you would
expect, one part contains the music to be
performed. The other part indicates where
conducting beats are expected. Depending on the
music, it may be desirable to conduct every quarter
note, every measure, or not at all. The conductor’s
part tells our software when to expect beats and
how to interpret them.

Hint 1: the score must contain a

carefully constructed conductor’s part

(do not assume a conducted beat on

every quarter note.)
In our system, a designated Midi channel holds the
conductor’s part, and all other channels hold the
music to be performed!. Another advantage of
this approach is that the score may contain parts
with different tempi. Although we did not use this
feature, the conductor part can be designed to
correspond to any one (or none!) of these parts.

The other aspect of the system that is based on

computer accompaniment is the separation
between
ethe “‘matcher,”” that associates

incoming beat messages with the
conductor’s part in the score, and

o the ‘‘performer,’”’ that schedules the
output of Midi data.

This separation allows the system to have a very
flexible coupling between the timing intent
expressed by the conductor, and the realization of
that intent in terms of when notes are actually
performed. Figure 1 illustrates the structure of our
system.

lour Amiga implementation is thus limited to 15 channels.
We worked to have the Amiga send synchronization messages
to a *‘slave’’ machine which would play another 16 channels,
but it turned out to be faster to squeeze the original 32 channels
into 15, so the *‘slave’’ system was never completed.

Performance
Part (Ch. 2-16)

Conductor's
Part (Ch. 1)

Y Y

T — Matcher Performer | |y, MIDI
aps Output

Conducting System

Figure 1: The conducting
system consists of a Matcher that
associates incoming beats with
the conductor’s part, and a
Performer that schedules output
messages.

4. Findings

Our methodology was simple: one of us developed
all the code and the other developed all the Midi
scores and used the system. When the system was
found to be inadequate, we implemented a
solution. This section reports on our findings, the
solutions we found necessary to optain a musically
useful system.

One set of findings is essentially that there can
exist too much of a good thing. The original
system assumed that the conductor would always
be in control, but we found a conflict between the
necessity for fine control of tempo in the slow,
‘‘expressive’’ passages, and the necessity in very
rhythmically stable passages for the computer to
be less sensitive. In these very rhythmic passages,
it is extremely difficult to conduct a secure steady
beat. In our system, conducting is disabled simply
by omitting beats from the conductor’s part so that
the system does not expect any beats.

Hint 2: Conducting should be disabled

in some sections.
This raises the question of what happens if the
conductor forgets and beats time anyway. In our
system, the default action is to jump ahead to the
next downbeat in the conductor’s part. This would
be disasterous.

Hint 3: Humans make mistakes.
We added a simple switch to the conductor’s part.
Normally, the switch is on and all input is
processed. When the switch is off, incoming beat
messages are ignored. The switch is only turned

ICMC

538

off when no beats are expected?.

In sections where conducting is disabled, the
conductor can increase or decrease the tempo with
a keystroke. Each keystroke changes the tempo by
a few percent, providing a form of tempo control
that is suitable for very rhythmic passages.

Hint 4: Provide tempo increment and

decrement functions.
This form of tempo control can also be used in
‘‘sequencer mode,’’ where the score plays without
conducting.

Hint 5: Provide a sequencer mode that

plays the score without conducting

input.
It is often important to obey the tempo markings in
the score. This finding has several ramifications.
First, our tempo changes are ‘‘compiled’’ into the
score so that if a tempo change is marked on a
beat, the effects of that change happen
immediately. This anticipates the new tempo that
will be apparent when the next beat arrives from
the conductor3.

Hint 6: Anticipate the conductor by

compiling tempo changes.

It is also the case that when entering a new section,
it might be desirable to assume the original marked
tempo rather than make the tempo relative to the
previous section. One approach to this problem is
to have the conducting system gradually ‘‘pull’
the tempo toward the one marked in the score. In
the absence of conducting input, the tempo
gradually adjusts to the ‘‘right’’ one. This feature
was disabled in the performance, however.

An alternative is to change the tempo to the
“right” one immediately. Our conducting
software allows special commands to be embedded
in the performance part that set the tempo to
nominal tempo as marked in the score.

2In the implementation, the switch-on and switch-off
commands are actually imbedded in the performed part so that
conducting is switched on and off in synchrony with the
performed music.

3We implement this by compiling the score times into
millisecond time units. Performing the score at a constant rate
in terms of milliseconds will then create the effect of tempo
changes. An alternate approach would be to keep the score in
terms of beats, but adjust the performance tempo according to
the ratio of tempo changes that are encountered. This approach
gets complicated if there are multiple simultancous tempi in
effect.

Hint 7: Implement a command (within

the score) that sets the tempo to a

predefined value.
This was used at the beginning of a section where
conducting is disabled to make sure that the tempo
would be as planned.

CMU MIDI Toolkit scores can actually set
program variables and call routines, so special
commands and switches are supported by the score
language. In our conducting system
implementation, we also reserve note-on
commands with pitch 0 and low velocity numbers
to implement special controls in the score. This
allows conventional sequencers with nice
graphical interfaces to generate and edit
conducting scores.

Hint 8: Maintain compatibility with

standard formats.

There are various possibilities for determining the
tempo from incoming beat messages. The
simplest option is to use the difference between the
last 2 beats to estimate the tempo. This does not
work well because a small timing error translates
to a significant tempo change. As with previous
accompaniment software, we use a history buffer
and take the cummulative tempo over the last
several beats.

Hint 9: Tempo averaging is important.
Furthermore, large changes in the tempo estimate
from the matcher are ignored or limited by the
performer section.

Hint 10: Limit the sensitivity of the

system to conducted tempo change.

In general, the performer can get ahead of the
conductor, particularly when the conducted tempo
slows down. We limit how far ahead of the
conductor the performer can be (when this point is
reached, the performer is stopped completely).
Hint 11: Limit how far the performance
can lead the conductor.
In practice, we used an allowable lead of zero; that
is, the computer waits if the expected beat does not
arrive.

On the other hand, it is important to also regulate
the situation in which the performer falls behind
the conductor. In our current system, there is an
upper bound on how fast the performer can race to
catch up with the conductor., We used a ‘‘catch-
up’’ rate of 8 times real-time, and ‘‘catch-up”
mode occured when the performer fell more than

ICMC

539

10 ms behind the conductor. This indicates our
conductor received very quick response, but had to
tap very accurately.
Hint 12: Various recovery strategies
can avoid unnatural performances.

Finally, it is essential to support rehearsals. Our
conductor can be started at an arbitrary time point.
An interface that could jump to a particular
labelled rehearsal point would be even better.

Hint 13: Facilities to support rehearsal

are critical.

5. Summary and Conclusions

We implemented and tested a conducting program
with a number of features that have not been
reported in the literature. Most of our features
make the system either more flexible or more
robust. In the flexibility category, we include a
conductor’s part (rather than assuming every
quarter note is conducted), we annotate the score
with tempo changes, support rehearsal, use
standard file formats, and have tempo increment
and decrement controls. For robustness, we
perform tempo averaging, limit the sensitivity of
the system, and have recovery strategies to avoid
unnatural performances.

The basic functions of a conducting program are
not difficult to implement. We found that much
more work is required to meet the needs of
professional musicians, and we spent months
developing and refining the extensions reported
above. The final system works well. By
comparison, we found only one commercial
product that supports conducting, and it was
unuseable. One area we did not investigate
thouroughly is the best way to handle tempo
changes. For example, Otehru reports the use of a
second order model that anticipates acceleration.
We did not find this necessary, but it would be
interesting to perform a comparison of first-order
and higher-order tempo tracking.

6. Acknowledgments

The authors would like to thank Commodore-
Amiga and Camnegie Mellon for their partial
support of this project.

References

[Dannenberg 84] Dannenberg, R. B. An On-Line
Algorithm for Real-Time Accompaniment. In
Proceedings of the 1984 International Computer
Music Conference, pages 193-198. Computer
Music Association, 1984.

[Dannenberg 88a] Dannenberg, R. B. and

H. Mukaino. New Techniques for Enhanced
Quality of Computer Accompaniment. In
Proceedings of the 1988 International Computer
Music Conference, pages 243-249. Computer
Music Association, San Francisco, 1988.

[Dannenberg 88b] Dannenberg, R. B. The CMU
MIDI Toolkit Carnegie Mellon University, 1988.
Published by the CMU Studio for Creative
Inquiry.

[Dannenberg 89] Dannenberg, R. B. Real-Time
Scheduling and Computer Accompaniment.
System Development Foundation Benchmark
Series. Current Directions in Computer Music
Research. In Mathews, Max V. and Pierce, John
R., MIT Press, 1989, pages 225-262.

[Haflich 83] Haflich, S. M. and Bums, M. A.
Following a Conductor: The Engineering of an
Input Device. In 1983 International Computer
Music Conference Proceedings. Computer Music
Association, 1983.

[Kaplan 81] Kaplan, J. S. Developing a
Commercial Digital Sound Synthesizer. Computer
Music Journal 5(3):62-73, Fall, 1981.

[Keane 89] Keane, D. and P. Gross. The
MIDI Baton. In Proceedings of the 1989
International Computer Music Conference, pages
151-154. Computer Music Association, 1989.

[Mathews 80] Mathews, Max V. and Abbot,
Curtis. The Sequential Drum. Computer Music
Journal 4(4):45-59, Winter, 1980.

[Mathews 89] Mathews, M. V. The
Conductor Program and Mechanical Baton.
System Development Foundation Benchmark
Series. Current Directions in Computer Music
Research. In Mathews, Max V. and Pierce, John
R., MIT Press, 1989, pages 263-281.

[Matsushima 89] Matsushima, T., S. Ohteru,

S. Hashimoto. An Integrated Music Information
Processing System: PSB-er. In Proceedings of the
1989 International Computer Music Conference,
pages 191-198. Computer Music Association,
1989.

ICMC

540

