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Abstract

Human listeners are able to recognize structure in music
through the perception of repetition and other relationships
within a piece of music. This work aims to automate the task
of music analysis. Music is “explained” in terms of em-
bedded relationships, especially repetition of segments or
phrases. The steps in this process are the transcription of
audio into a representation with a similarity or distance
metric, the search for similar segments, forming clusters of
similar segments, and explaining music in terms of these
clusters. Several pre-existing signal analysis methods have
been used: monophonic pitch estimation, chroma (spectral)
representation, and polyphonic transcription followed by
harmonic analysis. Also, several algorithms that search for
similar segments are described. Experience with these
various approaches suggests that there are many ways to
recover structure from music audio. Examples are offered
using classical, jazz, and rock music.

1. Introduction

Digital sound recordings of music can be considered the
lowest level of music representation. These audio represen-
tations offer nothing in the way of musical or sonic structure,
which is problematic for many tasks such as music analysis,
music search, and music classification. Given the current
state of the art, virtually any technique that reveals structure
in an audio recording is interesting. Techniques such as
beat detection (Dixon, 2000; Goto & Muraoka, 1998), key
detection (Sapp, 2001; Yli-Harja, Shmulevich, & Lemstrom,
1999), chord identification (Fujishima, 1999), monophonic
and polyphonic transcription (Klapuri, 1998), melody and
bass line detection (Goto, 2001), source separation (Ottaviani
& Rocchesso, 2001), and instrument identification (Brown,
1999; Fujinaga, 2000) all derive some higher-level informa-
tion from music audio. There is some hope that by continu-
ing to develop these techniques and combine them, we will

be better able to reason about, search, and classify music,
starting from an audio representation.

In this work, we examine ways to discover patterns in
music audio and to translate this into a structural analysis.
The main idea is quite simple: musical structure is signaled
by repetition. Of course, “repetition” means similarity at
some level of abstraction above that of audio samples. We
must process sound to obtain a higher-level representation
before comparisons are made, and must allow approximate
matching to allow for variations in performance, orchestra-
tion, lyrics, etc. In a number of cases, our techniques
have been able to describe the main structure of music
compositions.

We have explored several representations for comparing
music. Monophonic transcription can be used for music
where a single voice predominates (even in a polyphonic
recording). Spectral frames can be used for more polyphonic
material. We have also experimented with a polyphonic tran-
scription system.

For each of these representations, we have developed
heuristic algorithms to search for similar segments of music.
We identify pairs of similar segments. Then, we attempt to
simplify the potentially large set of pairs to a smaller set of
clusters. These clusters identify “components” of the music.
We can then construct an explanation or analysis of the music
in terms of these components. The goal is to derive structural
descriptions such as “AABA.”

We believe that the recognition of repetition is a funda-
mental activity of music listening. In this view, the structure
created by repetition and transformation is as essential to
music as the patterns themselves. In other words the struc-
ture AABA is important regardless of what A and B repre-
sent. At the risk of oversimplification, the first two A’s
establish a pattern, the B generates tension and expectation,
and the final A confirms the expectation and brings resolu-
tion. Structure is clearly important to music listening. Struc-
ture can also contribute expectations or prior probabilities for
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other analysis techniques, such as transcription and beat
detection, where knowledge of pattern and form might help
to improve accuracy. It follows that the analysis of structure
is relevant to music classification, music retrieval, and other
automated processing tasks.

Although this work needs further development, there
are potentially many applications to Music Information
Retrieval. Structure can be used to locate themes that might
be most salient to listeners as in MME (Meek & Birming-
ham, 2001). Music browsers might use structure to select the
most important segments of music for listeners, perhaps skip-
ping an introduction to get to more memorable sections
quickly. Browsers might also use structure to provide a visual
abstract of music, helping users to locate sections of interest.
For some applications such as musicology, structure might
be the object of search, e.g., are there any popular songs of
the form “AABB”? Finally, identifying the differences
between similar sections within a performance might tell us
something about the expected variability between perfor-
mances. This information could then be used to improve
systems that identify performers.

2. Related work

It is well known that music commonly contains patterns and
repetition. Any music theory book will discuss musical form
and introduce notation, such as “AABA)’” for describ-
ing musical structures. Many researchers in computer music
have investigated techniques for pattern discovery and
pattern search. Cope (1996) searches for “signatures” that
are characteristic of composers, and Rolland and Ganascia
describe search techniques (Rolland & Ganascia, 2000).
Interactive systems have been constructed to identify and
look for patterns (Stammen & Pennycook, 1993), and much
of the work on melodic similarity (Hewlett &
Selfridge-Field, 1998) is relevant to the analysis of music
structure.

Simon and Sumner wrote an early paper on music listen-
ing and its relationship to pattern formation and memory
(Simon & Sumner, 1968), proposing that we encode
melody by referencing patterns and transformations. This
has some close relationships to data compression, which
has also inspired work in music analysis and generation
(Lartillot, Dubnov, Assayag, & Bejerano, 2001). Narmour
describes a variety of transformative processes that operate
in music to create structures that listeners perceive
(Narmour, 2000).

A fundamental idea in this work is to compare every point
of a music recording with every other point. This naturally
leads to a matrix representation in which row 7, column j
corresponds to the similarity of time points i and j. A two-
dimensional grid to compute and display self-similarity has
been used by Wakefield and Bartsch (Birmingham et al.,
2001) and by Foote and Cooper (2001). Aucouturier and
Sandler also use this representation to find patterns in music

audio (Aucouturier & Sandler, 2002). They find patterns
in sequences of spectra, which are labeled using a hidden
Markov model classifier (Aucouturier & Sandler, 2001) to
form a “texture score.” They handle approximate matching
using two techniques adapted from image processing:
convolution to “blur” the discrete match patterns, and the
Hough transform to locate approximately diagonal lines in
the matrix. Our work is closely related, but we use more
pitch based representations, develop alternative algorithms
for pattern induction, and further explore the idea of struc-
tural analysis.

Mont-Reynaud and Goldstein (1985) proposed rhythmic
pattern discovery as a way to improve music transcription.
Conklin and Anagnostopoulou (2001) examine a technique
for finding significant exactly identical patterns in a body of
music, with a focus on probabilistic methods to eliminate
insignificant patterns. A different approach is taken by Meek
and Birmingham (2001) to search for commonly occurring
melodies or other sequences, using an efficient algorithm
based on sorting.

A previous, shorter version of this paper (Dannenberg &
Hu, 2002b) was presented at ISMIR 2002 (Fingerhut, 2002).
This work was preceded by a publication on monophonic
pitch-based analysis (Dannenberg, 2002) using what we
describe here as Algorithm 1 and a paper on the spectrum-
based analysis (Dannenberg & Hu, 2002a) using Algorithm
2. These papers include a few more examples.

3. Pattern search

In this section, we describe the general problem of searching
for similar sections of music. We assume that music is rep-
resented as a sequence s;, i =0 . .. n — 1, where each element
of the sequence is either a note or a fixed-duration frame
of audio analysis. A segment of music is denoted by a
starting and ending point: (i, k), 0 < i < k < n. Similar sec-
tions are denoted by a pair of segments: ((i, k), (j, 1)),
0 <i<k<j<I<n. For convenience, we do not allow over-
lapped segments,' hence k < j. Depending on the length of
detected similar segments, they can indicate single notes,
motives, phrases, or sections of music. In general, longer seg-
ments are most useful for the analysis of overall musical
structure. In our work, for example, we discover a structure
such as AABA by finding three similar sections (the A’s) in
the music.

"To understand why, assume there are similar segments, ((i, k),
(7, 1)), that overlap, i.e., 0 <i <j < k <[ < n. Then, there is some
subsegment of (i, k) we will call (i, m) , m < k, corresponding to the
overlapping region (j, k) and some subsegment of (k, /) we will call
(p, ), p > J, corresponding to (j, k). Thus, there are three similar
segments (i, m), (j, k), and (p, ) that provide an alternate structure
to the original overlapping pair. In general, a shorter, more frequent
pattern is preferable, so we do not search for overlapping patterns.
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There are O(n*) possible pairs of segments. To compute a
similarity function of two segments, one would probably use
a dynamic programming algorithm with a cost proportional
to the lengths of the two segments. This increases the cost to
O(n°) if each pair of segments is evaluated independently.
However, given a pair of starting points, i, j, the dynamic pro-
gramming alignment step can be used to evaluate all possi-
ble pairs of segment endpoints. There are O(n®) starting
points and the average cost of the full alignment computa-
tion is also O(#?), so the total cost is then O(n*). Using frame
sizes from 0.1 to 0.25 seconds and music durations of several
minutes, we can expect n to be in the range of 200 to 2000.
This implies that a brute-force search of the entire segment
pair space will take hours or even days. This has led us to
pursue heuristic algorithms.

In our work, we assume a distance function between ele-
ments of the sequence s;. To compute the distance between
two segments, we use an algorithm for sequence alignment
based on dynamic programming. A by-product of the align-
ment is a sum of distances between corresponding sequence
elements. This measure has the property that it generally
increases with length, whereas longer patterns are generally
desirable. Therefore, we divide distance by length (in
Algorithm 2, see below) to get an overall distance rating.

Typically there are many overlapping candidates for
similar segments. Extending or shifting a matching segment
by a frame or two will still result in a good rating. Therefore,
the problem is not so much to find all pairs of similar seg-
ments but the locally “best” matches. In practice, all of our
algorithms work by extending promising matches incremen-
tally to find the “best” match. This approach reduces the
computation time considerably, but introduces heuristics
that make formal descriptions difficult. Nevertheless, we
hope this introduction will help to explain the following solu-
tions. Other approaches to this problem are presented by
Aucourturier and Sandler (2002).

4. Monophonic analysis

Our first approach is based on monophonic pitch estimation,
which is used to transcribe music into a note-based repre-
sentation. Notes are represented as a pitch (represented on a
continuous rather than quantized scale), starting time, and
duration (in seconds). The pitch estimation is performed
using autocorrelation (Roads, 1996) and some heuristics for
rejecting false peaks and outliers, as described in an earlier
paper (Dannenberg, 2002). It should be noted that mono-
phonic pitch analysis from polyphonic audio is not generally
practical, and if the transcription error rates are high, our
approach will fail to find patterns. Nevertheless, it is inter-
esting that some music is amenable to this approach.

We worked with a saxophone solo, “Naima,” written and
performed by John Coltrane (Coltrane, 1960) with a jazz
quartet (sax, piano, bass, and drums). To find matching seg-
ments in the transcription, we construct a matrix M where

M,; is the length of a segment’ starting at note i and match-
ing a segment at note j.

The search algorithm in this case is a straightforward
search of every combination of , j such that i <. For n notes,
there are n(n — 1)/2 pairs. The search proceeds only if there
is a close match between pitch i and pitch j. Although we
could use dynamic programming for note alignment (Hewlett
& Selfridge-Field, 1998; Sankoff & Kruskal, 1983), we
elected to try a simple iterative algorithm. The algorithm
repeatedly extends the current pair of similar segments as
long as the added notes match in pitch and approximate dura-
tion. In addition to direct matches, the algorithm is allowed
to skip one note after either segment and look for a match,
skip one short note in both segments and look for a match,
consolidate (Mongeau & Sankoff, 1990) two consecutive
notes with matching pitches to form one with a greater dura-
tion and match that to a note, or match consolidated note
pairs following both segments. These rules might be
extended or altered to search for rhythmic patterns or to allow
transpositions.

If segment (i, k) matches (j, /), then in many cases, (i +
1, k) will match (j + 1, /) and so on. To eliminate the redun-
dant pairs, we make a pass through the elements of M, clear-
ing cells contained by longer similar segments. For example
if (i, k) matches (j, /), we clear all elements of the rectangu-
lar submatrix M; ,; , except for M, ;.

Finally, we can read off pairs of similar segments and their
durations by making another pass over the matrix M.
Although this approach works well if there is a good tran-
scription, it is not generally possible to obtain a useful
melodic transcription from polyphonic audio. In the next
section, we consider an alternative representation.

5. Spectrum-based analysis

When transcription is not possible, a lower-level abstraction
based on the spectrum can be used. In previous work by
Bartsch and Wakefield (2001), the chroma representation was
used to locate repetition in music audio in order to find auto-
matically the chorus in popular music. Because our task of
finding matching segments of music is similar and we were
familiar with chroma (Birmingham et al., 2001), we decided
to try the chroma representation to search for patterns in
polyphonic music audio. Other choices (Slaney, 1998),
including the amplitude spectrum, auditory transform, and
mel-cepstrum, would also be reasonable choices, but they
have not been investigated in this application.

The chroma vector is a 12-element vector where each
element represents the energy associated with one of the 12

*An implementation note: for each pair of similar segments, the
starting points are implied by the coordinates 7, j, but we need to
store durations. Since we only search half of the matrix due to sym-
metry, we store one duration at location 7, j and the other at j, i.
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pitch classes. Essentially, the spectrum “wraps around” at
each octave and bins are combined to form the chroma
vector. Distance is then defined as Euclidean distance
between vectors normalized to have a mean of zero and a
standard deviation of one. (This particular distance function
was adopted from Bartsch and Wakefield. It seems to work
at least as well as various alternatives, including simple
Euclidean distance, although there is no formal basis for this
choice.)

A sequence of chroma vectors forms a discrete chroma-
gram. For our work, the most important feature of the chro-
magram is that the music is divided into equal-duration
frames rather than notes. A frame represents the chroma
vector averaged over 0.1 to 0.25 seconds of audio. Typically,
there will be hundreds or thousands of frames as opposed to
tens or hundreds of notes. Matching will tend to be more
ambiguous because the data is not segmented into discrete
notes. Therefore, we need to use more robust (and expensive)
sequence alignment techniques and therefore more clever
algorithms.

5.1 Brute-force approach

At first thought, observing that dynamic programming com-
putes a global solution from incremental and local proper-
ties, one might try to reuse local computations to form
solutions to our similar segments problem. A typical dynamic
programming step computes the distance at cell 7, j in terms
of cells to the left (j — 1), above (i — 1), and diagonal (7 — 1,
j—1). The value at i, j is:

M, =d  +min(M,, ,M_; M)

i,j=1» i-l,jo

In terms of edit distances, we use d; ;, the distance from frame
i to frame j as either a replacement cost, insertion cost, or
deletion cost, although many alternative cost/distance func-
tions are possible within the dynamic programming frame-
work (Hu & Dannenberg, 2002). Unfortunately, even if we
precompute the full matrix, it does not help us in computing
the distance between two segments because of initial bound-
ary conditions, which change for every combination of i and
j. Smith and Waterman’s algorithm (Smith & Waterman,
1981) computes a single best common subsequence, but in
our case that would simply be the perfect match along the
diagonal. Other related algorithms for biological sequence
matching include FASTA (Pearson, 1990) and BLAST
(Altschul, Gish, Miller, Myers, & Lipman, 1990), but these
would also report the diagonal as the longest matching
sequence. There are similarities between these algorithms
and ours (presented below). It seems likely that better and
faster music similarity algorithms could be derived from
these and other biological sequence matching algorithms.
As mentioned in the introduction, the best we can do is to
compute a submatrix starting at i, j for every 0 <i <j < n.
This leaves us with an O(n*) algorithm to compute the dis-
tance for every pair ((i, k), (j, 1)). To avoid very long com-
putation times, we developed a faster, heuristic search.

5.2 Heuristic search

We compute the distance between two segments by finding
a path from i, j to k, / that minimizes the distance function.
Each step of the path takes one step to the right, downward,
or diagonally. In practice, similar segments are characterized
by paths that consist mainly of diagonal segments because
tempo variation is typically small. Thus we do not need to
compute a full rectangular array to find good alignments.
Alternatively, we can compute several or even all paths with
a single pass through the matrix. This method is described
here.

5.3 Algorithm 2

The main idea of this algorithm is to identify path beginnings
and to follow paths diagonally across a matrix until the path
rating falls below some threshold. The algorithm uses three
matrices we will call distance (D), path (P), and length (L).
D and L hold real (floating point) values, and P holds inte-
gers. P is initialized to zero so that we can determine which
cells have been computed. If P, ; = 0, we say cell i, j is null.
The algorithm scans the matrix along diagonals of constant
i +j as shown in Figure 1, filling in corresponding cells of
D, P, and L. (The matrix can also be computed row by row
or column by column.) A cell is computed in terms of the
cells to the left, above, and diagonal. First, compute distances
and lengths as follows:

if P, ,#0thend, =D, ; +d,,, elsed, =
L=L . +V2/2
if P, #0thend, =D, ;+d,,,elsed, = o
l,=L_;+2/2
if P, #0thend, =D, ,; +d,;, elsed, = oo
ly=L_;,+1

The purpose of the infinity (o) values is to disregard dis-
tances computed from null cells as indicated by P. The reader
familiar with dynamic programming for string comparison
may recognize d,, d,, and d, as horizontal, vertical, and diag-

Fig. 1. In Algorithm 2, the similarity matrix is computed along
diagonals as shown.
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onal extensions of precomputed paths. In contrast to dynamic
programming, we also compute path lengths /,, /,, and /,
Now, let ¢ =min(d,/1,, d/1,, dy/l,). If ¢ is greater than a thresh-
old, the cell at i, j is left null. Otherwise, we define D, ; = c,
L;;=1, and P;; = P,, where the subscript m represents the
cell that produced the minimum value for ¢, either (i, j — 1),
i-1,j),or(@i—-1,j-1).

Because of the length terms, this algorithm may not find
optimal paths. However, we found that when we defined dis-
tance without the length terms, the algorithm was difficult to
tune and would find either paths that are too short or many
spurious paths.

As described so far, this computation will propagate paths
once they are started, but how is a path started? When P; ; is
left null by the computation described in the previous para-
graph and d;; is below a threshold (the same one used to cut
off paths), P;; is set to a new integer value to denote the
beginning of a new path. We also define D;;=d,; and L;; =
1 at the beginning of the path.

After this computation, regions of P are partitioned
according to path names. Every point with the same name
is a candidate endpoint for the same starting point. We still
need to decide where paths end. We can compute endpoints
by reversing the sequence of chroma frames, so that end-
points become starting points. Recall that starting points
are null cells where d; ; is below a threshold. To locate end-
points, scan the matrix in reverse from the original order
(Fig. 1 shows the original order). Whenever a new path
name is encountered, and the distance d;; is below
threshold, find the starting point and output the path. An array
can keep track of which path names have been output
and where paths begin. By scanning along diagonals in
this fashion, we tend to find the longest possible extent of
each path.

6. Polyphonic transcription

Polyphonic transcription offers another approach to similar-
ity. Although automatic polyphonic transcription has rather
high error rates, it is still possible to recover a significant
amount of musical information. We use Marolt’s SONIC
transcription program (Marolt, 2001), which transcribes
audio files to MIDI files. SONIC does not attempt to perform
source separation, so the resulting MIDI data combines all
notes into a single track. Although SONIC was intended for
piano transcription, its author has discussed its performance
on non-piano music and includes examples on his website
(Marolt, 2003). Sonic gets good results with arbitrary music
sources, probably because the most important spectral
feature it uses is a set of harmonics, a general feature that
is also present in non-piano tones. Transcriptions inevitably
have spurious notes, so we reduce the transcriptions to a
chord progression using the Harman program by Pardo
(Pardo & Birmingham, 2002). Harman is able to ignore
passing tones and other non-chord tones, so in principle,

Harman can help to reduce the “noise” introduced by tran-
scription errors.

After computing chords with Harman, we generate a
sequence of frames s;, 0 < i < n, where each frame represents
an equal interval of time and s, is a set of pitch classes cor-
responding to the chord label assigned by Harman.

In our experiments with polyphonic transcription, we
developed yet another algorithm for searching for similar
segments. This algorithm is based on an adaptation of
dynamic programming for computer accompaniment
(Dannenberg, 1984). In this accompaniment algorithm, a
score is matched to a performance not by computing a full
n X m matrix but by computing only a diagonal band swept
out by a moving window, which is adaptively centered on
the “best” current score position.

To find similar segments, we will sweep a window diag-
onally from upper left to lower right as shown in Figure 2.
When a match is found, indicated by good match scores, the
window is moved to follow the best path. We need to decide
where paths begin and end. For this purpose, we compute
similarity (rather than distance) such that similarity scores
increase where segments match, and decrease where seg-
ments do not match.

An example function for similarity of chords is to count
the number of notes in common minus the number of notes
not in common. For chords A and B (sets of pitch classes),
the similarity is:

o(A, B)=|AnB|-|[AUB— ANB|,

where |X] is the number of elements in (cardinality of) set X.
Other functions were tried, including a count of the number
of common pitches, but this has the problem that a dense chord
will match almost anything. (A similarity function based on
probabilities might work better than our ad hoc approach. This
is left for future work.) We will write o;; to denote o(s;, s;),
the similarity between chords at frames i and ;.

When we compute the matrix, we initialize cells to zero
(again representing null cells) and store only positive values.
A path begins when a window element becomes positive and
ends when the window becomes zero again. The computa-
tion for a matrix cell is:

Fig. 2. In Algorithm 3, the similarity matrix is computed in diag-
onal bands swept out along the path shown. The shaded area shows
a partially completed computation.
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Fig. 3. The encircled portion of the alignment path is trimmed
because it represents an extreme difference in tempo. The remain-
der determines a pair of similar segments.

M, ;= max(Mi,j—l -p,M,_;—p, M,

i i—1,j—1)+o-i,j —-C

where p is a penalty for insertions and deletions, and ¢ is a
bias constant, chosen so that matching segments generate
increasing values along the alignment path, and non-
matching segments quickly decrease to zero.

The computation of M proceeds as shown by the shaded
area in Figure 2. This evaluation order is intended to find
locally similar segments and follow their alignment path. The
reason for computing in narrow diagonal bands is that if M
were computed entire row by entire row, all paths would con-
verge to the main diagonal where all frames match perfectly.
At each iteration, cells are computed along one row to the
left and right of the current path, spanning data that repre-
sents a couple of seconds of time. Because of the limited
width of the path, references will be made to null cells in M.
These cells and their values are ignored in the maximum
value computation.

This algorithm can be further refined. The score along an
alignment path will be high at the end of the similar seg-
ments, after which the score will decrease to zero. Thus, the
algorithm will tend to compute alignment paths that are too
long. We can improve on the results by trimming a frame
from either end of the path as long as the similarity/length
quotient increases. This does not always work well because
of local maxima. Another heuristic we use is to trim the final
part of a path where the slope is substantially off-diagonal,
as shown in Figure 3.

Because the window has a constant size, this algorithm
runs in O(n?) time, and by storing only the portion of the
matrix swept by the window, O(n) space. The algorithm is
quite efficient in practice.

7. Clustering

After computing pairs of similar segments with any of the
three previously described algorithms, we need to form clus-
ters to identify where segments occur more than twice in the
music. For example, if segment A is similar to segment B (as
determined by algorithm 1, 2, or 3), and B is similar to C,
we expect A to be similar to C, forming the cluster {A, B,

C}. Essentially, we are computing the transitive closure of a
“similarity” relation over these segments, where “similarity”
means either the segments are identified as similar by Algo-
rithm 1, 2, or 3, or the segments overlap significantly. The
transitive closure operation produces sets of similar seg-
ments, which are the clusters. Our “similarity” relation is
not truly transitive, so we may end up with clusters where
not every element is “similar” to every other element in the
cluster.

The algorithm is simple: Start with a set of similar pairs,
as computed by Algorithms 1, 2, or 3. For the sake of
example, assume the initial set of similar pairs is {(A, B), (B,
C), (D, E)}. Remove any pair from the set to form the first
cluster. For example, the initial cluster might be the set {A,
B}. Then search the set for pairs (a, b) such that either a or
b (or both) is an approximate match to a segment in the
cluster. If a (or b) is not already in the cluster, add it to the
cluster. In the example we would find (B, C), where B is in
the cluster {A, B}. Therefore, we add C to the cluster, obtain-
ing {A, B, C}. Continue extending the cluster in this way
until all pairs have been examined. (In the example, there are
no further additions to the first cluster.) Now, repeat this
process to form the next cluster, etc., until the set of pairs is
empty. Continuing the example, the final clusters are {A, B,
C} and {D, E}.

Recall that segments are defined by their starting times
and durations. When clustering actual data, segments will not
generally form exact matches. For example, the initial set of
pairs might be {(A, B), (B, C), (D, E)}, where B only
approximately matches B’. Two segments are considered to
be “an approximate match” if their starting times and dura-
tions match approximately. We currently require starting
times within 10 percent of the duration, and duration matches
within 40 percent. These numbers are thought to be reason-
able and non-critical, but we have not yet experimented with
different values.

Sometimes, a segment in a cluster will correspond to a
subsegment of a pair, e.g., the segment (10, 20) overlaps half
of the first segment of the pair ((10, 30), (50, 70)). We do not
want to add (10, 30) or (50, 70) to the cluster because these
have length 20, whereas the cluster element (10, 20) only has
length 10. However, it seems clear that there is a segment
similar to (10, 20) starting at 50. In this situation, we split
the pair proportionally to synthesize a matching pair. In this
case, we would create the pair ((10, 20), (50, 60)) and add
(50, 60) to the cluster.

8. Analysis as explanation

The final step is to produce an analysis of the musical struc-
ture implied by the clusters. We like to view this as an “expla-
nation” process. For each section of music, we “explain” the
music in terms of its relationship to other sections. If we
could determine relationships of transposition, augmenta-
tion, and other forms of variation, these relationships would
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Fig. 4. Analysis of Naima. Audio is shown at top. Below that is a transcription shown in piano roll notation. Next is a diagram of clusters.
At bottom is the analysis; similar segments are shaded in the same pattern. Labels are added by hand to guide the reader. The form is AABA,
where the B part has additional structure (B1-B1-B2). The middle section is a piano solo. The saxophone reenters at the B section, repeats

the A part, and ends with a coda containing a repeated figure.

be part of the explanation. With only similarity, the explana-
tion amounts to labeling music with clusters.

To build an explanation, recall that music is represented
by a sequence s;, 0 < i < n. Our goal is to fill in an array E,,
0 <i < n, initially nil, with cluster names, indicating which
cluster (if any) contains a note or frame of music. The expla-
nation E serves to describe the music as a structure based on
the repetition and organization of patterns.

To begin, we find the first i such that i is contained by
some cluster. Recall that a cluster is a set of intervals. For
each j in some member of that cluster, we set E; to the name
of the cluster. (Names are arbitrary, e.g., “A”, “B”, “C”, etc.)
We then continue searching for the next i such that E; = nil
and 7 is in some new cluster. We then label additional points
in E with this new cluster. However, once a label is set, we
do not replace it. This gives priority to musical material that
is introduced the earliest, which seems to be a reasonable
heuristic to resolve conflicts when clusters overlap.

9. Examples

We present results from monophonic pitch estimation and
chroma-based analyses, and we describe some preliminary
results using polyphonic transcription.

9.1 Transcription and Algorithm 1

Figure 4 illustrates an analysis of “Naima” using mono-
phonic transcription and Algorithm 1 to find similar seg-

ments. Audio is shown at the top to emphasize the
input/output relationships for the casual reader. (The authors
realize that very little additional information is revealed
by these low-resolution waveforms.) Clusters are shown as
heavy lines, which show the location of segments, connected
by thin lines. The analysis is shown at the bottom of
the figure. The simple “textbook™ analysis of this piece
would be a presentation of the theme with structure
AABA, followed by a piano solo. The saxophone returns
to play BA followed by a short coda. In the computer
analysis, further structure is discovered within the B part (the
bridge), indicated in the figure as B1-B1-B2. The transcrip-
tion failed to detect more than a few notes of the piano solo,
but there are a few spurious matching segments here. After
the solo, the analysis shows a repetition of the bridge and the
A part: B1-B1-B2-A. This is followed by the coda in
which there is some repetition. Aside from the solo section,
the computer analysis corresponds quite closely to the
“textbook™ analysis. It can be seen that the A section is
half the duration of the B part, which is atypical for an
AABA song form. If the program had additional knowledge
of standard forms, it might easily guess that this is a slow
ballad and uncover additional structure such as the tempo,
number of measures, etc. Note, for example, that once the
piece is subdivided into segments, further subdivisions are
apparent in the RMS amplitude of the audio signal, indicat-
ing a duple meter. Additional examples of monophonic
analysis are presented in another paper (Dannenberg & Hu,
2002a).
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9.2 Chroma and Algorithm 2

Figure 5 illustrates an analysis of Beethoven’s “Minuet in G
(performed on piano) using the chroma representation and
Algorithm 2 for finding similar segments. Because the repe-
titions are literal and the composition does not involve impro-
visation, the analysis is definitive, revealing that the structure
is: AABBCCDDAB.

Figure 6 applies the same techniques to a pop song
(Bagge, Birgisson, & Mumba, 2001) with considerable rep-
etition. Not all of the song structure was recovered because
the repetitions are only approximate; however, the analysis
shows a structure that is clearly different from the earlier
pieces by Coltrane and Beethoven. The repetition was dis-
covered only in sections of audio that are very similar, with
identical lyrics and instrumentation. There are some addi-
tional musically related sections where the singer is featured
and the lyrics are different in each section. Apparently, the
changes in lyrics and phrasing give rise to significant differ-
ences in the chroma vectors. We would need some other
representation that better captures the textural or harmonic
similarities in order to discover more musical structure in this
example.

9.3 Polyphonic transcription and Algorithm 3

So far, polyphonic transcription has not yielded good results
as anticipated. Recall that we first transcribe a piece of music

and then construct a harmonic analysis, so the final repre-
sentation is a sequence of frames, where each frame is a
chord. When we listen to the transcriptions, we can hear the
original notes and harmony clearly even though many errors
are apparent. Similarly, the harmonic analysis of the tran-
scription seems to retain the harmonic structure of the orig-
inal music. However, the resulting representation does not
seem to have clear patterns that are detectable using Algo-
rithm 3. For example, Algorithm 3 detected 43 pairs of
similar segments in Beethoven’s Minuet in G. Many of these
represent truly similar segments, but often only fractions,
e.g., 5 seconds out of a 15-second repetition. The data
contains too many errors to make a successful structural
analysis. On the other hand, using synthetic data, Algorithm
3 successfully finds matching segments.

The observed problems are probably due to many factors.
The analysis often reports different chords when the music
is similar; for example, an A minor chord in one segment and
C major in the other. Since these chords have 2 pitch classes
in common and 2 that are different, o(Amin, Cmaj) = 0,
whereas o(Cmaj, Cmaj) = 3. Perhaps there is a better simi-
larity function that gives less penalty for plausible chord sub-
stitutions. In addition, chord progressions in tonal music tend
to use common tones and are based on the 7-note diatonic
scale. This tends to make any two chords chosen at random
from a given piece of music more similar, leading to false
positives. Sometimes Algorithm 3 identifies two segments
that have the same single chord, even though the segments

80 100 120 140

Time (s)

Fig. 5. Analysis of Beethoven’s Minuet in G performed on piano. The structure, shown at the bottom, is clearly AABBCCDDAB.
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Fig. 6. Analysis of a pop song (Samantha Mumba, “Baby Come On Over”). Letters (middle) give a subjective analysis. Bars (bottom) give
the machine analysis, showing many repetitions of the A segment. Repetitions of the B and E segments were not detected, possible because

of changes in orchestration and lyrics.
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are not otherwise similar. A better similarity metric that
requires more context might help here. Also, there is a fine
line between similar and dissimilar segments, so finding a
good value for the bias constant c is difficult, or perhaps we
should use overall length as in Algorithm 2. Finally, the har-
monic analysis may be removing useful information along
with the “noise.” Overall, the current analysis seems to be
too sensitive to small changes in the audio. We believe that
we need to alter both the transcriber and the harmonic analy-
sis to achieve a more robust harmonic “summary” of the
music information.

To get a better idea of the information content of this rep-
resentation, Figure 7 is based on an analysis of “Let it Be”
performed by the Beatles (McCartney, 1970), using poly-
phonic analysis and chord labeling. This is the most difficult
piece we have studied because the lyrics, instrumentation,
and solo lines change with every repetition. After a piano
introduction, the vocal melody starts at about 13.5s and
finishes the first 4 measures at about 27s. This phrase is
repeated throughout the song, so it is interesting to match this
known segment against the entire song. Starting at every pos-
sible offset, we can search for the best alignment with the
score and plot the distance (negative similarity). The distance
is zero at 13.5 s because the segment matches itself perfectly.
The segment repeats almost exactly at about 27s, which
appears as a downward spike at 27s. From the graph, it is
apparent that the segment also appears with the repetition
several other times, as indicated by pairs of downward spikes
in the figure.

Figure 7 gives a clear indication that the representa-
tion contains information and in fact is finding structure
within the music; otherwise, the figure would appear random.
In this case, we are given the similar segment and only
ask “where else does this occur?” We can conclude that the
combination of polyphonic transcription followed by har-
monic analysis retains significant structural information.
Further work is required to use this information to reliably
detect similar segments, where the segments are not given
a priori.

Correlation With First 4 Bars
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Fig. 7. The segment from 13.5s to 27s is aligned at every point
in the score and the distance is plotted. Downward spikes indicate
similar segments, of which there are several.

10. Summary and conclusions

Music audio presents very difficult problems for music
analysis and processing because it contains virtually no
structure that is immediately accessible to computers. Unless
we solve the complete problem of auditory perception and
human intelligence, we must consider more focused efforts
to derive structure from audio. In this work, we constructed
programs that “listen” to music, recognize repeated patterns,
and explain the music in terms of these patterns.

Several techniques can be used to derive a music repre-
sentation that allows similarity comparison. Monophonic
transcription works well if the music consists primarily of
one monophonic instrument. Chroma is a simplification of
the spectrum and applies to polyphonic material. Polyphonic
transcription simplified by harmonic analysis offers another,
higher-level representation. Three algorithms for efficiently
searching for similar patterns were presented. One of these
works with note-level representations from monophonic tran-
scriptions and two work with frame-based representations.
We demonstrate through examples that the monophonic and
chroma analysis techniques recover a significant, and in some
cases, essentially complete top-level structure from audio
input.

We find it encouraging that these techniques apply to a
range of music, including jazz, classical, and popular record-
ings. Of course, not all music will work as well as our exam-
ples. In particular, through-composed music that develops
and transforms musical material rather than simply repeating
it cannot be analyzed with our systems. This includes impro-
vised jazz and rock soloing, many vocal styles, and most art
music. In spite of these difficulties, we believe the premise
that listening is based on recognition of repetition and trans-
formation is still valid. The challenge is to recognize repeti-
tion and transformation even when it is not so obvious.

Several areas remain for future work. We are working to
better understand the polyphonic transcription data and
harmonic analysis, which offer great promise for finding
similarity in the face of musical variations. We believe the
analysis can be made less sensitive to small variations in
audio, resulting in a better “harmonic summary” and leading
to more successful structural analysis. In the work described
here, we built several independent systems and tested them
with (mostly) different musical examples, so it is hard to
attribute success or failure to specific components (the
features from signal analysis, the similarity algorithms,
parameter settings, and the music example). In general, when
analyses fail, we are unable to make much improvement
simply by adjusting parameters, and we did not use different
parameter settings for the results described here. Although
we are continuing work to resolve some basic questions and
better understand our results, we think it is even more impor-
tant to develop more formal models of structure and simi-
larity. For example, a model could enable us to search for
patterns and clusters that give the “best” global explanation
for observed similarities. The distance metrics used for
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finding similar segments could also use a more formal
approach. Distance metrics should reflect the probability that
two segments are not similar. A formal model of structure
might help us to be more precise about assumptions made in
our work, important characteristics of music signals for
analysis, and requirements of various representations to
achieve success in music analysis.

Another enhancement to our work would be the use of
hierarchy in explanations. This would, for example, support
a two-level explanation of the bridge in “Naima.” It would
be interesting to combine data from beat tracking, key analy-
sis, and other techniques to obtain a more accurate view of
music structure. A reviewer also suggested the interesting
possibility of using Algorithms 1, 2, and 3 in combination
rather than as alternatives. Finally, it would be interesting to
find relationships other than repetition. Transposition of
small phrases is a common relationship within melodies, but
we do not presently detect anything other than repetition.
Transposition often occurs in very short sequences, so a good
model of musical sequence comparison that incorporates
rhythm, harmony, and pitch seems to be necessary to sepa-
rate random matches from intentional ones.

In conclusion, we offer a set of new techniques and our
experience using them to analyze music audio, obtaining
structural descriptions. These descriptions are based entirely
on the music and its internal structure of similar patterns. Our
results suggest this approach is promising for a variety of
music processing tasks, including music search, where pro-
grams must derive high-level structures and features directly
from audio representations.
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