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Instructional Design aspires to define a sound curriculum by
using instructional analysis and concept organization. Along
with other criteria, the purpose of instructional design is to
ensure integrity among instructional objectives, tasks that
students must perform, and the evaluation of their perfor-
mance. Currently, the methods used in instructional design
models have a limited scientific basis. Even with many ef-
forts towards a science of instruction, this goal remains elu-
sive. Computers may provide a positive shift towards system-
atic and verifiable instructional analysis with the advent of
intelligent tutoring systems and the byproducts of their devel-
opment. One such system, the Piano Tutor, has led to a for-
mal model for curriculum design and analysis and is de-
scribed in detail.

Instructional Systems Design (ISD) consists of methods, procedures,
and theories that are used in developing well-structured curricula. Instruc-
tional systems theory has been developing since just after WWII and has
been influenced by many schools of thought including systems theory, be-
havioral and cognitive psychology, and information theory.(Seels, 1989;
Richey, 1986) The basic principle of the ISD approach is that all concepts
of a curriculum should be defined behaviorally so that what a student is
taught is made observable and measurable by performance-based learning
criteria.

With the computer revolution, new possibilities began to open up for
education. In the late sixties, ambitious new efforts attempted to capitalize
on the power of computing. Although the initial attempts were fitful, one
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byproduct of that era has been new perspectives on instruction and learning.
Computers have added to the exploration of systematic educational methods.

Perhaps the biggest advance in these systems is the ability to examine
a student’s performance on an individual basis to compare it with a model
of an ideal performance, and to provide incisive hints and responses in a
learner-specific manner. We are now able to address the problems of indi-
vidual learning capabilities and styles for large numbers of people in all
stages of their lives. Computer-based instruction has added extra impetus
to the reshaping of Education from its being a field dependent mostly on
attitude and belief to being a discipline composed of the systematic study of
learning and of the methods of analyzing instructional content.

For example, in order for a computer to mimic the diagnoses that hu-
man tutors employ, the knowledge that teachers use must be made explicit
in great detail. This byproduct of human-computer interaction may help in
moving us beyond school systems that simply cull exceptional students
from poorer ones depending on students’ capacity to adapt. We are now at
the crossroads of being able to provide very specialized instruction to large
groups of students.

Basic improvements in the power and cost of computing have yielded
a new generation of instructional computing systems. Thanks to these de-
velopments and to the creation of advanced instructional systems, we can
now analyze student performance that utilizes a wide range of input devic-
es including the standard computer keyboard, a piano or other musical in-
strument, a mouse, a joystick, or a light pen, and we can provide instruc-
tional advice about the many kinds of learning and environments that can
be engendered through these devices. We can now teach subjects as diverse
as foreign languages, circuit analysis, welding, music, computer program-
ming, algebra, and geometry using instructional computing systems.

This paper takes the perspective that intelligent tutoring systems pro-
vide us with an opportunity to examine the nature of instructional design
and its future as this future is affected by these systems. The paper is divid-
ed into three broad areas:

1. the need for tools of scientific investigation in education,

2. intelligent tutoring as a platform for more tightly controlled education-
al experimentation, and

3. an example of a formal method for computerized curriculum analysis.

Our ultimate purpose is to stimulate further efforts and discussion and
to extend these basic ideas toward sound and testable theories of instruc-
tional analysis and design.
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THE CONTEXT OF INSTRUCTIONAL DESIGN

A survey by the first author (Capell, 1989) examined the instructional
design methods used in intelligent tutoring systems (ITS). The study sought
to answer some basic questions about how these systems were designed and
about the consistency of their designs with what the literature in instruc-
tional design indicates as sound. The rationale for the study was that if the
design and implementation of an intelligent tutoring system requires exact
specification—of the goals of the system, of the system’s interaction with
students, of how knowledge must be structured in assessing the student,
and of how to provide meaningful remediation—then certainly an exami-
nation of the design process of these systems would provide discoveries of
interest to instructional designers. In the survey, there were many interest-
ing aspects to the systems and their designs, most of which tended to ig-
nore any prescribed method.

Two of the systems, Bridge (Bonar,1985) and the Lisp Tutor (Ander-
son & Reiser, 1985), have been used with students and have been success-
ful as teaching systems—even though both were created without any par-
ticular method of instructional design. Part of their success is attributable
to at least two basic features: First, any computerized teaching system must
use behavior as its means of evaluating and remediating student perfor-
mance (machines tend not to be swayed by their beliefs about students),
and second, the systems’ developers are bright people who understand suc-
cessful teaching methods—and the systems are their brain children. It can
therefore be easily argued that in essence these systems do follow estab-
lished instructional design principles even if the application of these prin-
ciples is mostly unwitting.

Irrespective of these systems’ success “without design,” the problem
before educational technologists is the same with regard to these machines
as it is with regard to the classroom; we must have methods that ensure
quality of instruction for large numbers of students. With respect to ma-
chine instruction, it is much more likely that more and better systems will
be created if their designers are able to systematize their procedures.

The holy grail of instructional design is to create instructional
integrity—the idea that instruction can be planned, its effects measured,
and its outcomes predicted. This idea was expressed clearly by Briggs
(1977) who said that the purpose underlying all instructional design was to
create “congruence among objectives, teaching strategies and performance
evaluation.”” Several factors contribute to instructional integrity:
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Students should be tested only on material that they have been taught.
2. The objectives of the curriculum should be clearly articulated in be-
havioral terms, behavior being the best indicator of the state of a stu-
dent’s understanding. This is the fundamental premise of behaviorism
in instruction—that we may gauge a student’s progress only by virtue
of behaviors indicating that the student has understood an idea. For
example, a math student demonstrates his or her understanding of the
concept of division by doing some number division problems correctly.
3. The curriculum should describe in unambiguous terms what the stu-
dent has to do in order to demonstrate an understanding of what has
been taught. The designer must carefully consider the audience for the
instruction. This can become a matter of intense concern with prein-
structional evaluation and therefore with the selection of strategies and
material to address students’ individual needs. Of course, it is difficult
to formalize a process with so many unknowns and unpredictable parts.

Whether one sees these developments as contributing more to Instruc-
tional Design’s becoming a science or more to its becoming an effective art
is irrelevant. It is clear to both educational theorists and practitioners that
whatever leverage we gain through an understanding of the methods need-
ed to improve design and instruction comes none too soon in light of the
problems in modern education.

INSTRUCTIONAL SYSTEMS DESIGN AND THE PIANO TUTOR

The intelligent tutoring system from which this research was devel-
oped is the Piano Tutor (Dannenberg, Sanchez, A. Joseph, Capell, et al.,
1990; Dannenberg, Sanchez, A. Joseph, Saul, et al., 1990). The Piano Tutor is
a multimedia workstation that is designed to teach first-year piano playing.
The system employs realtime score-following technology, expert systems,
videodisc, and other media. It is an unusual system for at least two reasons:
There has been a concerted effort to use instructional design techniques as
the basis of the system, and the domain of instruction is psychomotor. Both
of these aspects are uncommon in intelligent tutoring systems.

Lessons are treated as individual modules in the system, and each les-
son has associated with it prerequisites, objectives, a presentation, and an
evaluation. The prerequisites of a lesson are skills, or discrete pieces of
knowledge, that we expect students to master. Skills also form the objective
of a lesson. It is important to note that the designers of the system rede-
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fined the notion of a Jesson to mean something slightly different from what
we might think. A lesson in the Piano Tutor is a single interaction that at-
tempts to teach very few ideas. Each lesson addresses one or two concepts,
presents the student with a task, and then evaluates the student’s perfor-
mance. Finally, the lesson attaches a score to each skill named in the les-
son’s objective slot.

For example, there is a lesson called “Teach 3/4 time” whose purpose
is to teach how to play a score with a 34 time signature. The skill name,
“S8K-3/4,” belongs to the skill forming this lesson’s objective. The lesson
also has a list of prerequisite skills such as SK-2/4, SK-NOTE-NAMES, and
so on. When the student has completed the task associated with the lesson,
the SK-3/4 skill is updated to a value indicating whether or not the student
has learned the skill. While the strategy is simple, it is a direct instantia-
tion of instructional design principles.

The Piano Tutor performs various diagnoses of student errors in the
context of the lesson and updates the skills accordingly. This action in turn
affects the way lessons are selected for the student. A lesson cannot be se-
lected unless the student has mastered the prerequisite skills for that les-
son. This is another way in which the basics of instructional design mani-
fest themselves in the Tutor. From this point, having in hand a means of
determining the kinds of errors the student is making and the skills affect-
ed by those errors, we can influence the ways in which the student receives
new instruction so that, in theory, no new instruction will be beyond the
student’s capabilities.

There is of course a problem. There are many lessons that teach many
skills. The system is not constrained to choose the lessons in any fixed or-
der; they simply pop up according to the diagnoses occurring in the context
of each lesson and in relation to the skills affected by the diagnoses. This
lack of constraint makes it difficult to determine in advance how lessons
will interact together, especially when one considers the number of paths
that can occur through a total of over 70 lessons. However, computer-based
analysis does allow us to model numerous paths through the curriculum to
explore the effects of different assumptions about how skills and lessons
are organized.

Formal Analysis

One great advantage of using lessons and skills to describe a curricu-
lum is that the representation is amenable to extensive analysis by comput-
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er. While the information that can be derived by computer analysis will not
tell us whether a curriculum is good or correct, analysis can help, with ref-
erence to basic principles of instructional design, to locate points where the
curriculum is inconsistent, incomplete, or perhaps incorrectly specified. By
locating these deficiencies early in the design process, problems can be cor-
rected before time and money are wasted on realizing a faulty curriculum
through textbooks, videodisc, computer software, or other media.

Analysis using formal techniques can also demonstrate global proper-
ties of a curriculum that cannot be shown by ordinary testing. For example,
analysis might prove that in order for a student to learn a particular skill S,
he or she must first take lesson L even if L does not directly teach S. With
ordinary testing, we might observe that all students who master skill S
have previously taken lesson L, but this does not prove that this must be the
case. In a large and complex curriculum, properties such as this can be
both nonobvious and very useful. For example, in this case we know that if
a student cannot pass lesson L, he will never learn skill S.

Previous Work

The analysis techniques we have developed are either standard graph
algorithms (Aho, 1974) or related to algorithms used by optimizing com-
pilers for code analysis (Wulf, Johnsson, Weinstock, Hobbs, & Geschke,
1975). Thus, the technical aspects of the analysis are relatively standard,
but we believe that our application of these techniques to the formal analy-
sis of curriculum designs is novel and unique.

A number of researchers have investigated the general topic of curric-
ulum design and lesson selection for individually tailored instruction (see
Halff {1988] for an overview of curriculum issues). Barr, Beard, and Atkin-
son (1976) describe the Stanford BIP system. The representation used by
BIP included lessons and objectives but no prerequisites. Tasks were or-
dered by skill groups called fechniques that were taught in strict linear or-
der. In a subsequent paper, Wescourt, Beard, and Gould (1977) describe
enhancements resulting in the BIP-II system. Here, prerequisite relations
were added between skills but not in order to relate skills to lessons as in
the Piano Tutor.

The skill hierarchy concept implied in BIP-I is found in other systems
as well. Derry, Hawkes, and Ziegler (1988) describe a system for teaching
arithmetic word problems that is based on a hierarchy of skills. Tutoring
plans are generated and modified as students progress by attaining skills.
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McCalla, Peachey, and Ward (1982) use an and/or graph of skills for cur-
riculum planning. McArthur, Stasz, Hotta, Peter, and Burdorf (1978) discuss
the generation of appropriate lessons from a skill hierarchy representation.

Wipond and Jones (1988) focus on curriculum design. Their system is
based on a hierarchical refinement of courses into topics, modules, and
submodules of instruction. An expert system monitors the curriculum de-
sign process and detects design errors. This is the only reference we have
found outside of our own work in which a curriculum design is automati-
cally checked for consistency. The focus of this system seems to be on the
refinement process whereas the Piano Tutor’s curriculum representation
distinguishes between skills and tasks and attempts to verify consistency
between the two.

The concept that skills and tasks are distinct is seen in Peachey and
McCalla (1986) where operators with prerequisites and objectives, corre-
sponding to /essons in the Piano Tutor, are introduced. Peachey and Mc-
Calla use these operators to generate course graphs but do not attempt to
analyze graphs as in the Piano Tutor.

CURRICULUM ANALYSIS

All of the following analysis procedures assume that a curriculum de-
sign consists of /essons and skills. Each lesson initially has two properties
or attributes: prerequisites, a set of skills that must be mastered before the
lesson can be taken, and objectives, a set of skills that are assumed to be
mastered after the lesson has been taken. A distinguished lesson named Ul-
tima has as prerequisites all skills that the student should have upon com-
pletion of the curriculum. The lesson Ultima has no objective skills, and its
purpose in our formal system is merely to designate a particular set of
skills via the prerequisites set. The analysis procedures compute new and
useful properties for lessons and skills. Since some of the analysis proce-
dures build upon the work of earlier ones, it is assumed that the procedures
are performed in the order they are presented.

Our purpose in presenting analysis procedures is to show that analysis
can be done in a straightforward, deterministic manner. Rather than using
a conventional programming language, we have attempted to use a stylized
English notation. We feel that this notation will be at least somewhat read-
able by the nonprogrammer who wants to get a feel for the computational
steps that are involved. At the same time, the procedures are complete, and
we believe unambiguous to someone skilled in the art of programming.



102 Capell and Dannenberg

Thus, they can serve as a basis for developing software (an implementation
in the programming language Common Lisp is available from the second
author). The reader may wish to skip the algorithms altogether since the
processing steps are described in prose as well.

Notation and Terminology

A few words about our notation are in order. Lessons and skills have
attributes. For example, “taught-by of s” refers to the taught-by attribute of
skill s. Attributes are often sets of lessons or skills. A common operation is
to insert a new element into an existing set. We denote this operation by a
sentence such as “Add L to taught-by of S’°. This tells us to take the set of
lessons that comprise the taught-by attribute of S and insert the lesson L
into the set. After the sentence is performed, L will be an element of the
taught-by attribute of S. Finally, comments are introduced by “— and are
written in italics.

In curriculum analysis, we expect that the student is capable of taking,
mastering, and passing all lessons, assuming the prerequisites are met.
Therefore, when our explanations refer to a student “taking a lesson,” it
should be assumed that the lesson is mastered and all of the objectives are
met. The effect of a student’s not mastering lesson objectives can be deter-
mined by modifying the curriculum. Either the lesson can be removed from
the curriculum or some of the objectives can be removed from the lesson,
and then the analysis procedures performed on the modified curriculum.

Computing “Taught-By”

One useful attribute for skills is taught-by. This attribute lists the les-
sons that have a particular skill in their set of objectives. This attribute
makes it easy, for example, to find all skills that can only be taught by one
lesson. Furthermore, skills that are not taught by any lessons indicate a
problem with the curriculum.

The procedure for computing taught-by is

—first, initialize the taught-by attributes:.
for each skili S in Skills
set taught-by of S to the empty set

—now, build up taught-by attributes:
for each L in Lessons
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let Objs be the objectives of L
for each Obj in Objs
add L to the set taught-by of Obj

This algorithm simply enumerates all objectives, putting the lesson that
teaches the objective in the objective’s taught-by set (see Figure 1).

Before After

L1 L2 L1 L2

OO @/\@

Objectives ————m

Taught-by et

Figure 1. Computing taught-by: The taught-by attribute of skills is the inverse of
the objectives attribute of lessons

Computing “Used-By”

The used-by attribute lists, for a given skill, the lessons that have the
skill as a prerequisite. A skill that is not used by any lessons is suspect.
This attribute also simplifies some of the following analysis procedures.

The procedure for computing used-by is very similar to the previous
procedure.

—~first, initialize the used-by attributes:
for each skill S in Skills
set used-by of S to the empty set

—now, build up used-by attributes:
for each L in Lessons
let Prereqs be the prerequisites of L.
for each Pre in Preregqs
add L to the set used-by of Pre
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Figure 2 illustrates that the used-by attribute is simply the inverse of
prerequisites. ‘

Before After
L1 L2
Prerequisites -------- -

Used-by =———

Figure 2. Computing used-by: The used-by attribute of skills is the inverse of the
prerequisite attribute of lessons

Computing “Useless” Skills and Lessons

If a skill is not a prerequisite of some lesson, then it is useless in the
sense that mastering the skill will not help the student advance in the cur-
riculum. The skill is useless in the context of the curriculum because the
skill does not enable the student to take any lessons that could not be taken
otherwise. Similarly, a lesson is useless if it teaches only useless skills.
Useless skills and lessons are not normally present in a curriculum, so their
presence is an indication of a design error.

The procedure for their computation is straightforward:

set Useless-Skills to the empty set
set Useless-Lessons to the empty set

for each S in Skills
If used-by of S is empty
then add S to Useless-Skills

for each L in Lessons
let Useful be false—until proven otherwise...
for each Obj in the objectives of L
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if Obj is not in Useless-Skills
then set Useful to true

if Useful is—still —false

then add L to Useless-Lessons

In Figure 3, S1 is a useless skill because it is not used by any lesson.
L1 is a useless lesson because it teaches no useful skills.

Useless
Lesson

Objectives ——

Prerequisites -------- -

Used-by =

Figure 3. Computing useless skills and lessons: A useless skill such as S1 is not
used by any lesson; a useless lesson such as L1 teaches only useless skills

Computing “Patently Unobtainable Skills”

If a skill is not the objective of any lesson, then we say that the skill is
patently unobtainable. In other words, patently unobtainable skills are not
taught by any lesson. The presence of a patently unobtainable skill usually
indicates that a lesson has been omitted from the curriculum, or perhaps
there is some confusion over the skills that are assumed and the skills that
are to be taught.
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The procedure to find patently unobtainable skills simply enumerates
the skills and tests to see that the skill is taught-by some lesson:

set Patently-Unobtainable to the empty set

for each S in Skills
if taught-by of S is empty
then add S to Patently-Unobtainable

In Figure 4, S1 is not taught by a lesson, so it is patently unobtainable.

L1
Patently
Unobtainable

-~
®

ADid

L2

Objectives ———
Prerequisites -=------ -

Taught-by =

Figure 4. Computing patently unobtainable skills: Patently unobtainable skills such
as S1 are not taught by any lesson

Computing Lessons With No Prerequisites
A lesson with no prerequisites can be taken by the student at any time.
These are usually introductory lessons or lessons that serve to assess the

student’s current skill level.

set No-Prerequisites to the empty set

for each L in Lessons
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if prerequisites of L is empty
then add L to No-Prerequisites

In Figure 5, L1 and L3 have no prerequisites.

L1

L2 L3

Objectives —

Prerequisites -------- -

Figure 5. Computing lessons with no prerequisites: L1 and L3 have no prerequisite
skills

Computing “Implies”

Depending upon how the curriculum is constructed, the possession of
a skill might imply that the student has mastered other skills as well.
Studying the implication of skills can give an instructional designer insight
into the structure and interrelationships of a curriculum design. For exam-
ple, if a relatively basic skill implies a relatively advanced skill, then there
is probably a mistake somewhere in the curriculum specification.

The implies attribute is computed for both skills and lessons. For a les-
son, the implies attribute tells what skills the student will have when the
lesson is complete. These will of course include both prerequisites and ob-
Jectives of the lesson, but there may be other skills that are not specified by
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the designer but that are implied by the structure of the curriculum. In the
case of lessons, it is useful to look at implied skills that are neither prereq-
uisites nor objectives. If these are not in any way relevant to the lesson,
then this analysis indicates a problem with the curriculum.

The procedure to compute the implies attribute is based on the follow-
ing relations between skills and lessons:

1. A lesson implies the union of its prerequisites and objectives. In other
words, a student who completes a lesson will know the prerequisites
and objectives. In Figure 6, both L1 and L2 imply S1, S2, and S3 be-
cause S1 is a prerequisite of each lesson, and S2 and S3 are objectives
of each lesson.

2. If all lessons that teach a skill S imply skill X, then S implies X. In
other words, if a student knows skill S, then the student must also
know X because any lesson that teaches S implies X. For example, in
Figure 6, to acquire S2, the student must have taken either L1 or L2,
both of which teach S3. No matter how S2 is acquired, S3 will also be
acquired, so we say S2 implies S3. Furthermore, to acquire S2, the stu-
dent must also have S1, a prerequisite to both lessons that teach S2.
Therefore, S2 also implies S1.

3. Alesson implies the union of all skills implied by its prerequisites. Be-
cause the student must know each prerequisite skill in order to take a
lesson, the student will also know skills implied by prerequisites. For
example, in Figure 6, L3 has S3 as a prerequisite, but S3 implies S1
and S2. Therefore, L3 implies S1, S2, and S3.

The algorithm starts by setting the implies attribute of each lesson and
skill to the empty set. Next, each attribute is recomputed according to the
principles described above. The entire computation is iterated until there is
no change in any implies attribute.

This computation eventually must terminate because the set of skills in
any implies attribute either stays the same or grows on each iteration (skill
sets are monotonically increasing). Because the total number of skills is fi-
nite, there is an upper bound to how large any 1mphes attribute can grow.
The procedure is as follows:

—initialize implies attributes:
for each S in Skills
~—a skill implies itself:
set implies of S to {S}
for each L in Lessons
set implies of L to the empty set
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—iterate until there is no change:
loop
set Change-Flag to false
for each L in Lessons
set Old-Implies to implies of L
~—compute the union of skills implied by prerequisites:
set Prereq-Implies to the empty set
for each P in prerequisites of L
set Prereq-Implies to the union of Prereq-Implies ' /
and prereqisites;of P 1mpli€s
—now Prereq-implies is union of skills implied by prerequisites:
set implies of L to the set-union of Prereg-implies and
objectives of L
—see if there was any change:
If Old-Implies is not the same as implies of L
then set Change-Flag to true
—now compute implies for each skilf.
for each S in Skills
set Old-Implies to implies of S
—find the set of skills implied by all lessons that teach S:
set Imp-By to Skilis
for each L In taught-by of S
set Imp-By to the set-intersection of implies of L

and Imp-By set ,-,,,f,/;eg of S+
—-see if thers was any change: Tmo-B
if Old-Implies is not the same as implies of ¥ S Lmp )’
then set Change-Flag to true

—repeat the loop if there was a change
until Change-Flag is false

As formulated here, any patently unobtainable skill will imply all
skills. This is consistent with formal logic but somewhat counterintuitive.
In the interest of providing useful information to the instructional designer,
the best approach is probably to avoid this computation altogether until the
curriculum is free of patently unobtainable skills. Notice also that all skills
imply themselves. This is also a consequence of formal considerations, but
we find it helpful to suppress this obvious information when we output the
implies attributes for humans to read.

Computing “Equivalent” Skills

If two skills imply one another, then they are considered to be equiva-
lent. Equivalent skills are interchangeable in the curriculum design and are
redundant whenever they are listed together. Assuming that the curriculum
designer has not invented synonyms on purpose, the presence of equivalent
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skills indicates that the designer intended to make a distinction, but none
was made. Once it is pointed out that two skills are equivalent, the design-
er can either remove one of them or elaborate the curriculum to make the
distinction a real one. For example, a lesson might be added that teaches
one skill but not the other. Figure 7 shows a case of two equivalent skills
S1 and S2. On the right, the curriculum has been simplified by merging S1
and S2 to form a single skill, S1/82.

Objectives ——

Prerequisites -------- -

Implies ==t

Figure 6. Computing implies: Only the implies attribute of skills is shown here; the
fact that each skill implies itself is not shown
The procedure looks at each implied skill to see if there is an equivalence:

—initialize the equivalent attributes:
for each S in Skills
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get equivalent of S to the empty set
for each S in Skills
for each | in implies of S
~—S implies I, does ! imply S?
if S is in implies of |
then add | to equivalent of S

A skill is always equivalent to itself. As with the implies attribute, it is
useful to suppress this obvious information from output intended for the in-
structional designer.

L1 L1
L2 L2

Objectives ———

Prerequisites -------- -

Figure 7. Computing equivalent skills: S1 and S2 imply one another, so they are
equivalent; they could be replaced by a combined skill S1/S2

Computing the Shortest Curriculum

Traditional curricula are designed to be linear: It was assumed that
students take all lessons in a fixed order. With interactive computer-based
teaching systems, it makes sense to offer lessons in any order that is al-
lowed by the prerequisites. This enables students to pursue their own inter-
ests and to skip past lessons that offer alternative approaches to the same
material.

In a flexible scheme like this, it is impossible for the designer to envi-
sion all of the possible paths through the curriculum that a student might
take. An interesting question to ask is: Of all possible paths through the
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Traditional curricula are designed to be linear: It was assumed that
students take all lessons in a fixed order. With interactive computer-based
teaching systems, it makes sense to offer lessons in any order that is al-
lowed by the prerequisites. This enables students to pursue their own inter-
ests and to skip past lessons that offer alternative approaches to the same
material.

In a flexible scheme like this, it is impossible for the designer to envi-
sion all of the possible paths through the curriculum that a student might
take. An interesting question to ask is: Of all possible paths through the
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curriculum, which is the shortest one? The shortest path will avoid the
greatest number of lessons. The lesson designer can then check to see if the
resulting path is acceptable. If not, then perhaps there are skills associated
with the untaken lessons that should be introduced into the curriculum and
required by the final lesson (Ultima). Or perhaps some prerequisites were
omitted from the design, allowing the student to take advanced lessons pre-
maturely.

The procedure that we use computes a short path but not necessarily
the shortest path through the curriculum. In the first stage of the proce-
dure, we simulate a student progressing through the curriculum. First, all
lessons whose prerequisites are met are labeled as Level 1. We simulate the
taking of all Level 1 lessons by marking the objectives of these lessons as
learned. We also record which lesson taught the skill. We then find all the
newly enabled lessons (those whose prerequisites are now met) and mark
them as Level 2. We simulate the taking of these lessons and continue in
this fashion until there are no more lessons that are enabled but not taken.
Figure 8 illustrates a curriculum arranged by levels.

In the second stage of the procedure, we work backwards from Ultima.
If Ultima is at Level N, we look for lessons at Level N-1 that were used to
teach prerequisites of Ultima. These lessons are added to the path being
computed. We then look for lessons at Level N-2 that were used to teach
prerequisites of Ultima or any other lesson on the path being computed.
This process continues until Level 1 is reached at which point we have
identified a short path from Level 1 to Ultima. In Figure 8, this path is Ul-
tima, S4, L3, S1, S2, L1, L2. Notice that the longer path to Ultima via L5
is avoided: The path contains L2 which is not strictly necessary.

—first lessons are those with no prerequisites:

set Enabled to No-Prerequisites

for each L in lessons
—use -1 to indicate that no level has been assigned
set level of L to -1

for each S in Skills
set level of S to -1

set Current-Level to 1

—take enabled lessons until none are left:
while Enabled is not empty
set Update-List to the empty set
foreach Linkessene- o, & N« U@OL
if level of L equals -1
then set level of L to Current-Level
for each S in objectives of L
add the pair [L, S] to Update-List
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for each pair [L, S] in Update-List
if level of S equals -1
then set level of S to Current-Level
set teacherof Sto L
set Current-Level to Current-Level + 1
—figure out new set of lessons:
set Enabled to the empty set
for each L in Lessons
—only examine untaken lessons:
if level of L equals -1
then set Enab to true
-—seeo if every precondition is satisfled:
for each P in prerequisites of L
if level of P equals -1
—the precondition is not met
then set Enab to false
if Enab
then add L to Enabled
—the while-loop continues as long as new lessons are enabled
-—see if the simulated student leamed Ultima:
if level of Uitima equals -1
then print “Falled to find a path to Ultima”
stop

—search for a short path from Ultima back to beginning
set Current-Level to (level of Uitima) - 1
set Short-Path to [Ultima)
set Need-To-Leam to prerequisites of Ultima
while Current-Level is greater than zero
for each S in Need-To-Learn
—seoe if needed skill has a teacher at the current level:
if level of teacher of S equals Current-Level
and teacher of S Is not in Short-Path
then append teacher of S to Short-Path
~—now compute the skills we need to know:
set Need-To-Learn to the empty set
for each L in Short-Path
set Need-To-Learn to the set-union of Need-To-Leam and
prerequisites of L
set Current-Level to Current-Level - 1
—repeat unti the while loop finishes
~—Short-Path is now a valid path to Ultima

Computing Critical Lessons

A critical lesson is one that must be taken in order to reach Ultima. If
a student cannot master a critical lesson, she cannot master the curriculum
because there will be certain essential skills that cannot be taught by any
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other lesson. In Figure 9, L1 is a critical lesson because it must be taken to
reach Ultima. L2 is not a critical lesson because L3 also teaches S5. The
instructional designer might use the set of critical lessons in different ways:

1.

2.

Critical lessons might be scrutinized to make sure they are clearly pre-
sented and likely to be successful at teaching their objectives.

Critical lessons might be tested carefully with human subjects since
these lessons are critical to the curriculum.

New lessons might be added to provide alternative instructional paths,
eliminating critical lessons.

r A
L1 L2
Level 1
4 L3 L4
-\ Level 2
Ultima L5
l / Level 3
\_ Shortest Curriculum Y,

Objectives —

Prerequisites -------- -

Figure 8. Computing the shortest curriculum: The curriculum is traversed one level
at a time until Ultima is reached; then the curriculum is traversed backwards to
1dentify paths to Ultima
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L1 Critical Lesson

L3

L2

Ultima

Objectives ————»

Prerequisites -------- -

Figure 9. Computing critical lessons: Critical lessons such as L1 must be taken in
order to reach the final lesson, Ultima

There are at least two algorithms for computing the set of critical les-
sons. The first is a “brute force” approach that is easy to understand but is
less efficient than the other. In the first approach, we remove each lesson
in turn and simulate a student as in the first part of the algorithm in the
previous section. If Ultima is not reachable, then the lesson removed must
be a critical lesson.
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set Critical-Lessons to the empty set

for each L in Lessons
remove L from Lessons
relabel lessons and skills as in the first half
of the previous algorithm
if label of Ultima equals -1
then add L to Critical-Lessons
replace L in Lessons

In an actual implementation, rather than removing a lesson from the

curriculum, it may be better to simply mark the lesson by setting an at-
tribute to a special value. The relabeling algorithm would also be modified
so as not to simulate taking a lesson if it is so marked.

The second algorithm for computing critical lessons is similar in spirit

to the implies computation described earlier. The implied-lessons attribute

will

tell which lessons must have been passed in order to take a given les-

son or master a particular skill. The following relations are true of implied-
lessons:

1.

A lesson implies itself. This reflects the tautology that a student who
takes lesson X has taken lesson X. In Figure 10, L1 implies L1, L2 im-
plies L2, and L3 implies L3.

If all lessons that teach a skill S have L as an implied lesson, then L is
an implied lesson of S. In other words, if the student knows S then she
must have taken L because any lesson that could teach S implies L. In
Figure 10, S1 implies L1, indicating that possession of skill S1 implies
that L1 was taken.

A lesson implies all lessons that are implied by the prerequisites. In
other words, if a lesson X is implied by a prerequisite P of L, then L
implies lesson X. In Figure 10, both L2 and L3 imply L1 because their
prerequisite S1 implies L1.

The procedure is as follows:

—initialize implied-lessons attributes
for each S in Skills

set implied-lessons of S to the empty set
for each L in Lessons

—a lesson implies itself

set implied-lessons of L to {L}

—iterate until there is no change
loop
set Change-Flag to false
for each S in Skills
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set Old-implied to implied-lessons of S
—find the set of lessons implied by all lessons that teach s
set Imp-By to Lessons
for each L in taught-by of S
set Imp-By to the set-intersection of implied-lessons of L
and Imp-By
—see if there was any change
if Old-Implied is not the same as implied-lessons of L
then set Change-Flag to true
~—now compute implied-lessons for each lesson
for each L in Lessons
set Old-Implied to implies of L
—compute the union of lessons implied by prerequisites
set Prereg-implied tothe-omply-set- im plies of L.
for each P in prerequisites of L
set Prereq-Implied to the union of Prereg-implied
and implied-lessons of P
~-now Prereq-Implied is union of lessons implied by prerequisites
set implied-lessons of L to Prereq-implied
—soe if there was any change
if Old-Implied is not the same as implied-lessons of L
then set Change-Flag to true
—repeat the loop if there was a change
until Change-Flag is false

L1

L2 L3

Objectives —

Prerequisites -=------ -

Figure 10. Computing implied-lessons: The implied-lessons attribute tells which
lessons must have been passed in order to take a given lesson or to master a partic-
ular skill
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A byproduct of this procedure is the implied-lessons attribute on each
skill and lesson. This attribute tells which lessons must have been taken in
order to reach a given lesson or skill. The implied-lessons attribute of Ulti-
ma is the set of critical lessons for the curriculum.

Computing “Unlearable” Skills and Lessons

An important property of a curriculum is connectivity or reachability.
That is, an instructional designer wants to ensure that each lesson and skill
can be reached by taking some sequence of lessons. An unreachable or un-
learnable lesson or skill indicates a problem in the curriculum.,

The procedure to compute unlearnable skills and lessons uses the re-
sults of the simulated student from the previous section. Any lesson or skill
not visited and marked with a level cannot be reached by any path through
the curriculum.

set Cannot-Be-Learned to the empty set
set Cannot-Be-Taught to the empty set

for each S in Skills
if level of S equals -1
then add S to Cannot-Be-Learned

for each L in Lessons
if level of L equals -1
then add L to Cannot-Be-Taught

Skill Groups

In many cases, it is useful to give a single name to a group of related
skills. For example, if there was a procedure called CHANGE-A-TIRE con-
sisting of many smaller subtasks such as REMOVE-HUBCAP, GET-JACK,
JACK-UP-CAR, and so on, we could lump them under a single category
called KNOWS-TIRE-CHANGING. This simplifies the domain representa-
tion problem and makes formal designs more readable. We call a set of
skills a skill group.

One way to incorporate skill groups into the lessons and skills model
is to expand each skill group into a lesson and a skill. Given a skill group
G representing mastery of skills S,»5,--.S,, we add to the curriculum a new
skill S, and a new lesson L, with prerequisites S, through S, and objective
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Ss The new lesson L has no content, so as soon as the prerequisites are
satisfied, the objective S is met, that is, S, serves as a shorthand for the
group S, S,,...S. This is exactly the semantics we want for skill groups.
Figure 11 illustrates a skill and a lesson that together represent a skill group.

It is also possible to represent skill groups explicitly. Because skill
groups have attributes of both lessons and skills, the algorithms become
more complex, but there are no fundamental changes. The left half of the
figure shows how the curriculum might look without a skill-group to repre-
sent S, through S,
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Figure 11. Skill groups represent knowledge of a collection of skills; an empty les-
son and a skill can be used to simulate a skill group as shown

CLOSING COMMENTS

From our experience in building the Piano Tutor, we have learned that
it is possible to use instructional design as an organizing principle for an
intelligent tutor. Specifically, we can use a formal model based on lessons
and skills to represent a curriculum and to tailor the curriculum to individ-
ual students automatically. We fully expect that improvements can be made
to enhance the designer’s ability to sort out pertinent relationships among
skills and lessons. Additionally, we expect this research will eventually aid
in speeding up the process of lesson creation and system design in intelli-
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gent tutoring systems. This will also mean further research in this area as
well as the possibility of more and better systems available on many sub-
Jects at lower cost to educational institutions and the general public. We
believe the elements of instructional design supported by our formal curric-
ulum design process will benefit future tutoring systems.
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