MODELS AND APIs FOR AUDIO SYNTHESIS AND PROCESSING
A PANEL DISCUSSION

Stephen Travis Pope
CREATE Lab
University of California, Santa Barbara
stp@create.ucsb.edu

ABSTRACT

The topic of this panel is object models, programming
languages, and application programmer’s interfaces for
digital audio processing. The panel brings together de-
velopers who share the experience of designing more
than one model or language for DASP software, and
who are willing to compare and contrast them in terms
of their underlying assumptions, the design trade-offs
they made in the process, and the rules of thumb that
they have learned over their years of experience.
Referring back to previous works on languages and

environments for computer music, we ask the questions

raised in the past: what factors contribute to the success
of a computer music language or tool? How do we best
apply the features of modern programming languages,
development and delivery environment? What have we
learned since the 1980s (or the 1960s for that matter)
that influences model and language design for music?

The panel will be structured a free-flowing discussion
of the decisions and trade-offs in system design, rather
than a show-and-tell of each of the participants systems,
or long position papers.

1. INTRODUCTION

In the words of D. Gareth Loy [1, p. 52-53], the good
news is that “the ever-widening availability of comput-
ers has made their application to music one of the most
exciting and challenging issues in music today. [...]
They can serve the conceptualization of both musical
ideas and ideas about music, fueling the experimental-
ism that is near the core of the musical genius of our
times.” The bad news is that we must ask ourselves
“how indeed can we extract and realize the promise of
the computer for music. How can one best represent
musical imagination with a computer? The experience
of translating one’s musical goals into a computer’s vo-
cabulary is often anything but liberating.” [1] This panel
discussion will address the topic of how our models of
music signals and data structures affect the design of the
software libraries and programming languages we use
for music. We hope to stay at a technical level, and to
explore the design space of music models, contrasting
system we’ve built or used.

There is a rich literature of reports on models, lan-
guages and APIs for audio synthesis, but too little dis-
cussion of the design issues, and the trade-offs one en-
counters in their implementation. Several authors have
attempted surveys of music languages over the years,
and a panel discussion on the topic was organized by
Eric Lyon and held at Dartmouth in 2001 [2}. There are
valuable but very different taxonomies of music systems

Roger B. Dannenberg
School of Computer Science
Carnegie Mellon University

rbd@cs.cmu.edu

and languages in [3] - [7]; discussions of music lan-
guage design issues can be found in [8] - [12]. In [11],
James McCartney lists and evaluates the abstractions
available in modern programming languages and how
they can be applied to computer music, and in [12]
Carla Scaletti discusses the factors that contribute to the
success of a programming language. These two article
will feed into the panel discussion.

Max Mathews wrote in 1969 that,

"the two fundamental problems in sound syn-
thesis are (1) the vast amount of data needed to
specify a [sound] pressure function—hence the
necessity of a very fast and effective computer
program—and (2) the need for a simple, powerful
language in which to describe a complex sequence
of sounds. Our solution to these problems in-
volved three principles: (1) stored functions to
speed computation, (2) unit generator building
blocks for sound synthesizing instruments to pro-
vide great flexibility, and (3) the note concept for
describing sound sequences. [... The composer]
would like to have a very powerful and flexible
language in which he can specify any sequence of
sounds. At the same time, he would like a very
simple language in which much can be said in a
few words, that is, one in which much sound can
be described with little work. The most powerful
and universal possibility would be to write each of
the millions of samples of the pressure wave di-
rectly. This is unthinkable.

“At the other extreme, the computer could oper-
ate like a piano, producing one and only one
sound each time one of 88 numbers was inserted.
this would be an expensive way to build a piano.
[...] In a given instrument, the composer can con-
nect as many or as few unit generators together as
he desires. Thus he can literally take any position
he chooses between the impossible freedom of
writing individual pressure-function samples and
the straightjacket of the computer piano. [13 p.
34]

The question that arises for us is, 38 years later, are
these still our goals and basic assumptions? If not, what
are the fundamental design decisions that one faces in
creating a new object model, language, or library API
for digital audio signal processing (DASP)? What have
we learned in 38 years, and how do modern processors
and system architectures, real-time operating systems,
and software engineering skills ranging from metamod-
els to object-oriented design patterns change the ground
rules for modeling DASP servers today?




2. QUESTIONS

We will organize the panel discussion around a series of
simple questions that the participants have had time to
study beforehand. The intention is to move beyond each
of the presenters simply describing their latest or favor-
ite systems to the more interesting level of evaluating
the ramifications of certain design decisions. The set of
questions presented here is for example only, the panel
members will select from this list according to their in-
terests.

2.1. Core models

Given the canonical model of unit generators and buff-
ers, what changes if we use object-oriented analysis or
modeling, and object-oriented design patterns in de-
scribing DASP languages?

Do we need to talk about models and even metamod-
els at all in DASP system design?

If yes, are there useful precedents?

What about object-oriented design patterns?

What's a signal, a unit generator, a port?

What’s the advantage of a procedural or object-
instance model of unit generators, as opposed to
one that concentrates on operations on signals?

Are functional models of DASP useful?

How do we handle time and functions of time?

Do we want to merge synthesis and control?

‘What about old-fashioned orchestra languages—are
we still bound to the unit generator model?

Do we differentiate between interactive and off-line
DASP systems?

How about languages geared towards “live coding?”

How (if at all) is a parameter stream (input) different
from a feature vector (output)?

2.2. Scalability and Efficiency

In the early years, non-real-time performance on slow
and memory-starved machines was of prime impor-
tance, and many design options were not considered
because of assumptions about performance and scalabil-
ity. Nowadays, implementors still express concerns re-
lated to cache performance and function-call overhead.
How have tuning and scalability considerations
evolved with very-high and very-low language
levels and the use of virtual machines and multi-
stage compilers?
Do we do computation on blocks of data?
Is there a control rate (as different from audio rate)?
How do we integrate our systems with the call-back-
oriented sound I/O APIs found on all modern oper-
ating systems?

2.3. Metadata

Score and synthesis tools need representations with ab-
stract property models, and some DASP applications
also use feature extraction and complex metadata for
music information retrieval services. Is a good synthesis
API automatically a good analysis API?
Are there different kinds of signals? If yes, what are
their semantics?
What does it mean to have signals that are “about”
other signals?
How do you handle merged data streams such as po-
sitional geometry and other annotations?

2.4. User Extension

There is always a switching point and associated learn-
ing curve when a system has more than a single lan-
guage for both scoring/patching and DASP system ex-
tension (programming new unit generators or composi-
tional algorithms).
Can a single model and language scale from compo-
sition to signal processing?
Is there a patching language or scripting format?
Is it the same a the unit-generator implementation or
system extension language?
Is there a separate note-list score format or two?
Is there a procedural or stochastic composition lan-
guage? How is it extended?
Are these supported by an integrated development
environment (IDE) with a debugger and source
code management tools?

2.5 Parallel Processing

Until recently, hardware advances came in the form of
faster clocks, faster memory, and hidden parallelism
within processor pipelines and multiple arithmetic units.
Future hardware advances will include multiple-core
processors. Dual-core CPU's are common, but we ex-
pect to see much greater parallelism in the near future.

What will we do with 32 or 64 cores?

What architectures are most suited to harnessing this
kind of parallelism?

What can we learn from computer music systems of
the past that used hardware parallelism in the form
of multiple DSP chips?

Where do we expect to find parallelism? In basic
algorithms such as the FFT? At the effect and in-
strument level? Spread among plug-ins, effects,
mixers, and coarse-grain computation?

Do we need more computation? What will more
computation do for languages, users, sounds?

How will multi-core processors affect models and
APIs for DASP?

2.6 Inter-module Communication

Software systems have made great progress in support-
ing a modular approach based on the integration of ap-
plications and plug-ins. Not only has this approach of-
fered a technical solution supporting more flexibility
and creativity, it has also fostered a new marketplace for
software DASP modules. What will we see next?

Current interfaces are oriented toward single-threaded
audio processing: fill the input buffer with samples,
call the plug-in to process the data, copy the sam-
ples to the next plug-in in the chain, etc. Should the
interface change to communicating processes?
Should the host use multiple threads?

Jack [14] supports inter-process communication, but
it is also single-threaded. Is this a good idea? Will
Jack soon be obsolete, or are there simple ways to
adapt it for more parallelism?

Parallelism in pipelines generally requires additional
buffers and more latency. Should we simply com-
pensate by putting fewer samples in buffers?
Should we look for parallelism elsewhere?

If we admit pipelining, how does the host application,
operating system, or audio sub-system delegate
processors to tasks? Is the assignment static, dy-
namic, based on what?




Given a possibly dynamic configuration of audio
modules, how do we manage timing so that input
controls take effect deterministically and synchro-
nously? Or is best-effort and overall low-latency
without precise timing (as in MIDI) the way to go?

REFERENCES

[1] Loy, D. G. "The CARL System: Premises, His-
tory, and Fate", Computer Music Journal 26:4,
2002.

[2] Lyon, E, et al. "The Future of Computer Music
Software: A Panel Discussion", Computer Music
Journal 26:4, 2002.

[3] Loy, D. G., and Abbott, C. “Programming Lan-
guages for Computer Music Synthesis, Perform-
ance, and Composition.” ACM Computing Sur-
veys 17(2): 235-266. 1985.

[4] Loy, D. G. 1989. “Composing with Comput-
ers—A Survey of Some Compositional Algo-
rithms and Music Programming Languages.” in
M. V. Mathews and J. R. Pierce, eds. Current
Directions in Computer Music Research. MIT
Press. 1989.

[5] Wiggins, G. et al. "A Framework for the Evalua-
tion of Music Representation Systems”, Com-
puter Music Journal, 17:3 31-42, 1993.

[6] Pope, S. T. "Music Composition and Scoring by
Computer.” (Invited chapter) in G. Haus, ed.
Music Processing. A-R Editions, 1992.

[7] Pope, S. T. "Computer Music Workstations I
have Known and Loved." in Proceedings of the
International Computer Music Conference. 1995.

[8] Pope, S. T. “Machine Tongues XV: Three Pack-
ages for Software Sound Synthesis.” Computer
Music Journal 17(2). 1993.

[9] Dannenberg, R., P. Desain and H. Honing. "Pro-
gramming Language Design for Music," in
Roads, Pope, Piccialli, and De Poli, eds., Musical
Signal Processing, Swets and Zeitlinger, pp. 271-
316. 1997.

[10] Puckette, M. "Max at Seventeen", Computer
Music Journal 26:4, 2002.

[11] McCartney, J. "Rethinking the Computer Music
Language: SuperCollider”, Computer Music
Journal 26:4, 2002.

{12] Scaletti, C. "Computer Music Languages,
Kyma, and the Future", Computer Music Journal
26:4, 2002.

[13] Mathews, M. The Technology of Computer
Music. MIT Press. 1969.

[14] Jack Audio Connection Kit. hitp://jackaudio.org




