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Supplement 2 

Results Supplement – Computational Results 
 

1. Performance comparison – AUC scores 

Figure S2.1 compares the partial AUC scores [0] across all four classifiers for predicting 

the human receptor interactome. As can be seen, the random forest [4] method performs 

best on all partial AUC scores criteria. (For definitions of AUC scores, see Supplement 

S1.) 

 

 
Figure S2.1 Performance comparison of human receptor protein interaction prediction 
task using partial AUC scores. Four classifiers are compared: Support Vector Machine (SVM), 
Naive Bayes (NB), Logistic Regression (LR) and Random Forest (RF).  

 

 

There are several reasons that have contributed to the success of the RF [4] method when 

compared with the other three classifiers:  

 

 The currently available direct and indirect protein interaction data is inherently noisy 

and contains many missing values. The randomization and ensemble strategies within 

RF make it more robust to noise when compared to other classification methods. 

 Biological datasets are often correlated with each other and thus should not be treated 

as independent sources. Linear and non-linear regression models assume 

independence and may therefore perform worse than other classifiers in tasks where 

correlations among features are strong. In contrast, the RF classifier does not make 

any assumptions about the relationship between the data, which makes it more 

appropriate for the type of data available for the protein interaction prediction task. 

 It is also important for the method to consider the feature correlation and missing 

value problems together.  If a pair has values for one redundant feature but not the 

other, RF can still use this feature for the prediction process. 
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2. Performance comparison between the ‘Receptor’ protein interaction prediction 

task and the ‘General’ human protein interaction prediction task 

In addition to comparing different methods for predicting the receptor interactome we 

also compared these methods with the more general task of predicting human protein 

interactions for all proteins (regardless of whether they are receptors). The experimental 

setup and the train-test size are the same as described in Supplement S1. The difference 

lies in the examples of the training data in the two cases. In the „receptor protein 

interaction prediction task‟, the training pairs all relate to receptors. In contrast, for the 

„general case‟, the training pairs are general protein interaction data from HPRD [2] and 

random negative pairs from all proteins excluding known interactions.  

 

In Figure S2.2, black bars represent AUC scores for the „receptor protein interaction 

prediction task‟ task while white bars describe the “general PPI” task training. As can be 

seen, the receptor specific training does improve the performance compared to using the 

more general human interaction data for training.  

 

 
 
Figure S2.2 Performance comparison between ‘receptor related only training’ and the 
‘general human PPI training’. For ‘receptor only’ all training pairs contain at least one receptor 
protein whereas for the ‘general case’, the training pairs are any type of direct protein pairs from 
HPRD. The testing dataset is the same for both, i.e. every pair contains at least one receptor. In 
most cases the ‘receptor related only’ training (black bars) does improve the performance 
compared to using general human interaction data (white bars) for training.  
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3. Performance comparison between two settings of gold standard negatives  

 

We used a random set of receptor-protein pairs excluding all known HPRD pairs as a 

negative training set. The drawback of the random negative set is that random proteins 

may be very easily distinguishable from interacting proteins simply because of their 

different functions. This may result in low performance of the classifier because it does 

not learn the fine distinctions between functionally related but not interacting proteins. 

We therefore also synthesized negatives from lists of random receptor-protein pairs (not 

in HPRD) having similar molecular functions (or similar cellular locations). The 

motivation is that proteins that are functionally related, but do not necessarily interact, 

might represent the negatives of the physical binding relationships better. 

 

The following two figures give the AUC score comparison between the random setting 

and the random co-functional setting for negative sets. In Figure S2.3 we use the random 

receptor-protein pairs with the same cellular localizations (defined by Gene Ontology 

Slim version) for the co-functional setting. In Figure S2.4 biological functions (also 

reported in the main text) is used to synthesize the co-functional setting. Figure 2.4 shows 

that the two settings for gold standard negatives achieve comparable performance, with 

slightly less prediction power when using the co-functional gold standard negative 

(defined by the gene ontology biological function annotations) as compared to the 

random gold standard negatives. Similar conclusions could be drawn from Figure 2.3 as 

well when using the localization evidence to build the random co-functional setting.  

 

 
Figure S2.3 Performance comparison between two settings of gold standard negatives. 
For ‘Rand CoLoc’ (black bars) negative pairs use the random receptor-protein pairs with similar 
locations (defined by GO slim). For ‘Rand’ (white bars), negative pairs use the random receptor-
protein pairs that are not in HPRD. The testing dataset is the same for both, i.e. every pair 
contains at least one receptor. In most cases the ‘Rand CoLoc’ training (black bars) does not 
improve the performance compared to using the random strategy (white bars) for training.  
 



 4 

 

 
Figure S2.4 Performance comparison between two settings of gold standard negatives. 
For ‘Rand CoFunc’ (black bars) negative pairs use the random receptor-protein pairs with similar 
functions (defined by GO slim). For ‘Rand’ (white bars), negative pairs use the random receptor-
protein pairs that are not in HPRD. The testing dataset is the same for both, i.e. every pair 
contains at least one receptor. In most cases the ‘Rand CoFunc’ training (black bars) does not 
improve the performance compared to using the random strategy (white bars) for training.  

 

4. Performance comparison between two settings of gold standard positive with 

homology concerns  

To address the concern that proteins with homology to receptor-related pairs might cause 

bias in the training as well as over-estimation of the performance of the method, we 

investigated the effect of homology using the ERBB receptors as a case study. ERBB 

receptors include EGFR / ERBB2 / ERBB3 / ERBB4. They are in sequence similar to 

each other.  

 

We want to evaluate the prediction performance of EGFR interaction pairs. Thus we 

tried two kinds of gold standard training as following:  

 Case I: In the training positive, we have all the known interaction pairs related to 

ERBB2 / ERBB3 / ERBB4. Also this positive set have a random sample (half) of 

the EGFR related known interaction. 

 Case II: In the training positive, we have no known interaction pairs related to 

ERBB2 / ERBB3 / ERBB4. Also this positive set have the same random sample 

(half) of the EGFR related known interaction as above. 

 

Then we trained two RF models with the above two different gold standard positive 

setting. Applying the two models on all possible pairs between EGFR and human 

proteins (excluding those pair used in the training), we could measure the resulting pair 
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list with precision-recall curves (also called “prediction accuracy vs. sensitivity” in main 

text).  From the following Figure S2.6, we could see that the status of ERBB2-4 related 

pairs in the training or not does not affect the predictions of EGFR interaction pairs 

much, especially for the low recall regions (which is our primary targeted region).  

 

 
Figure S2.5 Performance comparison between two settings of gold standard positive. 
Precision vs. Recall curves from the two cases of gold standard positive related to ERBB 
receptors.  

 

5. Feature importance 

Biologically, it is of particular interest to identify the extent to which heterogeneous data 

sources carry information about protein interactions. This can help analyze what data 

source is most useful for determining interactions.  

 

One way to determine such feature importance is to use the resulting RF trees [4, 5]. The 

RF classifier uses a splitting function called the Gini index to determine which attribute 

to split on during the tree learning phase. The Gini index measures the level of impurity / 

inequality of the samples assigned to a node based on a split at its parent. In our case, 

where there are two classes, let p represent the fraction of interacting pairs assigned to 

node m and 1-p the fraction of the non interacting pairs. Then, the Gini index at node m is 

defined as:  

)1(2 ppGm  . 

The purer a node is, the smaller the Gini value. Every time a split of a node is made using 

a certain feature attribute, the Gini value for the two descendant nodes is less than the 

parent node. The sum of these Gini value decreases (from parent to sons) for each feature 

over all trees in the forest provides a simple and reliable estimate of the feature 

importance for this prediction task. The RF Gini feature importance selector is generally 

a popular metric used in a variety of feature selection tasks [5]. 
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Table S2.1 lists RF Gini variable importance for the eight feature groups used in our 

Human receptor PPI prediction task. The sequence alignment is ranked as the highest 

feature. Among the top ten Gini ranked features, five of them are similarities of gene 

expressions. The other four features ranked in the top ten include domain-domain 

interaction features, the homology derived features from yeast, tissue positions and the 

biological process from GO. The sequence alignment and the homology based feature are 

extremely important, which (encouragingly) corresponds to current practice among 

experimentalists.  

 

Table S2.1 RF Gini variable importance using the normalized Gini 

importance scores of the eight feature sources.  

# Feature Name 
Gini score 

(normalized) 
Top Ten Ranked 

1 GO Function 0.0058  

2 GO Component 0.0086  

3 GO Process 0.0407 8 

4 Co-Tissue 0.0635 5 

5 Gene Expression 
16 feature columns 

Max Gini: 0.0977 

Min Gini: 0.0099 

2: GeneExp2 

3: GeneExp5 

4: GeneExp10 

6: GeneExp9 

9: GeneExp3 

6 BlastP E-value 0.1163 1 

7 Homology PPI Yeast 
5 feature columns  

Max Gini: 0.0544 

Min Gini: 0.0041 

7: homoYeast1 

8 Domain Interaction 0.0262 10 

6. Generating the receptor interactome and statistical significance analysis  

 

To investigate global graph properties for the predicted receptor interactome, we made 

predictions for all human receptors. There are 904 receptor genes in the HPMR database 

[3] and for each one of them we identified their potential PPI partners from all possible 

24380 human genes listed on NCBI [6]. 

 

For training the final classifier we used a positive set containing all known receptor 

interaction pairs (2522). The negative training set contains 250,000 random receptor pairs 

that do not have overlap with any of the HPRD pairs (the positive to negative pairs ratio 

1:100 is found to be the best ratio for training data through performance evaluations). The 

parameters of our RF models are set as follows: The total number of trees was 200. The 

class cost factor was 5. The number of features to choose in each node was 7.  
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After deriving predicted interaction scores for all potential receptor related pairs, we 

applied a heuristic strategy to threshold the predicted RF scores. To estimate what RF 

cut-off we should use to generate a reliable membrane receptor interactome network 

graph, we investigated the distribution of predicted scores of testing pairs (from the 

previous train/testing runs) for known HPRD pairs and the remaining random receptor-

protein pairs. From Figure4A (main text) we could see that 2.0 is a pretty stringent cut-

off to split two classes. We also found that the stringent cut-off of 2.0 resulted in the 

recall rate range [15% to 20%] in train/test experiments which is reasonable. Thus we 

used this value to obtain the receptor interactome network. This cut-off is chosen based 

on the previous train-test experiments and it achieves 0.55 recall (this high recall rate is 

caused by that there is no out-of-training pairs) and 0.16 precision (only relying on 

current known positive) performance.  

 

This thresholded graph contains ~9100 edges, which relates to 559 membrane receptors 

and 1750 non-receptors. Note: interactions between non-receptor genes are not evaluated 

and not considered in this graph. Several sub networks from this graph are visualized in 

Supplement S4.  

 

To further investigate the statistical significance of the predicted pairs and related RF 

scores, we performed a t-test analysis further. The gold standard negative used for the 

training of the final RF model is randomly selected from random receptor-protein pairs 

(exclude HPRD). We repeated this random sampling process multiple times (six times 

here) and resulted in multiple versions of the negative sets. For each sampled random 

negative and all the HPRD receptor pairs, we trained a RF model with the above setting. 

For all potential receptor-protein pairs, we then predicted their RF scores using all the 

trained RF models. Finally for each receptor-protein pair, we have multiple RF scores 

related to random samples of gold standard negative sets. Essentially these RF scores 

should be similar to each other and roughly obey the normal distribution. Thus, t-test is 

used to measure the hypothesis that a pair‟s RF scores are normally distributed. The 

derived p-value is reported for each predicted pair. All receptor pairs in our predicted 

interactome with the RF cutoff 1.0 are shared in our Supplementary S6. Both their RF 

scores and the related p-values are also included in the shared EXCEL sheet.   

 

 

7. Overlap and comparison to existing databases 

 

We also make a comparison between our predicted interactome and other existing 

datasets, including four computational human PPI graph [O1-O4], one recent published 

experimental human PPI data [O5] (TAP-MSB07), one yeast experimental PPI data 

related to membrane proteins [O8] (YeastIyer05), one ERBB related study [O6] and one 

LUMIER system[O7]. In Table S2.2, the first four rows are for four computational PPI 

sets and the left for the experimental ones. We also extend our receptor pairs list by 

lowering the RF cutoff to 1.0. We could see the following table (the last column) that 

more overlapped pairs could be found for the RF1.0 derived pairs.  
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First, we compare all the data sets versus the HPRD receptor positive set in the columns 

[4-6]. We could see that our RFCut2.0 graph achieves the best performance. In our 

predicted 9144 receptor interactions, 1462 of them are known in HPRD, which means the 

accuracy is 16.0%. From our Precision-Recall curves reported in the main text (Figure 3), 

we have the average 20% testing coverage (the training coverage 58% = 1462/2522 

HPRD receptor pairs) at the point of accuracy 16%. However for the receptor pairs of 

“RhodeBioTech05” [O1], it only achieves an accuracy of 3.2%, with coverage of 5.0%. 

Receptor interactions of “ScottBMCPPI07” [O2] achieve slightly better performance 

(accuracy 5.1%, coverage 11.5%), but are still worse than our predictions. Similar 

conclusions could be drawn from the table for STRING [O3] and RaminMSB08 [O4] 

datasets as well. 

 

We also compared the computational predictions with available high-throughput 

experimental data (“TAP-MSB07” [7] and “YeastIyer05” [8]). All computational sets do 

not overlap with the “YeastIyer05” data through homology mapping. For the “TAP-

MSB07” data, our interactome hit three pairs. In contrast, RhodeBioTech05 did not 

detect any of the pairs and the other data “ScottBMCPPI07” had one hit. The other two 

computational sets have no hits at all. If directly considering the performance of “TAP-

MSB07” receptor pairs according to HPRD, the accuracy is just 2.2% with coverage 

1.4% if we assume the related receptors are used to “attract” all possible partners in the 

affinity experiments. This performance is even worse than our computational predictions 

for receptors.  

 

Overall our predicted interactome graph achieves better identifications of receptor 

interactions compared to related existing data.  

 

Table S2.2 Datasets used for Overlapping Analysis.  
O1. Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, 

Ghosh D, Pandey A, Chinnaiyan AM: Probabilistic model of the human protein-protein 

interaction network. Nat Biotechnol 2005, 8:951-959. 

O2. Scott MS, Barton GJ: Probabilistic prediction and ranking of human protein-protein 

interactions. BMC Bioinformatics 2007, 8:239. 

O3. von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Kruger B, Snel B, Bork P: STRING 

7--recent developments in the integration and prediction of protein interactions. Nucleic 

Acids Res 2007, 35(Database issue):D358-362. 

O4. Ramani AK, Li Z, Hart GT, Carlson MW, Boutz DR, Marcotte EM: A map of human protein 

interactions derived from co-expression of human mRNAs and their orthologs. Mol Syst 

Biol 2008, 4:180. 

O5. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson 

MD, O'Connor L, Li M et al: Large-scale mapping of human protein-protein interactions 

by mass spectrometry. Mol Syst Biol 2007, 3:89. 

O6. Jones RB, Gordus A, Krall JA, MacBeath G: A quantitative protein interaction network for 

the ErbB receptors using protein microarrays. Nature 2006, 439(7073):168-174. 

O7. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, 

Dembowy J, Taylor IW et al: High-throughput mapping of a dynamic signaling network in 

mammalian cells. Science 2005, 307(5715):1621-1625. 

O8. Miller JP, Lo RS, Ben-Hur A, Desmarais C, Stagljar I, Noble WS, Fields S: Large-scale 

identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A 

2005, 102(34):12123-12128. 
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Table S2.3 Overlap and performance comparison to existing data sets. Here, we 

compared our predicted interactome to other existing datasets, including four 

computational human PPI graph [O1-O4], one published experimental human PPI data 

[O5], one yeast experimental PPI data related to membrane proteins [O8], one 

experimental data related to ERBB [O6], and one experimental data from LUMIER 

system [O7].  

 

Data Set 

Receptors 

Related 

(902Total) 

Receptor Interaction 

Pairs 

(1A: accuracy to 

HPRD) 

(2C: coverage to 

HPRD) 

Overlapp

ed HPRD 

Receptor 

Pairs 

HPRD 

Receptor 

Pairs 

Covered 

In Test 

(2522 

total) 

Overlapped 

TAP-

MSB07 

Receptor 

Pairs 

(136 total) 

Overlapped 

with Our 

(RF2.0) 

Interactome 

(9144 total) 

Overlapped 

with Our 

(RF1.0) 

Interactome 

(42707 

total) 

RFCut2.0 551 
9144 

(A: 16.0%; C: 58%) 
1462 2522 3 9144 9144 

RhodeBioTech05[O1] 353 
3945 

(A: 3.2%; C: 5.0%) 
125 2522 0 257 739 

ScottBMCPPI07[O2] 380 
5625 

(A: 5.1%; C: 11.5%) 
289 2522 1 505 1099 

STRING08[O3] 581 
2422 

(A: 6.4%; C: 6.2%) 
156 2522 0 220 517 

RaminMSB08[O4] 

 
38 

144 

(A: 0%; C: 0%) 
0 2522 0 0 1 

HPRD 475 2522 2522 2522 3 1461 2253 

TAP-MSB07[O5] 27 
136 

(A: 2.2%; C: 1.4%) 
3 209* 136 3 3 

EGFR-nature06 [O6] 

(Four ERBB) 
4 

181 (with four ERBB 

proteins) 

(A: 22.1%; C: 26.5%) 

40 151* 0 50 80 

Lumier05 [O7] 

(TGFB1) 

 

4 
4 (with TGFB1) 

(A: 25%; C: 2.8% ) 
1 36* 0 2 2 

YeastIyer06[O8] 12 
47  (homologous) 

(A: 0%; C: 0%) 
0 29* 0 0 2 

- * means the number is estimated  

 
 

                                                 
1
 Accuracy = Column_4 / Column_3 ;   

2
 Coverage = Column_4 / Column_5; 



 10 

8. Bibliography 
1. Flach, P., The Many Faces of ROC Analysis in Machine Learning, ICML-04 Tutorial. 2004. 

Notes available from http://www.cs.bris.ac.uk/flach/ ICML04tutorial/  

2. Mishra GR, Suresh M, Kumaran K, Kannabiran N, et al. and Pandey A. Human protein 

reference database--2006 update. Nucleic Acids Res 2006 Jan 1; 34(Database issue) D411-4. 

3. Ben-Shlomo I, Yu Hsu S, Rauch R, Kowalski HW, Hsueh AJ., Signaling receptome: a 

genomic and evolutionary perspective of plasma membrane receptors involved in signal 

transduction. Sci STKE. 2003. 187: RE9 

4. Breiman L. Random Forests. Machine Learning, 2001: 45, 5-32.  

5. Guyon I. and Elisseeff A. Special issue on variable and feature selection, The Journal of 

Machine Learning Research, 2000 

6. NCBI Taxonomy  http://www.ncbi.nlm.nih.gov/Taxonomy (2005) 

7. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson 

MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky 

O, Bukhman YV, Ethier M, Sheng Y, et al. (2007) Large-scale mapping of human protein-

protein interactions by mass spectrometry, Mol Syst Biol, 3, 89. 

8. Miller JP, Lo RS, Ben-Hur A, Desmarais C, Stagljar I, Noble WS and Fields S (2005) Large-

scale identification of yeast integral membrane protein interactions, Proc Natl Acad Sci U S 

A, 102, 12123-12128. 

9. Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, 

Ghosh D, Pandey A and Chinnaiyan AM (2005) Probabilistic model of the human protein-

protein interaction network, Nat Biotechnol., 8, 951-959. 

10. Scott MS and Barton GJ (2007) Probabilistic prediction and ranking of human protein-

protein interactions, BMC Bioinformatics, 8, 239. 

 

http://www.cs.bris.ac.uk/flach/
http://www.jmlr.org/papers/special/feature.html

