Big Wins with Small Application-aware Caches

Julio C. Lopez f
jclopez@cs.cmu.edu

Tiankai Tu '
tutk@cs.cmu.edu

*

David R. O'Hallaron ’
droh@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA USA

ABSTRACT

Large datasets, on the order of GB and TB, are increasingty co
mon as abundant computational resources allow practisotte
collect, produce and store data at higher rates. As datast s
grow, it becomes more challenging to interactively marapeiand
analyze these datasets due to the large amounts of dataetitat n
to be moved and processed. Application-independent cashels

as operating system page caches and database buffer caches,
present throughout the memory hierarchy to reduce datassicce
times and alleviate transfer overheads. We claim that alicagipn-
aware cache with relatively modest memory requirementsean
fectively exploit dataset structure and application infation to
speed access to large datasets. We demonstrate this itheaciont-
text of a system named the tree cache, to reduce query latency
large octree datasets by an order of magnitude.

1. INTRODUCTION

Abundant computational resources and advances in sironlgth-
nigues allow scientists to generate increasingly largersdas. Users
can cheaply store these datasets as the price of storageBpeniiv
tinues to decline. For example, seismologists affiliateth whe
Southern California Earthquake Center (SCEC) [25] gerdaage
datasets from simulation and seismic sensors. The sizdesét
datasets range from a few gigabytes to terabytes [1].

In order to extract meaningful information out of these éadgtasets,
scientists need timteractivelyhandle and transform the data into a
simpler form that is easier to understand. Tools, such a€¥Hd
service [16] and the Grid Visualization Utility [8], allowcntists

*This work is sponsored in part by the National Science Fotimala

under Grant CMS-9980063, in part by a subcontract from Swath
California Earthquake Center as part of NSF ITR EAR-01-2246
and in part by a grant from the Intel Corporation.

TDepartment of Electrical & Computer Engineering
iComputer Science Department

§Computer Science Department and Department of Electrical &
Computer Engineering

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SC2004November 6-12, 2004, Pittsburgh, PA USA

Copyright 2004 0-7695-2153-5/(20.00 (c) 2004 IEEE

to query these datasets and discover features of intertst itata.
For example, through the CVM service users generate images a
explore the SCEC’s 3D Community Velocity Model for Southern
California (CVM) [17].

Ideally, scientists should be able to interactively analgzge datasets
from their desktop computerahether the datasets are stored at a
local or at a remote location. Supporting interactive asteshese
datasets is challenging because, as dataset sizes grow)ateecy
increases due to the large amount of data movement between va
ous levels of the memory hierarchy [31].

Years of research have produced many general approaches to r
duce access latency to large datasets by reducing 1/0 ackdred
pooling multiple 1/O and computing resources in tightly ptad
systems to reduce processing time. Application-indepetrsiestem-
level caches, such as database buffers and operating spatgen
caches, are the norm in modern computer systems. While these
mechanisms do a good job reducing access latency, theytseafno
ficient for certain interactive applications. For examples CVM
service, using state of the art techniques implementedeilCtiU
etree library [28, 29], often takes in the order of minutesdtsfy

a request for an image. Ideally, it should take in the ordex fefw
seconds to satisfy a user’s request. The questioridsv can we
reduce access time to large dataset even further in ordenppart
interactive applications?

Our approach is to use a small application-aware cache sulsge
access to large datasets in interactive applications. Tdie idea

is to set aside a relatively small portion of the system cachem-

ory and use it to implement a cache that exploits datasetfgpe
structure and application-level information to reducergjl@ency.
This idea has been used in other contexts, such as datal$gses [
and distributed object systems [10, 14]. Section 3 expliaimsore
detail.

As a proof of concept we have implemented this idea in a sys-
tem called theree cache The tree cache reduces query latency
to large octree datasets by implementing the following igppbn-
level techniques: fine-level caching of individual octaaggproximate-
value queries, and query reordering.

We evaluate the tree cache in the context of queries to theCRCE
CVM dataset. Our evaluation shows that the tree cache reduce
average query time by an order of magnitude over the case when
only system-level caches are used.

The rest of this paper is organized as follows: Section 2qmtss

Ground Numerical
. Mesh . N
velocity . simulation
generation
model solver

ry Iy

l !

Validation

4D output
wavefield

SHA Visualization

Figure 1: Physical simulation process

the motivation for this work. Section 3 presents the presiaork
that the tree cache builds on. Section 4 provides backgraund
formation about octrees. Section 5 describes our apmicatare
cache, the tree cache. Section 6 evaluates the effectvefidse
tree cache library.

2. APPLICATION CONTEXT

The tree cache is motivated by the desire to support datg-anal
sis in the SCEC Community Modeling Environment (CME) [25].
The goal of the CME is to enhance the understanding of how the
Earth is structured and how the ground shakes during strarig-e
quakes. To achieve this goal, the CME effort is developingra-c
mon framework for ground motion simulation.

Figure 1 sketches the methodology for the physical simanatio-
cess in the CME. The boxes represent processes and the oxals ¢
respond to datasets. An inp8D ground velocity modetontains
properties of the ground for a region of the earthmash genera-
tion produces a discret@eshfrom the velocity model. Aumeri-

cal solversimulates the propagation of waves the ground during an
earthquake and outputsi® wavefieldataset.

The analysis of these datasets has great value for scgeatidtthe
community in general.Seismic hazard analysis (SHAgrforms
risk evaluation for a given region based on output wavefielde
validationtask compares the output wavefields against actual read-
ings from seismograph&jsualization toolsreate visual represen-
tations of the datasets allowing users to find features efrést.
The feedback from the validation task and visualizatioristad-
lows scientists to fine tune their models and simulationsloge
we describe two visualization tools, which are our motivgtap-
plications. They are the CVM service and the grid visuaiorat
utility (GVU).

2.1 The CVM service

The 3D community velocity model for Southern California (&Y

[17] is a dataset widely used in CME physical simulations. As
part of the CME effort, we developed a capability named theVCV
service that allows scientists to query the CVM dataset telyo
This service enables users to generate meshes and imades of t
CVM dataset through a Web browser.

The CVM dataset describes the entire Los Angeles basin with a
spatial resolution of about 50 meters. It covei®akm x 100km x
50km volume of the ground. A point at a position, , z) has
associated properties such as the density of the groundtaidnt.
Figure 2 shows a vertical cross-section of the LA basin. Titsu

for the X and Y axes are meters. The Y axis indicates the depth
in the basin. The color of a point in the image correspondéido t
value of the wave propagation speed ground property foiptbiait.

The density of the ground determines the wave propagatieedsp

Notice two interesting properties of the dataset: (1) thesig of
the ground can vary by several orders of magnitude; (2) lpcge
tions of the dataset are homogeneous, especially deep eittie.

A 3D matrix representation of the CVM model would have ap-
proximately 4000 million cubes, requiring about 16 GB perst
attribute (e.g., wave velocity, ground density, etc). Tddsaset is
represented as an octree [21] and accessed using the CMietre
brary [28, 29] described in Section 4.2. This represematigloits
the homogeneity of contiguous regions in the dataset. Threec
representation of the CVM model has 71 million cubes, wheh r
quires 900 MB for the structure representation and 284 MB per
attribute stored.

When submitting requests to the CVM service, users speeify p
rameters such as the desired resolution and region of gitérkese
parameters directly affect the response time. For exarppegess-

ing requests for 2D images can take in the order of minutegeo e
tens of minutes. This lack of responsiveness is due to thy lar
amount of data needed to be accesses in order to satisfy estequ
This motivated us to develop mechanisms to speed up the CVM
service.

2.2 Visualization of 4D wavefields

The 4D wavefield datasets describe the wave propagatiortiower

in the simulated region. For each time step the numericakesol
records various attributes for all the mesh nodal pointseséhat-
tributes include wave-velocity components (v, v.) and option-

ally the wave amplitude. According to the estimates prayitg

the SCEC/CME working group the output dataset sizes forefinit
difference simulations are in the range of a 4 GB to 4 TB depend
ing on the degree of down-sampling both in the time and space
domains.

Researchers at the University of Southern California’srimiation
Science Institute (USC/ISI) are developing tools to vimgabutput
wavefield datasets as part of the grid visualization utititgject
(GVU) [8]. A pre-processing step samples the dataset at miestfi
available granularity and aggregates multiple fine-giipeints
to create a coarser version of the dataset. The visualizéaiol
operates on the coarse dataset to allow user interaction.

3. RELATED WORK
Many approaches have been proposed to access and query large
datasets. Here we present previous work that our approalts bu
on.

Computer systems caches are commonly used in the memory hi-
erarchy [4], in distributed file systems [18, 22], the web][aBd
others, to speed up data transfers between system elemits w
different speed characteristics. Examples include diskes, OS
caches [23] and database buffer managers [26]. Data isvetti
from disk in relatively large-size units as a prefetchingchrnism

25007

50007

(m)

75007
10000

i 26445 S2a89 79334 105773
]
Yelocity {mfs)
S00.00 1250.00 2000.00 2750.00 3500.00

Figure 2: Sample vertical cross-section of the LA basin prodced by the CVM service

to decrease the transfer overhead. System level cachestlsése
large-size data retrieval units at the granularity of a mgnpage
or multiple disk blocks [5]. Often, in our applications a shfie@c-
tion of the items in each data retrieval unit is used to satisfet of
queries.

There exist various indexing schemes to reduce the overimead
volved in searching for a small number of records in a largelzise
[24]. The most widely used indexing scheme in modern databas
systems is the B-tree and its derivatives [7]. Vitter pregidcan
extensive survey on data structures and algorithms to sdagge
datasets stored on disk [31].

Various systems use the database indexing mechanismsédssacc
large multi-dimensional datasets. ADR/DataCutter[3] middle-
ware infrastructure based on R-trees[13] to store ancexetiarge
multi-dimensional spatial datasets. Similarly, variopp@aches

in the scientific visualization community map and match seta
and work units to disk I/O blocks and use well-known indexing
schemes to alleviate the 1/O bottleneck[2, 27, 6, 30]. Trase
proaches rely on standard database buffer managers.

Using application-level information to improve cache peniance

has been used in various contexts. Databases use tuplagfthj

to maintain individual tuples rather than entire pages andlent
cache. In semantic caching [9] the client manages the cazhe a
a collection of semantic regions and remainder queries. d&em
mobile object systems, such as Thor [10], cache individbgais
instead of pages at the client side. Component-based sysisen
customized views to cache parts of a component instead aewho
components [14].

4. OCTREES AND THE ETREE LIBRARY
This section describes key features of the octree datgaetsenta-
tion and the etree library that used by the tree cache to esgluery
latency.

4.1 Octrees

Octreesare hierarchic data structures used in many domains to rep-
resent spatial data [21]. In particular, the CMU Quake mijses
octrees in the physical simulation process to represeningroe-
locity models, meshes and output wavefields [1, 29].

For simplicity, we usejuadtreesthe 2D counterpart of 3D octrees,

8
bf : bg | bk : bl | ca:cb]| cf:cg

7
bd i be | bi : bj | by i bz | cd : ce

6
aviaw | ba i bb | bg: br | bv i bw

5
at i au|ay :az|bo:bp| bt:bu

j 4
p q u v |ak: al | ap: aq

3
n o] S t ai i aj |an: ao

2
f g k | Jaa:ab | af : ag

1
d e i j y z |ad: ae

0

o 1 2 3 4 5 6 7 8

Figure 3: Domain representation

to explain key properties that also apply to higher dimemsiouc-
tures. A quadtree represents a 2D region of space by reelysiv
dividing each region into 4 smaller regions, quadrants until a
desired resolution is achieved. Figure 3 shows a safpl& rect-
angular domain (heavy line) divided into 4 smaler 4 quadrants.
We apply this process recursively until we have 1 quadrants.

Figure 4 shows the equivalent tree representation for thisain.
Eachnodein the tree corresponds to a quadrant in the domain, and
its child nodes correspond to the subdivisions of the quedfeor
example, nodesb] and ¢m) correspond to the x 4 quadrants.
Interior nodesare nodes with descendants, e.g), (Leaf nodes
have no descendants, e.gl).(The set ofancestordor a noden is
composed by its parent (i.e., immediate ancestor) and fenpa
ancestors. Each node in the tree has an associated.|@V level

of theroot nodeis 0, and a node’s level is equal to its parent level
plus1. Max-levelis the maximum level of any node in the tree, 3 in
this example. The node level encodes the quadrant’s gized),
whered — o(max-level-l)

(] (TiT]nIpls]u] - [ylealodlafailaanlep] - [atlavfaylaloelorfiloe] - foloabonfoyalod]cf
(elaliltTolaltTv] [z]ebleelegfailalfoofaq] faewfechtloeogltifb] - blroubufozlccelog]

Figure 4: Tree representation

Figure 3 shows aompleteguadtree where the domain is divided to
the finest resolution. For many applications, homogeneitlisg
nodes can baggregatednto a single parent node according to a
data-specific criteria. Figure 5 show$8x 8) domain, where var-
ious nodes have been aggregated into their respectivetpardes.
E.g., node §m) corresponds to an aggregation of all of its descen-
dants.

6 bm

5 as ax

aa i ab

Figure 5: Aggregated quadtree

A linear quadtreerepresentation [12] captures the structured of a
quadtree by assigning a key to each quadrant. A quadrant’s ke
implicitly encodes the quadrant’s location and size, ailhgthe
mapping and storage of a quadtree in a flat structure suchbBs a 1
array. In our implementation we use keys of the fofiyy,) to
uniquely identify a quadrant(i, 5) is the coordinate of the quad-
rant’s lower-left corner in a regular grid at the finest resion.

is the quadrant’s level in the tree. For example, us8 ang reg-
ular grid as a coordinate system for the domain shown in Eigur
Then, assign each quadrant the coordinates of its lowecdefier

in the grid. Notice that in various instances a child node [thver-

left quadrant of a larger quadrant) has the same grid coatelras

its ancestors. The level in a quadrant’s key disambiguhissitu-
ation and also encodes the quadrants size. For examplegytiork
quadrant ¢y) is (2,4, 3) and its parent’sdz) is (2, 4, 2).

euclid3/libsrc/etree.h

1 typedef enum {

2 ETREE_INTERIOR = 0,
3 ETREE_LEAF

4 '} etree_type_t;
5

6

7

8

/*
* - (X, y, z, t) is lower left corner
* - t is the time dimension for 4D etrees
9 * - level is the octant level
* - type is ETREE_LEAF or ETREE_INTERIOR

1 ¥

12 typedef struct etree_addr_t {
13 etree_tick_t x, y, z;

14 etree_tick_t t;

15 int level;

16 etree_type_t type;

17 } etree_addr_t;

euclid3/libsrc/etree.h

Figure 6: Etree address structure

4.2 The etree library

The CMU etree library [28, 29] provides a capability to acciesge
octree datasets stored on disk. The etree library repsesespa-
tial dataset as an octree using linear quadtree repremerstatnd
efficiently stores the data inBrtreeindexing structure [7].

Applications manipulate datasets as octrees, possiblgiéxg the

hierarchical data representation. The etree API functidiosv ap-

plications to perform various operations on octrees, sa¢chearch,
insert, delete and update nodes. The library uses a linealtige
representation in the API to refer to individual quadrakitéhen re-
ferring to a quadrant, applications specify a linear keyhefform

(z,y,z,level)inaetree _addr _t structure (Figure 6).

In order to provide efficient access to the data, the libraapsrthe
octree structure to a B-tree index. Internally, the libraopverts
theetree _addr _t to alocational code [12], which is a variant of
theMorton code[19]. The locational code is used as a key to store
and search a quadrant in a B-tree structure. The total agiero-
duced by the locational and Morton codes is knowrz-asdering
or Peano curvg20]. This ordering is known to have good spatial
clustering properties.

5. THE TREE CACHE

The tree cache is a user-level C library that exploits appbo-
specific information to speed up queries to large octreesdtta
It implements a set of techniques to avoid performing expens
data fetches when possible. These techniques includmétievel
caching of individual octantg2) approximate-value quenand (3)
query reordering

Figure 7 shows an overview of the tree cache. When the trdecac
receives arequest, it looks the octant up in the cache. tdtent is
not found, the cache fetches the node data through the degtasac
interface. The etree library provides the data access miéfiiro
locally stored octree datasets. The Remote Cache ProteGi)
provides access to datasets stored at remote locations d&hign
allows the instantiation of the cache in various scenadberit ap-
plication, proxy, server) using the same implementationaddi-
tion, this design allows applications to uniformly acceasadets
whether they are stored at a local or remote location.

. irequest : (x,y,z), level, min_level, comp fn'
e
| L —
= = [}
= 28 S8 seli |8
] O = < 2 ST 3
s [Sp=} (o2} © O N L
- e C-g q_)% w— a-)
S © = '\ | €
2=
© 1
S R s
= .
a - ancestor hit c | 3 Octree
< cc S o <
=] P 25 P dataset
S N La|! o
= O = © : (a]
1
L Tree cache o

{e i response : node data i

Figure 8: Tree cache lookups

Remote
Cache
\ 4 Protocol
" Remote data
Application
access server / Cache API
[— 1
- \ 4 \ 4 N
: 3 | Tree cache |:
I O 1
8 i !
: 3 \ Data
: =3 Remote data : Access
| 3 access client 1 Interface
LT :
\ 4
Remote Etree library
Cache
Protocol ——
local
— dataset

Figure 7: Tree cache overview

Fine-level caching of individual octants The tree cache caches
individual octree nodes (i.e., octants). Nodes are idextifiy their
(z,v, 2, level) coordinates. These fixed-length linear keys make
cache lookup consistent, uniform and fast regardless oblbfect
requested by the application, e.g., line, plane, volumegesihe
cache receives only a sequence of requests for nodes. @ludrin
cached objects across requests is straightforward.

Figure 8 illustrates the steps that occur during cache lpski@rhe
application requests a node, specifying the node’sy, z, level)
coordinates. The cache hashes the node coordinates tomsrfo
anexact lookupcomparing the node’s spatial address with the ad-
dresses of nodes stored in the cache. If there is a match veegnav
exact hit otherwise, we have agxact miss

Approximate-value query. The approximate-value query tech-
nigue decreases mean latency for queries and enables edtend
functionality for applications, e.g., multi-resolutiomeries. This
technique requires that not only leaf nodes but also theiante
nodes are stored in the octree dataset. On an exact misgdhe ¢
performs anancestor lookupby iteratively computing ancestor’s

coordinates and looking them up until either an ancestoousd
or an application-specified minimum node level 0 is reached.
Since an interior node is an aggregate representation déssen-
dants, when an ancestor is found the cache invokes an apmlica
specified function to determine whether the ancestor sgisfie
application requirements. When an suitable ancestor reofibeind
we have arancestor hit otherwise, we have amcestor miss

Query reordering. The order in which octants are retrieved from
the dataset influences the query response time when the pages
taining these octants are not in the OS cache, nor in the alsgtab
buffer. The goal is to reduce query latency by exploitinggpatial
locality produced by etree’s storage representation dn distch-
ing the missing octants in the same order they are storedases
the probability of a request being satisfied from the datalsashe,
thus reducing disk accesses and query latency.

6. EVALUATION

Our evaluation intends to answer the following questidfhat is

the query latency reduction obtained with an applicationage
cache? We evaluate the effectiveness of various tree cache tech-
nigues when querying the CVM dataset (Section 2.1). In @arti

lar, we look at the following techniques: (1) fine-level cedh (2)
approximate-value query, and (3) query reordering.

Experimental Setup The CVM dataset for these experiments con-
tains both leaf and interior nodes and its size on disk is 1Q &
Figure 9).

Leaf octants 71,041,024
Interior octants 10,148,729
Total number of octants | 81,189,753
Payload size 100B
Total storage requirement 10GB

Figure 9: CVM dataset characteristics

We used 3 query traces that are representative for the gusgie
formed by a user to the CVM service during an interactiveisass
Each trace is divided into a series of steps. Each step pames
to a request for an image in a zoom-in, pan, zoom-out sequence
The first step in a trace corresponds to a request for a large RO
at low resolution. Following requests are for smaller regi@t

[Trace name| Steps| # Points]

Vertical 5 15.440
Horizontal 10| 91.190
\olume 10 | 364.168

Figure 10: Query traces characteristics

higher resolutions. Figure 10 shows the total number oftpand

steps for each number trace. The first two traces correso2D t
requests for vertical and horizontal slices respectivdliie third

trace corresponds to requests for 3D volumes.

| Parameter | Values |

Tolerance 0 (exact), 0.0001 (approx)
Num. entries| 0, 16K, 32K, 64K, 128K
Trace vertical, horizontal, volume
Order random, xyz, z-order

Figure 11: Parameter values for the experiments

Each experiment using a particular trace is divided in 3 gbiashe
first phase is thevarmup phasand is composed by the queries for
a given trace (e.g., 10 requests for the volume trace in theror
they appear in the trace). This phase warms up the tree cache a
the database buffer. The second phase iptilition phaseand
consists of 30 unrelated query steps, with a total of 8696@tg.0
The third phase is thguery phasgit consists of the queries for the
trace, i.e., the same requests performed in the warmup phése
order they appear in the trace.

Case: Volume zoom (warm)
25

Random ——

15 F =

10

Query latency (seconds)

O L L L L L
64 128 256 512

Buffer cache size in MB

768

Figure 12: Latency for the query phase in the volume trace
without a tree cache

We used the values shown in Figure 11 for the tolerance, nuafbe
cache entries, trace type and query order parameters. diolisht
how query order affects query latency, we performed quevids
different orders as follows: we reordered the points withistep
(request) of a trace for all steps in that trace, both in tis fivarm-

up) and last (query) phases. We used three ordarsdom, xyz,
z-order In the random order we randomized the query order using
standard C functions. The xyz order corresponds to the atend
order used by the application where the X coordinate vaties t
fastest and Z the slowest. In z-order the points are in thenalcg

order given by the scalar value of their corresponding looat
code, i.e., z-order.

All experiments executed with a warm OS cache. Each expetime
execution started with a cold database cache and a coldacbe ¢
which were warmed up after the first phase of the query traee. W
measured query latency for each phase. We performed thpse ex
iments on a PIIl 1 GHz machine with 3 GB memory and a Ultra
SCSI 160 controller and disk, running the Linux 2.4.20 kérkiée
reserved 640 MB for the database buffer cache, and the ezhjuir
memory for the tree cache was drawn from the OS-managed page
cache. The size of the memory required for the tree cachedsari
from 0 to 10.5 MB.

Entries Exact (sec) Approximate (sec)
(K) rand | xyz | z-ord || rand | xyz | z-ord
0 10.31| 9.66 | 9.57 || 10.28 | 9.63 | 9.52
16 10.46| 9.71| 9.60 || 9.89 | 9.30| 9.12
32 8.88 | 8.16| 8.06 | 7.43 | 6.80| 6.71
64 498 | 4.63| 455 | 3.19 | 293 281
128 0.89 | 0.83| 0.78 | 0.12 | 0.07 | 0.02

Figure 13: Query phase latency in seconds for the volume trac

Effectiveness of application-independent cachingd-irst, we want

to determine the resulting query latency when only the systeel
caches are used and use this as a baseline. We compare the ob-
served query latency for various sizes of the databaserlte.
Figure 12 shows the query latency without tree cache for the v
ume trace. The X axis is the database buffer size in megabytes
The Y axis is the average query latency in seconds. Notice tha
diminishing returns are obtained as the size of the dataaffer
increases.

Effectiveness of application-aware cachingTo measure the ef-
fectiveness of the tree cache, we want to compare the elaipsed

for queries with and without the tree cache. Figure 13 costtie
average elapsed time for the volume trace when both the alsgtab
and OS caches are warm. The other two query traces produee sim
ilar results and are not shown here. The first row in Figurez&8q
entries) corresponds to the query latency with no tree Gaitbis

the baseline case.

Figure 14 shows the elapsed time vs. tree cache size for the da
in Figure 13. The units for the X axis are the cache size in rimb
of entries. The Y axis is the average query-phase elapsesl tim
Each line corresponds to a set of experiments with a fixedaiote
value (exact vs. approximate) and query ordering. The geera
query latency decreases as the tree cache size increasesthen
tree cache is large enough, most requests are quickly séored
the tree cache, reducing the query latency by an order of itualgn

Discussion We are interested in knowing how each tree cache
technique contributes to the latency reduction. To deteentihe
contribution of fine-level caching, consider how the preseaf a
tree cache affects query latency for exact queries. Thehget
lines labeledexact random, xyz and z-order Figure 14 show the
query latency for exact queries. Clearly, fine-level caghpays
dividends by reducing the latency by up to an order of mageitu
compared to the case when no fine-level caching is usednfiest-
point of the top three lines).

Case: Volume zoom (warm)

12

Exact random ——
Exact xyz ----x---
Exact ordered - |]
Approx random -2
Approx xyz -—--=--
Approx ordered --o-- ||

Elapsed time: Seconds

0 L L L

0K 16 K 32K 64 K 128 K
(0 MB) (1.3 MB) (2.6 MB) (5.2 MB)

Cache size: Number of entries (Required memory in MB)

Figure 14: Latency for the query phase in the volume trace

To determine the effectiveness of the approximate-valeeypech-

nique, we compare the latency obtained for exact queriemstga

the latency obtained for approximate queries for a giveheaize.

The bottom three curves in Figure 1dpprox. random, xyz and
z-ordel) correspond to the latency observed for approximate-value
queries. For a given cache size, the query latency is censiigt

lower for approximate-value queries. For example, for 64kies,

exact queries have a 40% latency reduction, whereas apmpati

queries have a 50% reduction. Overall, approximate-valigziegs
contribute an additional 10% reduction in query latencyc®©the
cache is large enough (128K entries in this case) the quiagpda
for approximate-value queries and exact queries is the .sdime
use of approximate-value queries allows interactive apfibns to
perform tradeoffs between query latency, accuracy and merae
quirements.

To determine the effect of query reordering, we compare the o
served latency for traces with different orders. In Figurg@and 14

we can see that, although queries in z-order have lowerdgtéme
difference is not significant. Reordering query points dugspro-

vide an additional benefit when the OS page cache is warm. Once
the B-tree pages are in the OS page cache, the access caost &ir a
those pages is approximately the same. We expect queryeratyd

to result in lower query latency when the requested itemsaren
the database buffer nor in the OS page cache.

In summary, our evaluation indicate that the use of a smaliegtion-

aware cache can effectively reduce the average query tineane

order of magnitude over the case when only system level sache

7. CONCLUSIONS

Using application-level information and dataset-spedfiticture
in a small application-aware cache reduces query latentarge
datasets. As dataset sizes grow it becomes more importar#ito
tain low query latency in order to support interactive exatory

tools. Our evaluation shows that the tree cache reducey tpter
tency by one order of magnitude over the case when only system

level caches are used. It is able to do so by exploiting theire
of octree datasets and allowing applications to relax theracy
requirements of the queries to the dataset.

The results of the tree cache evaluation are encouragingheln

(10.5 MB)

near future we will implement other techniques in the treghea
such as approximate-distance queries, and octant prafgicin
approximate-distance queries, the application relaxesiticuracy
constraints allowing a query to be satisfied with a cachedmnct
that is close to the requested octant (i.e., a neighbor). idée
behind octant prefetching is to batch requests for missthtxin
a single transaction. We expect this technique to be veectie
in reducing access time to remote datasets, as access tieradte
datasets is dominated by the round trip time between thé éoch
remote hosts. Batching multiple transactions in a singipiests

serves as a prefetching mechanism and amortizes the ropnd tr

time cost.

8. REFERENCES

[1] V. Akcelik, J. Bielak, G. Biros, |. Ipanomeritakis,
A. Fernandez, O. Ghattas, E. Kim, J. Lépez, D. O’Hallaron,
T. Tu, and J. Urbanic. High resolution forward and inverse
earthquake modeling on terasacale computers. In
Proceedings of Supercomputing SC’20BBoenix AZ,
USA, Nov 2003. ACM, IEEE. Available at
www.cs.cmu.edu/"ejk/sc2003.pdf

[2] C.L.Bajaj, V. Pascucci, D. Thompson, and X. Y. Zhang.
Parallel accelerated isocontouring for out-of-core
visualization. InProc. of the Symp. on Parallel Visualization
and Graphicspages 97-104. IEEE, ACM Press, 1999.

[3] M. Beynon, R. Ferreira, T. M. Kurc, A. Sussman, and J. H.
Saltz. Datacutter: Middleware for filtering very large
scientific datasets on archival storage systemSyimp. on
Mass Storage Systemmges 119-134. IEEE, 2000.

[4] R. E. Bryant and D. O’HallaronrComputer Systems: A
Programmer’s Perspectiv€rentice Hall, 2003.

[5] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-grin
sharing in page server database systemBrdg. ACM
SIGMOD ConfACM, 1994,

[6] Y.-J. Chiang, R. Farias, C. T. Silva, and B. Wei. A unified
infrastructure for parallel out-of-core isosurface egtiagn
and volume rendering of unstructured gridsPioc. Symp.
on Parallel and Large-data Visualization and Graphics
pages 59-66. IEEE, IEEE Press, 2001.

[7] D. Comer. The ubiquitous B-tre€omputing Surveys
2(11):121-138, 1979.

[8] K. Czajkowski, M. Thiebaux, and C. Kesselman. Practical
resource management for grid-based visual exploration. In
High Performance Distributed Computing HPDC',(2001.

[9] S. Dar, M. J. Franklin, B. T. Jénsson, D. Srivastava, and
M. Tan. Semantic data caching and replacement. In T. M.
Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda,
editors,VLDB'96, Proc. 22th Int. Conf. on Very Large Data
Basespages 330-341, Bombay, India, Sep 1996. Morgan
Kaufmann.

[10] M. Day, B. Liskov, U. Mahashwari, and A. C. Myers.
References to remote mobile objects in tHaEM Letters on
Programming Languages and Syste@(d—4):115-126,
Mar—Dec 1993.

[11] D. DeWitt, P. Futtersak, D. Maier, and F. Velez. A stuaddy
three alternative workstation-server architectures for
object-oriented databases.Pmoc. VLDB Conf. 1990.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

I. Gargantini. Linear octree for fast processing of
three-dimensional object€omputer Graphics and Image
Processing20(4):365-374, 1982.

A. Guttman. R-trees: A dynamic index structure for gmat
searching. IrProc. Intl. Conf. on Management of Data
pages 47-57, Boston, MA, Jun 1984. ACM SIGMOD.

A. lvan and V. Karamcheti. Using views for customizing
reusable components in component-based frameworks. In
Proc. 12th High Performance Dist. Computing (HPDC’03)
Seattle, WA, Jun 2003.

G. Lai, M. Liu, F.-Y. Wang, and D. Zeng. Web caching:
architectures and performance evaluation surve@dnf. on
Systems, Man, and Cybernetipages V5: 3039-3044.
IEEE, Oct 2001.

J. Lopez, T. Tu, and D. O’Hallaron. CVMs: Community
Velocity Model servicehttp://cvm.cs.cmu.edu ,
2002.

H. Magistrale, R. Graves, and R. Clayton. A standard
three-dimensional seismic velocity model for southern
California: version 1EOS Transactions AGWU9:F605,
1998.www.scecdc.scec.org/3Dvelocity/
3Dvelocity.html

J. Morris, M. Satyanarayanan, M. Conner, J. Howard,

D. Rosenthal, and F. Smith. Andrew: A distribute personal
computing environmentCommunications of the ACNMar
1986.

G. M. Morton. A computer oriented geodetic databaseand
new technique in file sequencing. Technical report, IBM,
Ottawa, Canada, 1966.

H. SaganSpace Filling CurvesSpringer, 1994.

H. SametApplications of Spatial Data Structures: Computer
Graphics Image Processing and GKddison-Wesley, 1989.

M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki,
E. Siegel, and D. Steere. Coda: A highly available file
system for a distributed workstation environmdBEE
Transactions on Computer39(4):447-459, Apr 1990.

A. Silberschatz and P. B. Galvi@perating System
ConceptsAddison-Wesley, 3rd edition, 1991.

A. Silberschatz, H. F. Korth, and S. Sudarshaatabase
Systems ConceptlcGraw-Hill, 4th edition, Oct 2001.

Southern California Earthquake Center. Communitpoity
model (SCEC/CME)www.scec.org/cme

M. Stonebraker. Operating system support for database
managemeniCommunications of the ACN24(7):412-418,
Jul 1981.

P. M. Sutton and C. D. Hansen. Accelerated isosurface
extraction in time-varying fieldsSlransactions on
Visualization 6(2), Apr-Jun 2000.

T. Tu, J. Lopez, and D. O’Hallaron. The Etree library: A
system for manipulating large octrees on disk. Technical
Report CMU-CS-03-174, Carnegie Mellon School of
Computer Science, Pittsburgh, PA, July 2003.

[29]

[30]

[31]

T. Tu, D. O’Hallaron, and J. Lopez. Etree —a
database-oriented method for generating large octreegsesh
In Proceedings of the Eleventh International Meshing
Roundtablepages 127- 138, Ithaca, NY, Sep 2002.

M. van Kreveld, R. van Oostrum, C. Bajaj, D. Schikoregdan
V. Pascucci. Contour trees and small seed sets for isogsurfac
traversal. InProc. 13th Symp. on Computational Geometry
pages 212-219, Nice, France, Jun 1997. ACM, ACM Press.

J. Vitter. External memory algorithms and data struesu
Dealing with massive dat&ACM Computing Surveys
33(2):209-271, June 2001.

