
Big Wins with Small Application-aware Caches ∗

Julio C. López
†

jclopez@cs.cmu.edu
Tiankai Tu

‡

tutk@cs.cmu.edu
David R. O’Hallaron

§

droh@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA USA

ABSTRACT
Large datasets, on the order of GB and TB, are increasingly com-
mon as abundant computational resources allow practitioners to
collect, produce and store data at higher rates. As dataset sizes
grow, it becomes more challenging to interactively manipulate and
analyze these datasets due to the large amounts of data that need
to be moved and processed. Application-independent caches, such
as operating system page caches and database buffer caches,are
present throughout the memory hierarchy to reduce data access
times and alleviate transfer overheads. We claim that an application-
aware cache with relatively modest memory requirements canef-
fectively exploit dataset structure and application information to
speed access to large datasets. We demonstrate this idea in the con-
text of a system named the tree cache, to reduce query latencyto
large octree datasets by an order of magnitude.

1. INTRODUCTION
Abundant computational resources and advances in simulation tech-
niques allow scientists to generate increasingly larger datasets. Users
can cheaply store these datasets as the price of storage per MB con-
tinues to decline. For example, seismologists affiliated with the
Southern California Earthquake Center (SCEC) [25] generate large
datasets from simulation and seismic sensors. The sizes of these
datasets range from a few gigabytes to terabytes [1].

In order to extract meaningful information out of these large datasets,
scientists need tointeractivelyhandle and transform the data into a
simpler form that is easier to understand. Tools, such as theCVM
service [16] and the Grid Visualization Utility [8], allow scientists

∗This work is sponsored in part by the National Science Foundation
under Grant CMS-9980063, in part by a subcontract from Southern
California Earthquake Center as part of NSF ITR EAR-01-22464,
and in part by a grant from the Intel Corporation.
†Department of Electrical & Computer Engineering
‡Computer Science Department
§Computer Science Department and Department of Electrical &
Computer Engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC2004November 6-12, 2004, Pittsburgh, PA USA
Copyright 2004 0-7695-2153-5/04$20.00 (c) 2004 IEEE

to query these datasets and discover features of interest inthe data.
For example, through the CVM service users generate images and
explore the SCEC’s 3D Community Velocity Model for Southern
California (CVM) [17].

Ideally, scientists should be able to interactively analyze large datasets
from their desktop computerswhether the datasets are stored at a
local or at a remote location. Supporting interactive access to these
datasets is challenging because, as dataset sizes grow, query latency
increases due to the large amount of data movement between vari-
ous levels of the memory hierarchy [31].

Years of research have produced many general approaches to re-
duce access latency to large datasets by reducing I/O overhead and
pooling multiple I/O and computing resources in tightly coupled
systems to reduce processing time. Application-independent system-
level caches, such as database buffers and operating systempage
caches, are the norm in modern computer systems. While these
mechanisms do a good job reducing access latency, they are not suf-
ficient for certain interactive applications. For example,the CVM
service, using state of the art techniques implemented in the CMU
etree library [28, 29], often takes in the order of minutes tosatisfy
a request for an image. Ideally, it should take in the order ofa few
seconds to satisfy a user’s request. The question is:How can we
reduce access time to large dataset even further in order to support
interactive applications?

Our approach is to use a small application-aware cache to speed up
access to large datasets in interactive applications. The main idea
is to set aside a relatively small portion of the system caches mem-
ory and use it to implement a cache that exploits dataset-specific
structure and application-level information to reduce query latency.
This idea has been used in other contexts, such as databases [9]
and distributed object systems [10, 14]. Section 3 explainsin more
detail.

As a proof of concept we have implemented this idea in a sys-
tem called thetree cache. The tree cache reduces query latency
to large octree datasets by implementing the following application-
level techniques: fine-level caching of individual octants, approximate-
value queries, and query reordering.

We evaluate the tree cache in the context of queries to the SCEC’s
CVM dataset. Our evaluation shows that the tree cache reduces
average query time by an order of magnitude over the case when
only system-level caches are used.

The rest of this paper is organized as follows: Section 2 presents

Mesh
generation

Numerical
simulation

solver
SHA Validation Visualization

Ground
velocity
model

Mesh
4D output
wavefield

Figure 1: Physical simulation process

the motivation for this work. Section 3 presents the previous work
that the tree cache builds on. Section 4 provides backgroundin-
formation about octrees. Section 5 describes our application-aware
cache, the tree cache. Section 6 evaluates the effectiveness of the
tree cache library.

2. APPLICATION CONTEXT
The tree cache is motivated by the desire to support data analy-
sis in the SCEC Community Modeling Environment (CME) [25].
The goal of the CME is to enhance the understanding of how the
Earth is structured and how the ground shakes during strong earth-
quakes. To achieve this goal, the CME effort is developing a com-
mon framework for ground motion simulation.

Figure 1 sketches the methodology for the physical simulation pro-
cess in the CME. The boxes represent processes and the ovals cor-
respond to datasets. An input3D ground velocity modelcontains
properties of the ground for a region of the earth. Amesh genera-
tion produces a discretemeshfrom the velocity model. Anumeri-
cal solversimulates the propagation of waves the ground during an
earthquake and outputs a4D wavefielddataset.

The analysis of these datasets has great value for scientists and the
community in general.Seismic hazard analysis (SHA)performs
risk evaluation for a given region based on output wavefields. The
validationtask compares the output wavefields against actual read-
ings from seismographs.Visualization toolscreate visual represen-
tations of the datasets allowing users to find features of interest.
The feedback from the validation task and visualization tools al-
lows scientists to fine tune their models and simulations. Below,
we describe two visualization tools, which are our motivating ap-
plications. They are the CVM service and the grid visualization
utility (GVU).

2.1 The CVM service
The 3D community velocity model for Southern California (CVM)
[17] is a dataset widely used in CME physical simulations. As
part of the CME effort, we developed a capability named the CVM
service that allows scientists to query the CVM dataset remotely.
This service enables users to generate meshes and images of the
CVM dataset through a Web browser.

The CVM dataset describes the entire Los Angeles basin with a
spatial resolution of about 50 meters. It covers a100km×100km×

50km volume of the ground. A point at a position (x, y, z) has
associated properties such as the density of the ground at that point.
Figure 2 shows a vertical cross-section of the LA basin. The units
for the X and Y axes are meters. The Y axis indicates the depth
in the basin. The color of a point in the image corresponds to the
value of the wave propagation speed ground property for thatpoint.
The density of the ground determines the wave propagation speed.

Notice two interesting properties of the dataset: (1) the density of
the ground can vary by several orders of magnitude; (2) largepor-
tions of the dataset are homogeneous, especially deep in theEarth.
A 3D matrix representation of the CVM model would have ap-
proximately 4000 million cubes, requiring about 16 GB per stored
attribute (e.g., wave velocity, ground density, etc). Thisdataset is
represented as an octree [21] and accessed using the CMU etree li-
brary [28, 29] described in Section 4.2. This representation exploits
the homogeneity of contiguous regions in the dataset. The octree
representation of the CVM model has 71 million cubes, which re-
quires 900 MB for the structure representation and 284 MB per
attribute stored.

When submitting requests to the CVM service, users specify pa-
rameters such as the desired resolution and region of interest. These
parameters directly affect the response time. For example,process-
ing requests for 2D images can take in the order of minutes to even
tens of minutes. This lack of responsiveness is due to the large
amount of data needed to be accesses in order to satisfy a request.
This motivated us to develop mechanisms to speed up the CVM
service.

2.2 Visualization of 4D wavefields
The 4D wavefield datasets describe the wave propagation overtime
in the simulated region. For each time step the numerical solver
records various attributes for all the mesh nodal points. These at-
tributes include wave-velocity components (vx, vy, vz) and option-
ally the wave amplitude. According to the estimates provided by
the SCEC/CME working group the output dataset sizes for finite
difference simulations are in the range of a 4 GB to 4 TB depend-
ing on the degree of down-sampling both in the time and space
domains.

Researchers at the University of Southern California’s Information
Science Institute (USC/ISI) are developing tools to visualize output
wavefield datasets as part of the grid visualization utilityproject
(GVU) [8]. A pre-processing step samples the dataset at the finest
available granularity and aggregates multiple fine-grained points
to create a coarser version of the dataset. The visualization tool
operates on the coarse dataset to allow user interaction.

3. RELATED WORK
Many approaches have been proposed to access and query large
datasets. Here we present previous work that our approach builds
on.

Computer systems caches are commonly used in the memory hi-
erarchy [4], in distributed file systems [18, 22], the web [15] and
others, to speed up data transfers between system elements with
different speed characteristics. Examples include disk caches, OS
caches [23] and database buffer managers [26]. Data is retrieved
from disk in relatively large-size units as a prefetching mechanism

Figure 2: Sample vertical cross-section of the LA basin produced by the CVM service

to decrease the transfer overhead. System level caches store these
large-size data retrieval units at the granularity of a memory page
or multiple disk blocks [5]. Often, in our applications a small frac-
tion of the items in each data retrieval unit is used to satisfy a set of
queries.

There exist various indexing schemes to reduce the overheadin-
volved in searching for a small number of records in a large database
[24]. The most widely used indexing scheme in modern database
systems is the B-tree and its derivatives [7]. Vitter provides an
extensive survey on data structures and algorithms to access large
datasets stored on disk [31].

Various systems use the database indexing mechanisms to access
large multi-dimensional datasets. ADR/DataCutter[3] is amiddle-
ware infrastructure based on R-trees[13] to store and retrieve large
multi-dimensional spatial datasets. Similarly, various approaches
in the scientific visualization community map and match dataset
and work units to disk I/O blocks and use well-known indexing
schemes to alleviate the I/O bottleneck[2, 27, 6, 30]. Theseap-
proaches rely on standard database buffer managers.

Using application-level information to improve cache performance
has been used in various contexts. Databases use tuple caching [11]
to maintain individual tuples rather than entire pages in the client
cache. In semantic caching [9] the client manages the cache as
a collection of semantic regions and remainder queries. Remote
mobile object systems, such as Thor [10], cache individual objects
instead of pages at the client side. Component-based systems use
customized views to cache parts of a component instead of whole
components [14].

4. OCTREES AND THE ETREE LIBRARY
This section describes key features of the octree dataset representa-
tion and the etree library that used by the tree cache to reduce query
latency.

4.1 Octrees
Octreesare hierarchic data structures used in many domains to rep-
resent spatial data [21]. In particular, the CMU Quake project uses
octrees in the physical simulation process to represent ground ve-
locity models, meshes and output wavefields [1, 29].

For simplicity, we usequadtrees, the 2D counterpart of 3D octrees,

lk

ji

u

s t

v

e

g

d

f

p

n o

q

agaf

ad ae

ap

an ao

aq

aa

y z

ab

ak

ai aj

al

blbk

bi bj

bf

bd be

bg

bbba

ay az

av

at au

aw bv

bt bu

bwbq

bo bp

br

cf

cd ce

cgca

by bz

cb

j

0

1

2

3

5

6

7

8

4

i

0 1 2 3 4 5 6 7 8

Figure 3: Domain representation

to explain key properties that also apply to higher dimension struc-
tures. A quadtree represents a 2D region of space by recursively
dividing each region into 4 smaller regions, orquadrants, until a
desired resolution is achieved. Figure 3 shows a sample8× 8 rect-
angular domain (heavy line) divided into 4 smaller4×4 quadrants.
We apply this process recursively until we have1 × 1 quadrants.

Figure 4 shows the equivalent tree representation for this domain.
Eachnodein the tree corresponds to a quadrant in the domain, and
its child nodes correspond to the subdivisions of the quadrant. For
example, nodes (b) and (bm) correspond to the4 × 4 quadrants.
Interior nodesare nodes with descendants, e.g., (b). Leaf nodes
have no descendants, e.g., (d). The set ofancestorsfor a noden is
composed by its parent (i.e., immediate ancestor) and its parent’s
ancestors. Each node in the tree has an associated levell. The level
of the root nodeis 0, and a node’s level is equal to its parent level
plus1. Max-levelis the maximum level of any node in the tree, 3 in
this example. The node level encodes the quadrant’s size (d × d),

whered = 2(max-level−l).

as ax bc bhx ac ah am

id f k n p s u

l o q t vje g

c h m r

b w ar bm

a

z ab ae ag aj al ao aq

aa ad af ai ak an apy

au aw az bb be bg bj bl

av ay ba bd bf bi bkat

bp br bu bw bz cb ce cg

bq bt bv by ca cd cfbo

bn bs bx cc

Figure 4: Tree representation

Figure 3 shows acompletequadtree where the domain is divided to
the finest resolution. For many applications, homogeneous sibling
nodes can beaggregatedinto a single parent node according to a
data-specific criteria. Figure 5 shows a(8× 8) domain, where var-
ious nodes have been aggregated into their respective parent nodes.
E.g., node (bm) corresponds to an aggregation of all of its descen-
dants.

c

j

0

1

2

3

5

6

7

8

4

i

0 1 2 3 4 5 6 7 8

h

m r

bm

aa ab

y z

ah

ac

am

bc

as

bh

ax

Figure 5: Aggregated quadtree

A linear quadtreerepresentation [12] captures the structured of a
quadtree by assigning a key to each quadrant. A quadrant’s key
implicitly encodes the quadrant’s location and size, allowing the
mapping and storage of a quadtree in a flat structure such as a 1D
array. In our implementation we use keys of the form(i, j, l) to
uniquely identify a quadrant.(i, j) is the coordinate of the quad-
rant’s lower-left corner in a regular grid at the finest resolution. l

is the quadrant’s level in the tree. For example, use an8 × 8 reg-
ular grid as a coordinate system for the domain shown in Figure 3.
Then, assign each quadrant the coordinates of its lower-left corner
in the grid. Notice that in various instances a child node (the lower-
left quadrant of a larger quadrant) has the same grid coordinates as
its ancestors. The level in a quadrant’s key disambiguates this situ-
ation and also encodes the quadrants size. For example, the key for
quadrant (ay) is (2, 4, 3) and its parent’s (ax) is (2, 4, 2).

euclid3/libsrc/etree.h

1 typedef enum {
2 ETREE_INTERIOR = 0,
3 ETREE_LEAF
4 } etree_type_t;
5
6 /*
7 * - (x, y, z, t) is lower left corner
8 * - t is the time dimension for 4D etrees
9 * - level is the octant level
10 * - type is ETREE_LEAF or ETREE_INTERIOR
11 */
12 typedef struct etree_addr_t {
13 etree_tick_t x, y, z;
14 etree_tick_t t;
15 int level;
16 etree_type_t type;
17 } etree_addr_t;

euclid3/libsrc/etree.h

Figure 6: Etree address structure

4.2 The etree library
The CMU etree library [28, 29] provides a capability to access large
octree datasets stored on disk. The etree library represents a spa-
tial dataset as an octree using linear quadtree representations and
efficiently stores the data in aB-treeindexing structure [7].

Applications manipulate datasets as octrees, possibly exploiting the
hierarchical data representation. The etree API functionsallow ap-
plications to perform various operations on octrees, such as, search,
insert, delete and update nodes. The library uses a linear quadtree
representation in the API to refer to individual quadrants.When re-
ferring to a quadrant, applications specify a linear key of the form
(x, y, z, level) in a etree addr t structure (Figure 6).

In order to provide efficient access to the data, the library maps the
octree structure to a B-tree index. Internally, the libraryconverts
theetree addr t to a locational code [12], which is a variant of
theMorton code[19]. The locational code is used as a key to store
and search a quadrant in a B-tree structure. The total ordering pro-
duced by the locational and Morton codes is known asz-ordering
or Peano curve[20]. This ordering is known to have good spatial
clustering properties.

5. THE TREE CACHE
The tree cache is a user-level C library that exploits application-
specific information to speed up queries to large octree datasets.
It implements a set of techniques to avoid performing expensive
data fetches when possible. These techniques include (1)fine-level
caching of individual octants, (2)approximate-value query, and (3)
query reordering,

Figure 7 shows an overview of the tree cache. When the tree cache
receives a request, it looks the octant up in the cache. If theoctant is
not found, the cache fetches the node data through the data access
interface. The etree library provides the data access method for
locally stored octree datasets. The Remote Cache Protocol (RCP)
provides access to datasets stored at remote locations. This design
allows the instantiation of the cache in various scenarios (client ap-
plication, proxy, server) using the same implementation. In addi-
tion, this design allows applications to uniformly access datasets
whether they are stored at a local or remote location.

ha
sh

re
tu

rn
co

nt
en

t

exact
lookup?

D
at

a
A

cc
es

s
In

te
rf

ac
e

Tree cache

miss miss

yes:
exact hit

yes:
ancestor hit

response : node data

request : (x,y,z), level, min_level, comp_fn

an
ce

st
or

ad
dr

es
s

ancestor
lookup?

Octree
dataset

A
pp

lic
at

io
n ne

ig
hb

or
ad

dr
es

s

fe
tc

h
no

deneighbor
lookup?

miss

in
se

rt
 in

ca

ch
e

Figure 8: Tree cache lookups

Application

Remote data
access client

Data
Access
Interface

Cache API

Remote data
access server

T
ree cache library

Tree cache

local
dataset

Etree libraryRemote
Cache
Protocol

Remote
Cache
Protocol

Figure 7: Tree cache overview

Fine-level caching of individual octants. The tree cache caches
individual octree nodes (i.e., octants). Nodes are identified by their
(x, y, z, level) coordinates. These fixed-length linear keys make
cache lookup consistent, uniform and fast regardless of theobject
requested by the application, e.g., line, plane, volume, since the
cache receives only a sequence of requests for nodes. Sharing of
cached objects across requests is straightforward.

Figure 8 illustrates the steps that occur during cache lookups. The
application requests a node, specifying the node’s(x, y, z, level)
coordinates. The cache hashes the node coordinates to performs
anexact lookup, comparing the node’s spatial address with the ad-
dresses of nodes stored in the cache. If there is a match we have an
exact hit, otherwise, we have anexact miss.

Approximate-value query. The approximate-value query tech-
nique decreases mean latency for queries and enables extended
functionality for applications, e.g., multi-resolution queries. This
technique requires that not only leaf nodes but also the interior
nodes are stored in the octree dataset. On an exact miss, the cache
performs anancestor lookupby iteratively computing ancestor’s

coordinates and looking them up until either an ancestor is found
or an application-specified minimum node level≥ 0 is reached.
Since an interior node is an aggregate representation of itsdescen-
dants, when an ancestor is found the cache invokes an application-
specified function to determine whether the ancestor satisfies the
application requirements. When an suitable ancestor node is found
we have anancestor hit, otherwise, we have anancestor miss.

Query reordering. The order in which octants are retrieved from
the dataset influences the query response time when the pagescon-
taining these octants are not in the OS cache, nor in the database
buffer. The goal is to reduce query latency by exploiting thespatial
locality produced by etree’s storage representation on disk. Fetch-
ing the missing octants in the same order they are stored increases
the probability of a request being satisfied from the database cache,
thus reducing disk accesses and query latency.

6. EVALUATION
Our evaluation intends to answer the following question:What is
the query latency reduction obtained with an application-aware
cache? We evaluate the effectiveness of various tree cache tech-
niques when querying the CVM dataset (Section 2.1). In particu-
lar, we look at the following techniques: (1) fine-level caching, (2)
approximate-value query, and (3) query reordering.

Experimental Setup: The CVM dataset for these experiments con-
tains both leaf and interior nodes and its size on disk is 10 GB(See
Figure 9).

Leaf octants 71,041,024
Interior octants 10,148,729
Total number of octants 81,189,753
Payload size 100 B
Total storage requirement 10 GB

Figure 9: CVM dataset characteristics

We used 3 query traces that are representative for the queries per-
formed by a user to the CVM service during an interactive session.
Each trace is divided into a series of steps. Each step corresponds
to a request for an image in a zoom-in, pan, zoom-out sequence.
The first step in a trace corresponds to a request for a large ROI
at low resolution. Following requests are for smaller regions at

Trace name Steps # Points

Vertical 5 15.440
Horizontal 10 91.190
Volume 10 364.168

Figure 10: Query traces characteristics

higher resolutions. Figure 10 shows the total number of points and
steps for each number trace. The first two traces correspond to 2D
requests for vertical and horizontal slices respectively.The third
trace corresponds to requests for 3D volumes.

Parameter Values

Tolerance 0 (exact), 0.0001 (approx)
Num. entries 0, 16K, 32K, 64K, 128K
Trace vertical, horizontal, volume
Order random, xyz, z-order

Figure 11: Parameter values for the experiments

Each experiment using a particular trace is divided in 3 phases: The
first phase is thewarmup phaseand is composed by the queries for
a given trace (e.g., 10 requests for the volume trace in the order
they appear in the trace). This phase warms up the tree cache and
the database buffer. The second phase is thepollution phaseand
consists of 30 unrelated query steps, with a total of 86962 points.
The third phase is thequery phase, it consists of the queries for the
trace, i.e., the same requests performed in the warmup phasein the
order they appear in the trace.

0

5

10

15

20

25

0 1 64 128 256 512 768

Q
ue

ry
 la

te
nc

y
(s

ec
on

ds
)

Buffer cache size in MB

Case: Volume zoom (warm)

Random
xyz

Z-order

Figure 12: Latency for the query phase in the volume trace
without a tree cache

We used the values shown in Figure 11 for the tolerance, number of
cache entries, trace type and query order parameters. To establish
how query order affects query latency, we performed querieswith
different orders as follows: we reordered the points withina step
(request) of a trace for all steps in that trace, both in the first (warm-
up) and last (query) phases. We used three orders:random, xyz,
z-order. In the random order we randomized the query order using
standard C functions. The xyz order corresponds to the standard
order used by the application where the X coordinate varies the
fastest and Z the slowest. In z-order the points are in the ascending

order given by the scalar value of their corresponding locational
code, i.e., z-order.

All experiments executed with a warm OS cache. Each experiment
execution started with a cold database cache and a cold tree cache,
which were warmed up after the first phase of the query trace. We
measured query latency for each phase. We performed these exper-
iments on a PIII 1 GHz machine with 3 GB memory and a Ultra
SCSI 160 controller and disk, running the Linux 2.4.20 kernel. We
reserved 640 MB for the database buffer cache, and the required
memory for the tree cache was drawn from the OS-managed page
cache. The size of the memory required for the tree cache varied
from 0 to 10.5 MB.

Entries Exact (sec) Approximate (sec)
(K) rand xyz z-ord rand xyz z-ord
0 10.31 9.66 9.57 10.28 9.63 9.52
16 10.46 9.71 9.60 9.89 9.30 9.12
32 8.88 8.16 8.06 7.43 6.80 6.71
64 4.98 4.63 4.55 3.19 2.93 2.81
128 0.89 0.83 0.78 0.12 0.07 0.02

Figure 13: Query phase latency in seconds for the volume trace

Effectiveness of application-independent caching. First, we want
to determine the resulting query latency when only the system level
caches are used and use this as a baseline. We compare the ob-
served query latency for various sizes of the database buffer cache.
Figure 12 shows the query latency without tree cache for the vol-
ume trace. The X axis is the database buffer size in megabytes.
The Y axis is the average query latency in seconds. Notice that
diminishing returns are obtained as the size of the databasebuffer
increases.

Effectiveness of application-aware caching. To measure the ef-
fectiveness of the tree cache, we want to compare the elapsedtime
for queries with and without the tree cache. Figure 13 contains the
average elapsed time for the volume trace when both the database
and OS caches are warm. The other two query traces produce sim-
ilar results and are not shown here. The first row in Figure 13 (zero
entries) corresponds to the query latency with no tree cache, and is
the baseline case.

Figure 14 shows the elapsed time vs. tree cache size for the data
in Figure 13. The units for the X axis are the cache size in number
of entries. The Y axis is the average query-phase elapsed time.
Each line corresponds to a set of experiments with a fixed tolerance
value (exact vs. approximate) and query ordering. The average
query latency decreases as the tree cache size increases. Once the
tree cache is large enough, most requests are quickly servedfrom
the tree cache, reducing the query latency by an order of magnitude.

Discussion. We are interested in knowing how each tree cache
technique contributes to the latency reduction. To determine the
contribution of fine-level caching, consider how the presence of a
tree cache affects query latency for exact queries. The top three
lines labeledexact random, xyz and z-orderin Figure 14 show the
query latency for exact queries. Clearly, fine-level caching pays
dividends by reducing the latency by up to an order of magnitude
compared to the case when no fine-level caching is used (left-most
point of the top three lines).

 0

 2

 4

 6

 8

 10

 12

0 K
(0 MB)

16 K
(1.3 MB)

32 K
(2.6 MB)

64 K
(5.2 MB)

128 K
(10.5 MB)

E
la

ps
ed

 ti
m

e:
 S

ec
on

ds

Cache size: Number of entries (Required memory in MB)

Case: Volume zoom (warm)

Exact random
Exact xyz

Exact ordered
Approx random

Approx xyz
Approx ordered

Figure 14: Latency for the query phase in the volume trace

To determine the effectiveness of the approximate-value query tech-
nique, we compare the latency obtained for exact queries against
the latency obtained for approximate queries for a given cache size.
The bottom three curves in Figure 14 (approx. random, xyz and
z-order) correspond to the latency observed for approximate-value
queries. For a given cache size, the query latency is consistently
lower for approximate-value queries. For example, for 64K entries,
exact queries have a 40% latency reduction, whereas approximate
queries have a 50% reduction. Overall, approximate-value queries
contribute an additional 10% reduction in query latency. Once the
cache is large enough (128K entries in this case) the query latency
for approximate-value queries and exact queries is the same. The
use of approximate-value queries allows interactive applications to
perform tradeoffs between query latency, accuracy and memory re-
quirements.

To determine the effect of query reordering, we compare the ob-
served latency for traces with different orders. In Figures13 and 14
we can see that, although queries in z-order have lower latency, the
difference is not significant. Reordering query points doesnot pro-
vide an additional benefit when the OS page cache is warm. Once
the B-tree pages are in the OS page cache, the access cost for any of
those pages is approximately the same. We expect query reordering
to result in lower query latency when the requested items arenot in
the database buffer nor in the OS page cache.

In summary, our evaluation indicate that the use of a small application-
aware cache can effectively reduce the average query time upto one
order of magnitude over the case when only system level caches.

7. CONCLUSIONS
Using application-level information and dataset-specificstructure
in a small application-aware cache reduces query latency tolarge
datasets. As dataset sizes grow it becomes more important tomain-
tain low query latency in order to support interactive exploratory
tools. Our evaluation shows that the tree cache reduces query la-
tency by one order of magnitude over the case when only system
level caches are used. It is able to do so by exploiting the structure
of octree datasets and allowing applications to relax the accuracy
requirements of the queries to the dataset.

The results of the tree cache evaluation are encouraging. Inthe

near future we will implement other techniques in the tree cache,
such as approximate-distance queries, and octant prefetching. In
approximate-distance queries, the application relaxes the accuracy
constraints allowing a query to be satisfied with a cached octant
that is close to the requested octant (i.e., a neighbor). Theidea
behind octant prefetching is to batch requests for missed octants in
a single transaction. We expect this technique to be very effective
in reducing access time to remote datasets, as access time toremote
datasets is dominated by the round trip time between the local and
remote hosts. Batching multiple transactions in a single requests
serves as a prefetching mechanism and amortizes the round trip
time cost.

8. REFERENCES
[1] V. Akcelik, J. Bielak, G. Biros, I. Ipanomeritakis,

A. Fernandez, O. Ghattas, E. Kim, J. López, D. O’Hallaron,
T. Tu, and J. Urbanic. High resolution forward and inverse
earthquake modeling on terasacale computers. In
Proceedings of Supercomputing SC’2003, Phoenix AZ,
USA, Nov 2003. ACM, IEEE. Available at
www.cs.cmu.edu/˜ejk/sc2003.pdf .

[2] C. L. Bajaj, V. Pascucci, D. Thompson, and X. Y. Zhang.
Parallel accelerated isocontouring for out-of-core
visualization. InProc. of the Symp. on Parallel Visualization
and Graphics, pages 97–104. IEEE, ACM Press, 1999.

[3] M. Beynon, R. Ferreira, T. M. Kurc, A. Sussman, and J. H.
Saltz. Datacutter: Middleware for filtering very large
scientific datasets on archival storage systems. InSymp. on
Mass Storage Systems, pages 119–134. IEEE, 2000.

[4] R. E. Bryant and D. O’Hallaron.Computer Systems: A
Programmer’s Perspective. Prentice Hall, 2003.

[5] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-grained
sharing in page server database systems. InProc. ACM
SIGMOD Conf.ACM, 1994.

[6] Y.-J. Chiang, R. Farias, C. T. Silva, and B. Wei. A unified
infrastructure for parallel out-of-core isosurface extraction
and volume rendering of unstructured grids. InProc. Symp.
on Parallel and Large-data Visualization and Graphics,
pages 59–66. IEEE, IEEE Press, 2001.

[7] D. Comer. The ubiquitous B-tree.Computing Surveys,
2(11):121–138, 1979.

[8] K. Czajkowski, M. Thiebaux, and C. Kesselman. Practical
resource management for grid-based visual exploration. In
High Performance Distributed Computing HPDC’01, 2001.

[9] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and
M. Tan. Semantic data caching and replacement. In T. M.
Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda,
editors,VLDB’96, Proc. 22th Int. Conf. on Very Large Data
Bases, pages 330–341, Bombay, India, Sep 1996. Morgan
Kaufmann.

[10] M. Day, B. Liskov, U. Mahashwari, and A. C. Myers.
References to remote mobile objects in thor.ACM Letters on
Programming Languages and Systems, 2(1–4):115–126,
Mar–Dec 1993.

[11] D. DeWitt, P. Futtersak, D. Maier, and F. Velez. A studeyof
three alternative workstation-server architectures for
object-oriented databases. InProc. VLDB Conf., 1990.

[12] I. Gargantini. Linear octree for fast processing of
three-dimensional objects.Computer Graphics and Image
Processing, 20(4):365–374, 1982.

[13] A. Guttman. R-trees: A dynamic index structure for spatial
searching. InProc. Intl. Conf. on Management of Data,
pages 47–57, Boston, MA, Jun 1984. ACM SIGMOD.

[14] A. Ivan and V. Karamcheti. Using views for customizing
reusable components in component-based frameworks. In
Proc. 12th High Performance Dist. Computing (HPDC’03),
Seattle, WA, Jun 2003.

[15] G. Lai, M. Liu, F.-Y. Wang, and D. Zeng. Web caching:
architectures and performance evaluation survey. InConf. on
Systems, Man, and Cybernetics, pages V5: 3039–3044.
IEEE, Oct 2001.

[16] J. Lopez, T. Tu, and D. O’Hallaron. CVMs: Community
Velocity Model service.http://cvm.cs.cmu.edu ,
2002.

[17] H. Magistrale, R. Graves, and R. Clayton. A standard
three-dimensional seismic velocity model for southern
California: version 1.EOS Transactions AGU, 79:F605,
1998.www.scecdc.scec.org/3Dvelocity/
3Dvelocity.html .

[18] J. Morris, M. Satyanarayanan, M. Conner, J. Howard,
D. Rosenthal, and F. Smith. Andrew: A distribute personal
computing environment.Communications of the ACM, Mar
1986.

[19] G. M. Morton. A computer oriented geodetic database anda
new technique in file sequencing. Technical report, IBM,
Ottawa, Canada, 1966.

[20] H. Sagan.Space Filling Curves. Springer, 1994.

[21] H. Samet.Applications of Spatial Data Structures: Computer
Graphics Image Processing and GIS. Addison-Wesley, 1989.

[22] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki,
E. Siegel, and D. Steere. Coda: A highly available file
system for a distributed workstation environment.IEEE
Transactions on Computers, 39(4):447–459, Apr 1990.

[23] A. Silberschatz and P. B. Galvin.Operating System
Concepts. Addison-Wesley, 3rd edition, 1991.

[24] A. Silberschatz, H. F. Korth, and S. Sudarshan.Database
Systems Concepts. McGraw-Hill, 4th edition, Oct 2001.

[25] Southern California Earthquake Center. Community velocity
model (SCEC/CME).www.scec.org/cme .

[26] M. Stonebraker. Operating system support for database
management.Communications of the ACM, 24(7):412–418,
Jul 1981.

[27] P. M. Sutton and C. D. Hansen. Accelerated isosurface
extraction in time-varying fields.Transactions on
Visualization, 6(2), Apr-Jun 2000.

[28] T. Tu, J. Lopez, and D. O’Hallaron. The Etree library: A
system for manipulating large octrees on disk. Technical
Report CMU-CS-03-174, Carnegie Mellon School of
Computer Science, Pittsburgh, PA, July 2003.

[29] T. Tu, D. O’Hallaron, and J. Lopez. Etree – a
database-oriented method for generating large octree meshes.
In Proceedings of the Eleventh International Meshing
Roundtable, pages 127– 138, Ithaca, NY, Sep 2002.

[30] M. van Kreveld, R. van Oostrum, C. Bajaj, D. Schikore, and
V. Pascucci. Contour trees and small seed sets for isosurface
traversal. InProc. 13th Symp. on Computational Geometry,
pages 212–219, Nice, France, Jun 1997. ACM, ACM Press.

[31] J. Vitter. External memory algorithms and data structures:
Dealing with massive data.ACM Computing Surveys,
33(2):209–271, June 2001.

