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Abstract

Irregular applications based on sparse matrices are at the core of many important scientific computations. Since the
importance of such applications is likely to increase in the future, high-performance parallel and distributed systems
must provide adequate support for such applications. We characterize a family of irregular scientific applications and
derive the demands they will place on the communication systems of future parallel systems. Running time of these
applications is dominated by repeated sparse matrix vector product (SMVP) operations. Using simple performance
models of the SMVP, we investigate requirements for bisection bandwidth, sustained bandwidth on each processing
element (PE), burst bandwidth during block transfers, and block latencies for PEs under different assumptions about
sustained computational throughput. Our model indicates that block latencies are likely to be the most problematic
engineering challenge for future communication networks.
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About this Report

This report is an extended version of a paper presented at the Fourth International Symposium on High
Performance Computer Architecture, Las Vegas, Nevada, February 1998.

The Spark98 suite [14], a collection of 10 portable sequential and parallel SMVP kernels written in C
and based on this report’s sf10 and sf5 meshes, is available at www.cs.cmu.edu/ quake/spark98.html. The
complete set of partitioned San Fernando meshes is available at www.cs.cmu.edu/ quake/meshsuite.html.
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1 Introduction

The peak performance of the commodity processors in modern parallel systems is doubling every couple
of years. Clearly, communication performance needs to improve as processor performance increases, but
the question is how much and in what respects. It is crucial to understand communication requirements
because some parts of a high-performance communication system cannot be commodity, and will therefore
be expensive.

In general it is important to understand the communication requirements of real applications [5, 10],
and these requirements are especially difficult to characterize for the important class of irregular scientific
applications that manipulate sparse matrices. Such applications typically model natural phenomena like the
flow of air over an airplane wing or the distribution of stresses and strains in a bridge, and tend to be large,
complex, and poorly understood.

This report addresses the following question: as microprocessors in parallel systems continue to improve,
how much must communication systems improve to run irregular applications efficiently? Specifically, we
address this question for the Quake applications, a family of three-dimensional unstructured finite element
simulations. The Quake applications, described in Section 2, simulate the motion of the ground during strong
earthquakes. They were developed as part of an ongoing project at Carnegie Mellon to model earthquakes
in the Los Angeles Basin and other alluvial valleys [2].

The running time of the Quake applications is dominated by a sparse matrix-vector product (SMVP)
operation that is repeated thousands of times, and the SMVP is the only operation besides I/O that requires
the transfer of data between processors. Thus, as modelers we can focus on understanding the behavior of the
SMVP operation and abstract away much of the complexity of the application. We derive a simple perfor-
mance model for operations that consist of separate computation and communication phases—particularly
the SMVP—in Section 3. In Section 4, we describe how to estimate the machine-specific parameters in the
model, and we validate the model on a real machine.

In Section 5 we apply the model to derive requirements for (1) bisection bandwidth, (2) sustained
communication bandwidth per processing element (PE), and (3) block transfer latency and burst bandwidth,
under various assumptions about efficiency and local MFLOP rates. (We use processing element instead of
the common term node to avoid confusion with the nodes of finite element meshes.)

Our detailed characterizations of the requirements of the Quake applications reveal that bisection
bandwidth is not important for irregular finite element applications; bandwidth at each PE is what matters.
For systems with a sustained computational rate of 200 MFLOPS, PEs will need about 300 MBytes/sec of
sustained bandwidth and 600 MBytes/sec of burst bandwidth to run irregular codes with good efficiency.

Our work is similar in spirit to that of Cypher, Ho, Konstantinidou, and Messina [5], who characterize
eight regular and irregular scientific applications in terms of memory, processing, communication, and I/O
requirements, and build scalability models for three of the simpler regular applications. However, our
approach is different in that our goal is depth rather than breadth. We provide a detailed characterization for
a specific family of irregular applications that are real (in the sense that people really care about the results
that the Quake applications compute), that we understand completely, that we have complete control over,
and that we can make arbitrarily large or small by adjusting the frequency of ground motion.

To show that the generality of our model seems to extend beyond this single family of irregular
applications, we observe that there is some evidence that the Quake applications are typical of unstructured
finite element simulations. For example, the EXFLOW application from Cypher et al. [5] is a 3D unstructured
finite element program that simulates a fluid dynamics problem on 512 PEs. Interestingly, EXFLOW has
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nearly identical computational properties as a similarly sized Quake application (called sf2/128, which
resolves a wave with a two-second period on 128 PEs). EXFLOW and Quake each require about 2 MBytes
of data on each PE. The communication volume/MFLOP is 144 KBytes for EXFLOW, vs. 155 KBytes for
Quake. The average number of messages/MFLOP is 66 messages for EXFLOW, vs. 60 messages for Quake.
And the average message size is 2.2 KBytes for EXFLOW, vs. 3.6 KBytes for Quake.

These two unstructured finite element applications are from two different scientific domains, yet each
has similar computational properties and differs from regular applications in similar ways. Irregular finite
element applications like EXFLOW and Quake have an average total communication volume similar to that
of the regular applications studied earlier by Cypher et al. [5], but they transfer more messages having a
smaller average size than most of those regular applications. Perhaps our most troublesome conclusion is
that because the blocks transferred between PEs tend to be small even for large irregular applications, block
latency costs cannot be amortized by large messages, and communication latency will need to be a central
focus of future efforts to engineer effective communication networks and software.

2 The family of Quake applications

The Quake applications are unstructured finite element codes that were developed to predict ground motion
in the San Fernando Valley of Southern California during earthquakes [2]. There are four Quake applications,
denoted sf10, sf5, sf2, and sf1. The “sf” is an abbreviation for San Fernando, and the number indicates the
period (in seconds) of the highest frequency wave that the simulation is able to resolve. For example, sf10
resolves waves with 10 second periods, sf5 resolves waves with 5 second periods, etc.

Each Quake application consists of (1) a three-dimensional unstructured finite element model of the
ground beneath San Fernando, and (2) a parallel finite element program that simulates the propagation of
seismic waves through the model for 60 seconds of simulated time.

2.1 Quake finite element models

Each Quake application employs a three-dimensional unstructured mesh, composed of thousands or millions
of tetrahedra (i.e., pyramids with triangular bases), and models a volume of earth roughly 50 km x 50 km x
10 km in size (Figure 1). Each tetrahedron is called an element, and the vertices of the tetrahedra are called
nodes. Some finite element simulations use structured meshes constructed from regular grids; however, the
Quake applications require unstructured meshes, which can accommodate the wildly varying density of the
soils in the valley. To ensure that the simulation is numerically stable, the size of elements in any region of
the mesh must be matched to the wavelength of ground motion, which is shorter in softer soils and longer
in hard rock. Thus, softer soils need a higher density of smaller elements.

Figure 2 records the sizes of the San Fernando meshes. When the wave’s period is halved, its frequency
doubles, and the number of nodes increases by a factor of nearly eight—a factor of two for each of three
dimensions. As a general rule, for each node in the mesh, a simulation uses about 1.2 KByte of memory at
runtime to accommodate the storage of several vectors and sparse matrices. For example, sf2 requires about
450 MBytes of memory at runtime.

2.2 Parallel finite element simulations

During each of 6000 time steps, a Quake finite element simulation executes a sparse matrix-vector product
(SMVP) operation of the form , where and are vectors of length 3 (here is the number of
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Figure 1: Finite element mesh for the sf10 model of the San Fernando Valley.

Number of sf10 sf5 sf2 sf1

nodes 7,294 30,169 378,747 2,461,694
elements 35,025 151,239 2,067,739 13,980,162
edges 44,922 190,377 2,509,064 16,684,112

Figure 2: Sizes of the Quake meshes.

nodes), and is a sparse 3 3 stiffness matrix. Because an explicit time-stepping method is used, there
are no other parallel operations (such as dot products or preconditioning). The vectors and have length
3 because each vector represents three degrees of freedom— , , and displacements—for each node of
the mesh. can be likened to an adjacency matrix of the nodes of the mesh; contains a 3 3 submatrix
for each pair of nodes that are connected by an edge of the mesh (including self-edges). The stiffness matrix
is extremely sparse; each node is connected to an average of 13 neighbors (in addition to itself), so each row
of contains an average of 14 3 42 nonzero floating point numbers [15].

The simulations are parallelized using Archimedes, a domain-specific tool chain for finite element
problems [2, 17]. To generate a simulation that will run on PEs, Archimedes partitions the mesh
into disjoint sets of elements. Each set is called a subdomain; a one-to-one mapping is established
between PEs and subdomains. The program that partitions each mesh into subdomains is based on a
recursive geometric bisection algorithm [12] that divides the elements equally among the subdomains while
attempting to minimize the total number of nodes that are shared by multiple subdomains, and hence the
total communication volume. The geometric partitioning algorithm has provable asymptotic upper bounds
on the number of shared nodes, and in practice generates partitions that are competitive with those produced
by other modern partitioning algorithms [7, 3, 8].
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Figure 3: A finite element mesh and corresponding stiffness matrix , distributed between two PEs. Each
X represents a 3 3 submatrix.

2.3 The Parallel SMVP

The running time of the Quake applications is dominated by the execution of SMVP operations, which
consume over 80% of the total running time in the sequential case. Furthermore, the SMVP operations are
the only operations (besides I/O) that require interprocessor communication. So even though the Quake
applications are complicated, we can abstract away most of the complexity and focus on the performance
of a simple well-defined parallel SMVP kernel.

To compute the global SMVP operation on a set of PEs, we must consider the data distribution
by which vectors and matrices are stored. The vectors and are stored in a distributed fashion according
to the mapping of nodes to PEs induced by the partition of elements among PEs. If a node resides in
several PEs (because is a vertex of several elements mapped to different PEs), the values and are
replicated on those PEs. The matrix is distributed so that resides on any PE on which nodes and
both reside. Figure 3 demonstrates this method of distributing data.

With this method of distributing data, the global SMVP is performed in two steps. First, each
PE computes a local SMVP over the subdomain that resides on that PE. Second, PEs that share nodes
communicate and sum their nodal values into correct global values for each node. In Figure 3, PEs 1 and
2 must communicate with each other to resolve the values of the shared nodes 4, 5, and 6.

3 An SMVP performance model

Each global SMVP consists of a simple sequence, executed simultaneously on each PE: a local SMVP
(the computation phase) followed by an operation in which each PE exchanges and sums data with each
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Parameters for Equation (1)
flops per PE per SMVP
maximum communication words per PE per SMVP
target efficiency
amortized time per flop (inverse of sustained flops)

Parameters for Equation (2)
maximum communication blocks per PE per SMVP
maximum communication words per PE per SMVP
time per communication block (block latency)
time per additional block word (inverse of burst bandwidth)

Computed quantities
running time for sparse matrix-vector product (SMVP)
running time for computation phase of SMVP
running time for communication phase of SMVP
amortized time per comm word (inverse of sustained bandwidth)
upper bound on relative overestimate of communication time
average message size (words)

Figure 4: Summary of symbols.

PE it shares nodes with (the communication phase). The computation and communication phases are
synchronous, i.e., each phase begins with a global barrier synchronization.1 Further, we assume (1) that
during the communication phase, the summing operations are overlapped with the exchanges, and (2)
that the time to perform the exchanges determines the running time of the communication phase. These
assumptions are reasonable, as the summing operations can be handled by the PE and the exchanges by a
network interface.

Given these assumptions, the running time for each global SMVP is

where is the time required for all PEs to finish their computation phases, and is the time
required for all PEs to finish their communication phases. For reference, Figure 4 summarizes all symbols
introduced in this section.

3.1 Model of the computation phase

The unit of work for the computation phase is a floating-point operation (flop), which is either a scalar add
or multiply. Although the flop is not an ideal way to measure work in every application, it is reasonable for
the SMVP operation because the (minimum) number of flops each PE must perform can be counted exactly
and is independent of the compiler and its optimization level. If a PE’s local matrix has nonzeros, then
the local SMVP requires at least 2 flops; one add and one multiply for each nonzero. If each flop
requires an average time of , then the running time for a local SMVP is . Modern mesh partitioners

1It is in principle possible, with difficult modifications to the applications, to improve performanceby overlapping the computation
and communication phases, but the implementations of the Quake application do not do this, so the models in this section follow
suit. (This report undertakes to discuss how architects can accommodate scientific users, and not vice versa.) By not modeling
any overlap, we obtain conservative bandwidth and latency estimates, and avoid possibly slowing the program by complicating the
runtime system.
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P MNI

PE

network

input linkoutput link

memory bus

Figure 5: Processing element (PE) model (P: processor, M: memory system, NI: network interface).

do an excellent job of distributing computation evenly across PEs [15], so we will assume that each PE
performs 2 flops and thus the running time for the computation phase is

Since includes all hardware and software overheads (e.g., loads, stores, various miss penalties, pipeline
stalls, etc.) it is difficult to predict. However, can be precisely measured for a particular application
running on a particular system. For example, measurements of the local SMVPs from the Quake applications
show a steady 30 ns for the Cray T3D (150 MHz Alpha 21064, cc -O3) and 14 ns for the Cray
T3E (300 MHz Alpha 21164, cc -O3).

3.2 High level model of the communication phase

The hardware part of the communication system of a PE is modeled as a network interface (NI) with an
input link and output link, as shown in Figure 5.

The running time of the communication phase is given by

where is the maximum number of words communicated by any PE during the communication phase
and is the average time per communication word. The rate 1 is the sustained bandwidth across the
links of the network interface during the communication phase. includes the time to transfer data in and
out of a PE, as well as all software and hardware overheads.

We define the efficiency to be the proportion of SMVP time devoted to computation; that is,
. Given this definition, 1 . We have seen that

, and hence
1

(1)

Equation (1) describes at a high level the relation between sustained computation bandwidth ( 1) and
sustained communication bandwidth ( 1). The model is interesting because it cleanly separates the various
factors that relate computation performance to communication performance: The computation/communi-
cation ratio is a property of the application and the partitioner; is a property of the processor
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architecture and compiler; is a target efficiency imposed by the user. This separation of factors is similar
in spirit to the familiar CPI model for uniprocessor performance [9].

In Section 5 we use Equation (1) to investigate the following question: given a target efficiency
for an SMVP running on PEs with local computational rates of 1, what is the required communication
performance of the system? The answers to this question provide insight, for this class of applications,
into the sustained performance we need from our communication systems as processor speeds continue to
increase.

3.3 Low level model of the communication phase

Equation (1) provides a high level model of sustained performance in terms of streams of words being
transferred between memory and the network interface. However, in a lower level and more realistic view
of communication, the unit of work during the communication phase is the transfer of a block between the
network and the local memory system of the PE. The time for this transfer is called the block transfer time.
A block is a transfer unit, a group of words that move together from one PE to another. Blocks may be fixed-
sized or variable-sized. For example, a block might be a cache line in a CC-NUMA system [11], a message
in a message passing system [13], a bulk asynchronous data transfer between two PEs’ memories [16], or a
page in a software distributed shared memory system [1].

The transfer time for a block of words is , where is the constant block latency, is the
constant marginal cost of transferring each additional word, and 1 is the burst bandwidth. Notice that the
block latency does not include any delay through an interconnection network. We only model the overhead
of transferring data between the network interface and local memory, in view of previous findings that most
of the cost of communication on modern systems is incurred at the individual PEs [18]. In essence, we
assume that the interconnection network has infinite capacity and constant latency. In Section 4.2, we offer
empirical evidence that this is a reasonable assumption for the SMVP running on tightly coupled systems.

Modern mesh partitioners do an excellent job of balancing computation ( ) and a good job of minimizing
the global volume of communication. Unfortunately they do less well in balancing the total number of blocks

and the total volume in words sent and received by each PE [15]. As a simplifying assumption, we
pessimistically assume that the PE that transfers the maximum number of words ( ) is the same PE that
transfers the maximum number of blocks ( ). In this case, the same PE has the longest communication
phase, and thus

Finally, since , we have

(2)

and are properties of the communication system, including the architecture, hardware implementation,
and software libraries. In Section 4.2, we describe a simple method of estimating these parameters on real
systems. For the Cray T3E, our measurements indicate that 22 s and 55 ns.

For message-passing systems, (the maximum number of blocks transferred by one PE) is purely
a property of the application and the partitioner, but on shared-memory systems it is also a property of the
architecture, as the data sent from one PE to another may have to be broken up into multiple blocks (i.e., cache
lines). Thus, Equation (2) characterizes sustained communication bandwidth during the communication
phase of the SMVP in terms of basic properties of the communication system and the application. In
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subdomains sf10 sf5 sf2 sf1

4 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00

16 1.09 1.10 1.07 1.00
32 1.01 1.01 1.15 1.00
64 1.03 1.08 1.11 1.05

128 1.03 1.04 1.04 1.11

Figure 6: Computed upper bounds on , the maximum factor by which and are overestimated
for each Quake application.

Section 5, we use this model to explore bandwidth and latency tradeoffs in communication systems as the
base microprocessors continue to improve.

The models in Equations (1) and (2) are similar in some ways and different in others to the LogP
model [4]. LogP is a general performance model for bulk-synchronous parallel (BSP) computations [19],
where a program is viewed as a series of supersteps separated by barrier synchronizations. During a
superstep, each PE performs local computation and transfers a limited number of messages. The models
we have developed are for a restricted class of BSP programs where each superstep (SMVP) consists of
a distinct computation phase followed by a distinct communication phase. In general, our models view
performance at a lower level of abstraction than LogP. The parameters , , , , and have no
counterparts in LogP. On the other hand, our parameter is similar to the overhead parameter in LogP.

3.4 Error bound

In deriving Equation (2), we assume that the PE with the most words to communicate also has the most
blocks to communicate. In practice this assumption may not be true. The question is, by how much do we
overestimate (and thus ) as a result? For a given partitioned mesh, this question is easy to answer if
we know the machine parameters (block latency) and (inverse burst bandwidth). However, we would
like to establish a worst-case bound that applies to all machines, regardless of their parameters.

The length of the communication phase is determined by the PE that takes the longest; that is,

max
is a PE

Our simplifying assumption is to calculate as if there is some PE such that and
. Let be the factor by which this assumption causes our model to overestimate . In

other words,

max

Let be the largest possible value of over all values of and . Figure 6 shows that is not
much larger than one for any of the Quake applications. Hence, Equation (2) is a reasonably good model
even when our assumption is not satisfied. The rest of this section describes how the numbers in Figure 6
are obtained, and may safely be skipped by the reader not interested in minute technical detail.
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Let . Our assumption will cause us to overestimate (and hence ) by

max

max

min (3)

Clearly, is a property of the communication system, and reflects the balance between block latency
and burst bandwidth. To ensure that our model is reasonably accurate for any machine, we wish to find the
value of that yields the most pessimistic (largest) value of :

max min

To simplify the problem a bit, first consider the behavior of this expression for a single PE , which
happens to be the processor that yields when substituted for in the formula above. Specifically,
consider the function

What value of maximizes ? It is apparent on inspection that the derivative d j d CmaxBj

BmaxCj Bj Cj
2 is either everywhere positive, everywhere negative, or uniformly zero over 0;

hence, there are no critical points, and is maximized at an extreme value of .

However, the notion of “extreme values of ” is not straightforward, and does not necessarily correspond
to the values 0 and . Instead, the extreme values of are the smallest and largest values for
which PE minimizes Expression (3). However, the PE that minimizes Expression (3) depends on . If is
swept from zero to infinity, the PE that minimizes Expression (3) (called the active PE in the terminology of
optimization) may change several times; each value where such a change occurs determines a candidate
for .

Hence, may be computed as follows. Draw a two-dimensional plot in which each processor is
represented by a point whose position is . Compute the convex hull of these points, and consider
the edges that face up and to the right. (If there are no such edges, then one of the points is ,
and thus 1.) Each edge of the upper right convex hull represents a change in the active PE from
one of its endpoints (say, ) to the other (say, ) as is swept from zero to infinity. The transition occurs
when the value of is such that the edge is orthogonal to a line having slope . For this value of ,

. max is found by taking the maximum such value from among those determined by all
the edges of the upper right convex hull.

Being too lazy to compute convex hulls, we implemented a simpler computation that determines an
upper bound on . Suppose there are only three PEs, having parameters of , 0 ,
and 0 , respectively. Because of the last two PEs, the denominator max cannot be less
than , nor can it be less than ; hence, cannot be greater than two.

When 0, the active PE is 0 (which clearly maximizes ), yielding 1, and when
, the active PE becomes 0 , also yielding 1. The value of that maximizes occurs

between these extremes. As increases from zero, the active PE changes from 0 to when



10 O’Hallaron, Shewchuk, and Gross

, and changes from to 0 when . In each of these
two cases, we solve for and substitute the result into , yielding

1

and

1

The larger of these two values is an upper bound on (over all values of ), even if there are other
processors that we have not taken into account.

If there are more than three PEs, such a bound may be computed for each PE. Each such bound is valid,
so we use the smallest. Hence,

1 min
is a PE

max

is an upper bound on . This bound is not generally tight, but we have used this expression to compute
the values in Figure 6.

4 Model validation

The parameters in Equation (1) are straightforward to determine: and are static application
properties, is a constant property of the compiler and the processor, and the efficiency is imposed
by the user. Similarly for Equation (2), the parameters and are static application properties.
However, the block latency and inverse burst bandwidth are system properties that require some
care to estimate. In this section we summarize the properties of the Quake SMVP instances (including the
parameters , , and ), describe a simple method for estimating and , and then plug these
parameters into our models to predict running time on a Cray T3E.

4.1 Properties of the Quake applications

Figure 7 summarizes the properties of the various Quake SMVP instances. (See O’Hallaron and Shewchuk
[15] for a complete characterization of the applications.) The values of and in this table are
always even, because each message from PE to PE is matched by a message from to of equal length.
(The values of are also divisible by three, because there are three degrees of freedom per node.)
The values of indicate the degree of subdomain adjacency; for instance, if 46, then each
subdomain shares mesh nodes with at most 23 other subdomains, and some PE must send a message to and
receive a message from each of 23 other PEs. These values assume that blocks may be arbitrarily large, and
hence each PE sends at most one block to each other PE. On a fine-grained shared memory machine, where
the unit of interchange between PEs may be as small as a cache line, may be much larger.

There are some interesting points to make about the numbers in Figure 7. First, conventional wisdom
holds that sparse codes like the SMVP are communication intensive. However, this is not always the case.
As we see for sf2, which is a reasonably large problem, the computation/communication ratios
vary from large ( 450 for sf2/4) to moderate ( 50 for sf2/128). (We use the notation sf / to denote an
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Subdomains sf10 sf5 sf2 sf1

453,924 1,899,396 24,640,110 162,372,024
4 2,352 7,746 55,338 186,162

6 6 6 6
369 1,290 8,682 27,540
193 245 445 872

235,566 970,740 12,414,006 81,602,442
8 2,550 7,080 35,148 151,764

12 12 10 14
237 699 4,152 13,761
92 137 353 538

122,742 496,872 6,278,076 41,116,374
16 2,208 5,292 28,482 119,280

18 20 16 18
159 342 1,920 7,434
56 94 220 345

64,980 257,004 3,191,436 20,740,734
32 2,172 4,476 24,018 87,228

30 30 26 26
87 213 1,239 4,044
30 57 133 238

34,956 134,424 1,632,708 10,511,586
64 1,764 4,296 20,520 73,062

38 40 36 38
57 135 765 2,712
20 31 80 144

18,954 70,956 838,224 5,332,806
128 1,740 3,360 16,260 51,048

62 52 50 46
36 135 459 1,515
11 21 52 104

Figure 7: Quake SMVP properties. : flops per PE. : maximum communication words on any one PE.
: maximum communication blocks on any one PE. : Average message size (words). :

computation/communication ratio.

instance of application sf partitioned into subdomains.) This common misconception about sparse codes
is probably due to the fact that researchers have not had the opportunity to run sufficiently large problems.

In fairness, though, there are related problems for which the computation/communication ratio is smaller.
For instance, a heat conduction simulation would use only one degree of freedom per node (the temperature
at each node), and each matrix nonzero would be a scalar, rather than a 3 3 submatrix. Hence, the
computation would be nine times less, but the communication volume would only be three times less. Even
so, the computation/communication ratio would still be large for large problems.

Second, while the computation/communication ratios are reasonably high for large problems, as the
problem sizes grow by a factor of ten, we see that the computation/communication ratios grow only
by a factor of two. This is not surprising; consider that a good partition of an -node 3D mesh will
produce 2 3 shared nodes (for the same reason that an -node cube has a surface area of 2 3

nodes). Hence, the computation/communication ratio is 1 3 , and a factor-of-ten increase in yields
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sf10 subdomains
msg size 4 8 16 32 64 128

3 2 18 72 266
6 0 2 10 48 148

9–12 0 8 32 66 228
15–24 2 2 20 74 228
27–48 2 6 18 64 272
51–96 2 4 46 144 394

99–192 2 8 30 78 150 90
195–384 2 6 30 28
387–768 6 10

771–1536

sf5 subdomains
msg size 4 8 16 32 64 128

3 6 36 96
6 6 18 60

9–12 2 6 16 24 94
15–24 0 6 12 38 128
27–48 0 2 14 80 184
51–96 0 8 24 74 258

99–192 2 8 42 116 366
195–384 0 22 72 168 154
387–768 10 38 38 10

771–1536 8 14

(a) sf10 (b) sf5

sf2 subdomains
msg size 4 8 16 32 64 128

3 4 14 32
6 0 4 12

9–12 4 8 28
15–24 4 2 16 42
27–48 4 8 22 50
51–96 4 8 22 108

99–192 6 12 48 142
195–384 6 28 62 230
387–768 2 22 94 338

771–1536 2 10 40 142 256
1539–3072 6 30 78 84 8
3075–6144 14 22 4

6147–12,288 8 4
12,291–24,576
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sf1 subdomains
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9–12 2 8 24
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27–48 2 10 6 44
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195–384 4 14 30 110
387–768 2 2 18 38 150

771–1536 6 12 94 250
1539–3072 8 46 102 290
3075–6144 4 12 34 128 226

6147–12,288 4 30 66 64
12,291–24,576 6 16 20 4
24,579–49,152 2 2

(c) sf2 (d) sf1

Figure 8: Histograms of message sizes (in words) for the Quake applications partitioned among 4, 8, 16,
32, 64, or 128 PEs. Message sizes are multiples of three because the applications store three degrees of
freedom per node.

roughly a factor-of-two increase in that ratio. Our point is that while large SMVPs indeed have reasonable
computation/communication ratios, these ratios do not increase quickly with increasing problem size, as
they do for cubic problems like dense matrix multiply. Thus, we cannot rely on simply increasing the
problem size to guarantee good efficiency.

Third, even when blocks are as large as possible (i.e., each PE sends at most one block to any other PE),
the mean block size is surprisingly small. For example, the largest mesh (sf1) running on 128 PEs
has an average message size of only about 1,500 words. Thus, we cannot rely on large blocks to amortize
high block latencies. The large number of small messages that characterize finite element applications can
be seen clearly in Figure 8, whose histograms show how message sizes are distributed for each of the Quake
applications.
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Figure 9: Scaling of the sf2 SMVP on the Cray T3E.

Finally, for sf1/128 each PE communicates with up to 18% of the other PEs. Thus, the Quake SMVP
occupies an interesting middle ground between difficult applications that require all-to-all communication
(like two-dimensional fast Fourier transforms), and simple applications wherein PEs communicate with a
few neighbors (like finite differences on regular grids).

4.2 Communication model validation

Here we describe the method we use to estimate the parameters and , and offer some evidence that
Equation (2) is a reasonable model.

We begin with our implementation of the parallel SMVP from the sf2 Quake application, and produce
several modified versions in which we scale the size of each message by some factor . Changing the message
sizes in this manner does not necessarily yield a working application; however, by measuring the change
in communication time as a function of changing message length, we can distinguish between bandwidth-
related and latency-related overheads. We measure and plot the elapsed time of the communication
phase as a function of the scaling factor . Performing this step for a range of scaling factors yields a curve,
which (happily) resembles a line, as Figure 9 illustrates. Four curves are plotted, for instances of the sf2
application partitioned among 8, 16, 32, or 64 PEs of a Cray T3E.

Although these curves are not perfectly linear, they are close enough that we have chosen to estimate
block latency and burst bandwidth in the most straightforward way. The block latency is determined from
the -intercept of each “line” by computing

0
(4)

and the burst bandwidth is determined from each line’s slope by computing

1 0
(5)
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Figure 10: Measured values of and on the Cray T3E. Note that is measured in different units (a
thousand times larger) than .
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Figure 11: Predicted vs. actual time of the sf2 SMVP communication phase on the Cray T3E ( 22 s,
55 ns).

The fact that communication times are nearly linearly related to the size of the messages indicates that
network congestion is not an issue. If it were, then we would see concave curves rather than nearly straight
lines.

As the number of processors increases, the communication time devoted to block latency (as revealed
by the -intercepts in Figure 9) increases because the number of messages per PE increases. However, the
corresponding slope decreases, because the total communication volume per PE decreases. Hence, block
latency becomes increasingly influential as the number of processors rises, because there is a larger number
of smaller messages.

By applying Equations (4) and (5) to each of the curves in Figure 9, we find the estimates for and
shown in Figure 10. The fact that (or ) isn’t identical in all four cases shows that our model isn’t

perfect, but the values vary little enough to give us some confidence. We use the averages of these values
over these four instances as our final estimates for block latency and inverse burst bandwidth for the Cray
T3E: 22 s and 55 ns.

Plugging these estimates and the application properties from Figure 7 into Equation (2) yields the
predicted communication phase times shown in Figure 11. While not exact, they provide reasonable
predictions of actual running time.
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Although we have shown in this section that is possible to obtain reasonable estimates of and for
the Cray T3E, these parameters are properties of complex hardware and software systems, and thus are not
really constants, as we see in Figure 10. There may be communication systems for which Equation (2) is
not a tenable model. For our purposes, however, the constant estimates for and seem to be reasonable.

5 Communication requirements

In this section, we use our performance models to address the following question: As the base commodity
microprocessors in parallel systems get faster, what kind of performance will be needed from communication
systems in order to run the Quake SMVPs efficiently?

We will investigate this question for two hypothetical machines: A “current” machine that runs the local
SMVP at a sustained rate of 100 MFLOPS ( 10 ns), and a “future” machine that runs the local SMVP
at a rate of 200 MFLOPS ( 5 ns). (Specifications are for 64-bit floating-point values.) Computational
rates of 100 to 200 MFLOPS may seem low, but they reflect the reality that the actual performance of
irregular applications is far less than peak rated performance, largely because of irregular memory reference
patterns and because the data structures are too large to fit in cache. For example, a single PE of a Cray
T3E (300 MHz Alpha 21164, cc -O3) runs the local SMVP from the Quake applications at approximately
70 MFLOPS ( 14 ns), which is only 12% of the peak rated performance of 600 MFLOPS.

The sf2 SMVP will serve as a running example. Sf2 is a good example for a number of reasons. First, it
is clearly large enough to qualify as a real problem by any standard (the sparse coefficient matrix is 1 14M

1 14M in size). Second, even though it is quite large, it has a wide range of computation/communication
ratios ( ), from a high of 450:1 when partitioned into four subdomains, down to 50:1 for 128
subdomains.

5.1 Bisection bandwidth

Bisection bandwidth is a popular measure of communication system performance, but it proves to be
unimportant for Quake SMVPs. To compute the bisection bandwidth requirements for a Quake SMVP
running on PEs, we create a symmetric matrix such that is the number of 64-bit words
transferred from PE to PE . If we assume that PEs 0 2 1 are on one side of the bisection and
PEs 2 1 are on the other side, then

2
2 1

0

1

2

words cross the bisection during the communication phase, and the sustained bisection bandwidth require-
ment is . Figure 12 shows the required bisection bandwidths given different assumptions of
PE performance and overall efficiency. Here, Equation (1) is used to calculate . The worst case of
700 MBytes/sec ( 0 9 and 1 200 MFLOPS) is quite modest, on the order of the bandwidth of a
couple of links in a modern system. Bisection bandwidth is unlikely to be an issue for SMVPs as local PE
performance increases.
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Figure 12: Sustained bisection bandwidths required for sf2.
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Figure 13: Sustained PE bandwidth ( 1) required for sf2.

5.2 Sustained PE bandwidth

Figure 13 plots the sustained bandwidth for each PE ( 1) that is required for the sf2 SMVP under different
assumptions of PE performance and overall efficiency. The required bandwidths are computed using
Equation (1) and the application properties tabulated in Figure 7. On a system with 100-MFLOP PEs,
maintaining a sustained rate of about 150 MBytes/sec per PE during the communication phase is sufficient
to run all instances of the sf2 SMVP at 90% efficiency. On systems with 200-MFLOP PEs, a sustained PE
bandwidth of about 300 MBytes/sec will be required to run all of the sf2 SMVPs at 90% efficiency.

A sustained PE bandwidth of 300 MBytes/sec seems like an easy performance target until one remembers
that it includes all overheads, including software overheads, local strided read and write copies, and other
latencies; we are not concerned here with peak link bandwidth ratings. For example, even though the
optimal throughput of strided copies on the Cray T3D is 30–40 MBytes/sec [18], current implementations
of sf2 achieve at best a measured and sustained bandwidth of 10 MBytes/sec using the C interface to the
vendor-supplied MPI library [2].
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Figure 14: burst bandwidth and latency tradeoffs for sf2/128 (200 MFLOP PE).

Even more daunting is the goal of running the Quake applications at roughly 80% efficiency on high-
speed networks of workstations. This goal is attractive because it would make it possible to obtain enough
memory to run much larger simulations, but demands sustained per-PE bandwidths of 100 MBytes/sec.

5.3 Bandwidth and latency tradeoffs

There is an interesting tradeoff between the burst bandwidth and latency that are necessary to achieve some
target sustained bandwidth on each PE. If block latency is made smaller, then burst bandwidth can be larger,
and vice versa. Equation (2) quantifies this tradeoff, which is shown in Figure 14 for the sf2 SMVP running
on 128 200-MFLOP PEs. Any point along a diagonal line represents a pairing of burst bandwidth ( 1)
and latency ( ) that meets the sustained PE bandwidth requirement ( 1) for sf2/128 given in Figure 13(b).
The curves are generated by first using Equation (1) to compute the required inverse sustained bandwidth

, and then using Equation (2) to define the relationship between and .

Figure 14(a) shows the burst bandwidth and latency tradeoffs under the assumption that blocks are as
large as possible, and thus each PE sends at most one block to any other PE during a single communication
phase. This is the norm in message passing systems or DSMs that aggregate blocks [6]. The interesting
point about this graph is that latency matters for the SMVP. Even if burst bandwidth is driven to infinity,
observed block latency must not exceed 3 s if the code is to run at 90% efficiency.

We can also use Equation (2) to get a sense of the latency and bandwidth tradeoffs if blocks are small,
fixed-sized objects like cache lines. To model the tradeoff for fixed-sized blocks consisting of four 64-bit
words, we set 4 and again plot block latency as a function of burst bandwidth, in Figure 14(b).
Here, block latency is even more crucial, as expected. For example, if burst bandwidth is infinite, then
observed block latency must not exceed 100 ns if the SMVP is to run at 90% efficiency.

For a given application, a reasonable network design goal is to achieve values for and 1 such that
half of the time for the communication phase is due to block latency and the other half to burst bandwidth.
We refer to a burst bandwidth chosen thusly as the half-bandwidth, and its corresponding latency as the
half-bandwidth latency. These figures are useful targets for architects of communication systems because
overengineering a network’s bandwidth cannot relieve the latency constraint by more than a factor of two,
and vice versa. Figure 15 plots the half-bandwidths and half-bandwidth latencies for the entire space of sf2
SMVPs, for both the maximal block size and the four-word block size.
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Figure 15: Half-bandwidths and latencies for the sf2 SMVP.

The bottom portion of the graph shows the requirements when blocks are fixed-sized four-word transfer
units, as might occur in a shared-memory architecture. For the easiest case, running at 50% efficiency on
four 100-MFLOP PEs, we need a burst bandwidth of about 3 MBytes/sec with a block latency of about 10

s. In the most difficult case, running at 90% efficiency on 128 200-MFLOP PEs, we would need a burst
bandwidth of about 600 MBytes/sec and a block latency of about 70 ns.

The upper portion of the graph shows the requirements when blocks are made as large as possible (i.e.,
each PE sends at most one block to any other PE), as on a message-passing multiprocessor or network. For
the simplest case, running at 50% efficiency on four 100-MFLOP PEs, we would need a burst bandwidth of
about 3 MBytes/sec and a half-bandwidth latency of about 8 ms. However, the most demanding case, where
we are running at 90% efficiency on 128 200-MFLOP PEs, requires a burst bandwidth of 600 MBytes/sec
and a block latency of about 2 s.

6 Concluding remarks

Irregular applications have been poorly understood in the past, in large part because researchers and system
builders have not had access to large realistic example applications. This report represents a step toward
understanding the implications of large-scale irregular codes on the architecture of high-end systems. We
have chosen to study unstructured finite element simulations of strong earthquake-induced ground motion
because they constitute real and significant engineering applications currently in daily use, and because their
performance is characterized by the performance of a simple SMVP kernel. By examining the behavior
of the SMVP, we can diagnose the requirements placed on communication systems in future high-end
computers and networks as the performance of commodity PEs continues to increase.

Our main conclusions are: (1) Bisection bandwidth is not an issue. (2) Block transfers tend to be
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small, even for large applications. Thus we cannot expect to amortize block latency costs with large
messages; other latency hiding techniques must be used, or latency must be reduced. (3) Systems with
sustained computational throughput of 200 MFLOPS and maximally aggregated blocks will need about 300
MBytes/sec of sustained bandwidth, 600 MBytes/sec of burst bandwidth, and a block latency under 2 s to
run unstructured finite element applications with 90% efficiency.

The bandwidth requirements per PE for future systems are aggressive, especially since they must include
all hardware and software overheads. Yet they seem achievable. More worrisome are the block latency
requirements (2 s for large blocks, 70 ns for small blocks), which appear much more difficult to achieve.
The numbers in this report provide a strong quantitative argument for reducing latency in future systems,
either with more efficient interfaces, latency hiding techniques, or both.
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