Etree: A Database-Oriented Method for
Generating Large Octree Meshes

Tiankai Tu!

David R. O’Hallaron?

Julio C. Lopez?

LComputer Science Department, tutk@cs.cmu.edu
2Computer Science Department and Electrical and Computer Engineering Department, droh@cs.cmu.edu
3Electrical and Computer Engineering Department, jclopez@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA, U.S.A.

ABSTRACT

This paper presents the design, implementation, and evaluation of the etree, a database-oriented method for large
out-of-core octree mesh generation. The main idea is to map an octree to a database structure and perform all octree
operations by querying and updating the database. We apply two standard database techniques, the linear octree
and the B-tree, to index and store the octants on disk. Then we introduce two new techniques, auto-navigation
and local balancing, to address the special needs of mesh generation. Preliminary evaluation suggests that the etree
method is an effective way of generating very large octree meshes on desktop machines.

Keywords: octree mesh, etree, linear octree, auto-navigation, local balancing, B-tree

1. INTRODUCTION

A physical simulation generally involves three steps:
(1) mesh generation, which models a continuous prob-
lem domain with a discrete structure; (2) solving,
which simulates some physical process by approximat-
ing the solution of a set of partial differential equations
at the grid points of the mesh; and (3) visualization,
which creates a visual representation of the simulation
results.

Traditional algorithms for physical simulation are de-
signed to run in core, and thus the problem size is
limited by the size of the main memory. When you
are out of memory you are out of luck! So in order
to solve large problems, scientists and engineers must
somehow get access to servers or supercomputers with
large memories.

Our goal is to rescue scientists and engineers from the
supercomputing centers by enabling them to run large
simulations using their desktop machines. The ba-
sic idea is to represent all input and output datasets
in database structures stored on disk. The differ-
ent steps of the physical simulation process are then

performed by querying and updating these databases.
With this approach, main memory serves as a cache
for the database. Systems with larger memories will
run faster than systems with smaller memories, but
programs will always run if there is enough disk space.

The database approach exploits a number of long-term
technology trends. Disk capacity is exploding and
price per bit is plummeting, with gigabytes of stor-
age available for under a thousand dollars. At the
same time, mature RAID disk technology aggregates
both storage and I/O bandwidth to provide hundreds
of gigabytes to terabytes of fast storage for only a
few thousands of dollars. Typical RAID I/O through-
put (128 MB/s) is similar to typical main memory
throughput (100 MB/s) [1]. After years of stagnation,
DRAM prices have plummeted, from $30/MB to less
than $.01/MB, with main memory sizes on typical sys-
tems increasing by an order of magnitude over the past
several years. And of course, CPU speed continues to
double every 18 months, with clock rates multiple GHz
the norm.

This paper describes a database-oriented technique for

mesh generation, the first step of the simulation pro-
cess. In particular, we present the etree, a database-
oriented method for generating large octree meshes
on disk. The etree method extends existing database
techniques to support the application-specific require-
ments of mesh generation. As a base, we use the well-
known linear octree technique to assign each octant a
unique key that encodes its location and size, and we
store the octants in a well-known database structure
known as a B-tree. In addition, we have developed two
new techniques, called auto-navigation and local bal-
ancing, that address the special needs of octree mesh
generation.

All of these components (linear octrees, B-trees, auto-
navigation, and local balancing) are implemented in
a C library called the etree library. An application
uses the functions defined in the etree library to ma-
nipulate an octree mesh stored on disk. The etree
library automatically performs extensive optimization
to improve running time and reduce disk I/O. Our ex-
periments show that with the etree method, it takes
about 2.6 hours to generate a very large finite element
octree mesh (4.3 GB with 13.6 million elements) on a
machine with only 128 MB main memory.

Section 2 briefly discusses different approaches for gen-
erating octree meshes. Section 3 describes the etree
method. Section 4 presents the the etree library and
its components. Section 5 evaluates various aspects
of the etree library with an etree-based finite element
mesh generator.

2. OCTREE MESH GENERATION

An octree algorithm recursively subdivides a three-
dimensional problem domain into eight equal size oc-
tants until a desired resolution level is achieved [2].
For two-dimensional domains, an analogous quaditree
algorithm recursively subdivides the domain into four
quadrants. Quadtrees are easier to draw and under-
stand than octrees, so we will use them whenever we
need to illustrate basic concepts. The techniques we
describe in this paper generalize to all dimensions. For
simplicity, we will refer only to octants and octrees, re-
gardless of dimensionality.

Octrees can be drawn in different but equivalent ways.
Figure 1 shows the domain representation of an octree,
where the octree is drawn as an explicit decomposition
of some rectangular domain. Figure 2 shows an equiva-
lent tree representation, which depicts the tree induced
by the decomposition in Figure 1. Both representa-
tions are useful in different contexts. For example, the
idea of local balancing (Section 4.4) is most easily ex-
plained using the domain representation. On the other
hand, ideas such as auto-navigation (Section 4.3) and
preorder traversal of leaf nodes is best explained using

Figure 1: Domain representation of an octree.

Figure 2: Tree representation of an octree.

the tree representation.

Octree decomposition has proven to be a success-
ful strategy for generating three-dimensional adaptive
meshes. One approach warps the leaf octants to ob-
tain tetrahedral elements [3, 4]. The other main ap-
proach uses the leaf octants as finite elements directly
without further modification [5, 6, 7]. To ensure good
element quality, both methods require that the octree
be balanced. That is, two leaf octants sharing a face or
an edge are no more than twice as large or small (2-
to-1 constraint). For example, the octree in Figure 1
does not satisfy the 2-to-1 constraint because the edge
length of h is four times larger than that of e.

In this paper, we focus on how to generate a balanced
mesh that uses the leaf octants directly as elements,
which we will refer to as an octree mesh.

Octree meshes do have limitations, especially in their
ability to model complex geometry. For those cases,
more sophisticated techniques such as unstructured
tetrahedral meshes are needed. But still, octree
meshes represent an important class of meshes for ap-
plications with simpler geometries. For these applica-
tions, the octree meshes provide a good compromise
between the structure and the modeling power.

An octree mesh can be constructed and balanced using
either in-core or out-of-core methods. An in-core al-

gorithm accommodates the octree in virtual memory,
which is an operating system mechanism that enables
an application to allocate much more memory than
is physically available. The virtual memory uses the
main memory efficiently by treating it as a cache for an
address space stored on disk, keeping only the active
areas in main memory. This mechanism works silently
and automatically, without any intervention from the
application program. However, if the allocated vir-
tual memory far exceeds the main memory size and
the data accesses are not localized, severe swapping
of data between the disk and the memory will occur,
and performance degrades drastically. Thus, in prac-
tice in-core algorithms are limited to the size of the
main memory.

An out-of-core method, on the other hand, uses the
memory directly as a cache for the disk-resident oc-
trees. The size of the octree mesh is thus limited by
the size of the disk instead of the size of the much
smaller main memory. The critical issue is to decide
which part of the octree should be cached in the mem-
ory so that most data accesses can directly read from
or write to the main memory.

One candidate solution is to use the out-of-core pointer
method [8] where each in-core pointer is mapped to an
out-of-core pointer in the form of {disk page number,
offset). The operation of following a pointer in an in-
core algorithm is transformed into seeking an offset
on a disk page and then retrieving the data object.
The application program must make arrangements to
ensure that the out-of-core pointers are not scattered
randomly on disk pages. Otherwise, the performance
will be dominated by disk I/O latency. This method,
though conceptually simple, is not easy to implement.
And the result is often application-specific.

3. THE ETREE METHOD

The design goal of the etree is to provide a general
method for efficiently generating large octree meshes
out of core. Our approach leverages and extends
database techniques to address the special needs of
mesh generation.

Figure 3 shows the process of generating a mesh us-
ing the etree method. In the construct step, an octree
is constructed in the same way as in an in-core algo-
rithm, except that it is built and stored on disk. The
decompositions of the octants are dependent on the
geometry or physics being modeled. The result is an
unbalanced octree. Next, the balance step recursively
decomposes all the (big) octants that violate the 2-to-
1 constraint until no illegal conditions exist. Finally,
in the transform step, mesh-specific information such
as the element-node relationship and the node coordi-
nates are derived from the balanced octree and stored

in two databases, one for the mesh elements, the other

for the mesh nodes.
element
database

& — v T Ta /
4 unbalancedaa balanced *
octree octree S~
node

Figure 3: The etree method of generating octree
meshes.

application-specific input

Conceptually, this process could be implemented using
a traditional database system. A unique key can be
assigned to each octant that encodes the location and
size of an octant. Then the octants can be treated
as records and stored in a table that corresponds to
the octree. Since the structural information is already
encoded in the key value, the non-leaf octants, which
serve for the navigation purpose, can be optionally
excluded from the table. Operations on the octree can
be translated to SQL queries, a high-level declarative
query language, to the database.

However, a direct database approach introduces trade-
offs. On the one hand, explicit pointer chasing is
avoided. All operations are done through uniform
queries to the database, which adds simplicity. On
the other hand, an explicit operation history, such as
a stack, must be maintained to record which octants
have been processed and which have not. This adds
complexity to the application program. In order to
avoid these negative aspects, we use database tech-
niques as one of the building blocks of the etree, and
extend the core database functionality by introducing
new techniques that support octree-level operations.

4. THE ETREE LIBRARY

Figure 4 shows the components of the etree library.
An application accesses the library through a sim-
ple well-defined Application Programming Interface
(API). The library is divided in the following mod-
ules: (a) linear octree, a powerful encoding scheme to
assign keys to octants; (b) auto-navigation, a mecha-
nism for traversing the octree automatically; (c) local
balancing, a technique that speeds up octree balancing
operations; and (d) B-tree, a database index structure
for storing and accessing octants on disk.

4.1 The etree API

The etree API is inspired by Unix file I/O and can be
categorized into three classes:

Application
Etree API
e
23lla2||lw g
o 2llsgf| o
=3 = o g
S8 2w
©]
c o)

B-Tree

Etree library

Figure 4: Etree architecture.

e Initialization and cleanup: An etree can be
opened/created and closed as if it were an or-
dinary file.

e Octant-level operations: The etree provides a
complete set of operations to manipulate octants
stored on disk. For example, searching for an oc-
tant or inserting a new octant. Each octant is
addressed by an abstract data type location_t,
which we will explain in Section 4.2.

e Octree-level operations: This is the distinctive
feature of the etree method. Instead of push-
ing the workload to the applications, the etree
library supports octree-level operations directly.
For example, the function call etree_construct
automatically accomplishes the construct step in
Figure 3. The only input from the application is a
function that the etree library uses to determine
how to process an octant.

Figure 5 lists the specific functions.

4.2 Linear Octree

In order to map an octree to a database structure, we
use the well-known linear octree technique [9]. This
method assigns a unique key to each leaf octant. The
key encodes both the location and the size of the oc-
tant. We can then use a database structure such as
the B-tree (see Section 4.5) to index the keys.

Octants are assigned keys using a variant of the well
known Morton code [10]. A Morton code maps a d-
dimensional point to a one-dimensional scalar. The
mapping can be computed quickly by interleaving the
bits of the binary representations of the coordinates of
d-dimensional point.

The key associated with an octant is computed as fol-
lows. First we compute the Morton code of the left-
lower corner of the octant. Next, we append the level

/* Initialization and cleanup */
etree_t *etree_open(const char *path, int flag, ...);

int etree_close(etree_t *ep);

/* Octant-level operations */
int etree_insert(etree_t *ep, location_t loc, const void *value);
int etree_search(etree_t *ep, location_t loc, location_t *hitloc, void *value);
int etree_update(etree_t *ep, location_t loc, const void *value);
int etree_delete(etree_t *ep, location_t loc);

int etree_append(etree_t *ep, location_t loc, void *value);

/* Octree-level operations */
typedef int decom_t(location_t loc, const void *value, void *childvalue[8]);
int etree_construct(etree_t *ep, location_t rootloc, const void *rootvalue,
decom_t *autodecom);
int etree_balance(etree_t *ep, decom_t *baldecom);
int etree_sprout(etree_t *ep, location_t loc, const char *childvalue[8]);
int etree_initcursor(etree_t *ep, location_t loc);
int etree_getcursor(etree_t *ep, location_t *loc, void *value);

int etree_advcursor(etree_t *ep);

Figure 5: Etree API.

of the octant to the Morton code in order to distin-
guish the octant from any ancestors that share the
same left-lower corner. The result is a unique key as-
signment for each octant, which is usually referred to
as the locational code [2]. For example, Figure 6 shows
how we compute the locational code 00110111> for oc-
tant e in Figure 1. Notice that the underscore in the
locational code in the figure is for illustration purposes
only; a locational code is just a binary string.

e’s left-lower corner (2, 3)

}

binary form (010, 011)

interleave the bits to
obtain Morton code

010 011

001101

append the level of e
001101_11

Figure 6: Interleaving bits and appending level to
obtain the locational code.

To isolate users from the details of the bit-interleaving
and level appending, we define an abstract data type
location_t that can be used to address an octant. It
consists of the 3D coordinates of an octant’s left-lower

corner and the octant’s level in the octree, as shown in
Figure 7. With this unique key, we can find an octant
directly. Therefore, we only store leaf octants in the
etree database.

typedef struct location_t {
unsigned long long x, y, Z;
int level;

} location_t;

Figure 7: Definition of location_t.

An important property of the Morton code is that
the ordering of leaf octants based on their locational
code is exactly the preorder traversal of the octree
leaf nodes. For example, Figure 8 shows the ordering,
based on locational codes, for the octree in Figure 2.

a b c d
—»> —> —>

000000_10 000100_10 001000_10 001100_11

e f g h
—> —> —>

001101_11 001110_11 001111_11 010000_01

o oo o

i - j - k - | - m
100000_10 100100_10 101000_10 101100_10 110000_01

Figure 8: Leaf octants in Figure 2 sorted according
to their locational code.

There are two important applications of this prop-
erty in the etree library: (1) clustering nearby oc-
tants on disk pages; (2) finding an octant without
knowing its exact locational code. The first applica-
tion exploits the fact that the preorder traversal of
the leaf octant in the corresponding domain follows a
Z pattern, as shown in Figure 9. Such an ordering
is called the Z-order [11, 12], which tends to cluster
spatially close data points in their one-dimensional or-
dering [13]. Therefore, we can store the leaf octants
sequentially on the disk pages according to their loca-
tional code, which naturally results in the clustering
of nearby octants.

The second application is more subtle and and is best
explained with an example. To find the neighbor on
the south side of octant e in Figure 1, we assume the
neighbor is of equal size as e and derive the neighbor’s
locational code, (001100_113). Searching the database
will return octant d, since its key matches the search
key. Similarly, to find the neighbor of e on the north
side, we derive a key (011000-115). However, searching
the database for this key does not return an exact
match since there is no such leaf octant in the domain.
Observe that the expected neighbor is actually octant

Figure 9: Z-order curve through the domain.

h whose key is (010000_012). We can see from Figure 8
that h’s key value is the maximum among all the keys
that are less than the search key (011000-113).

This occurrence is not accidental. In the preorder
traversal, a subtree root is always visited earlier than
any of its descendants. Hence, the key value, i.e. the
locational code, of the subtree root is always less than
those of its descendants. Therefore, the locational
code of the subtree root is the lower bound for the
interval that covers these key values. In a degenerate
case where the subtree root is a leaf octant, its loca-
tional code can be viewed as the lower bound for the
key interval that covers the non-existent virtual sub-
tree. In other words, an attempt to find an octant
in the virtual subtree will search the database using a
locational code that falls in the virtual subtree’s key
interval. Since no octants in the virtual subtree actu-
ally exist in the database, the locational code that is
the maximum among all the keys that are less than
the search key corresponds to the lower bound for this
interval. Therefore, we are able to find an octant,
such as the neighbor octant h in our example, without
knowing its exact locational code.

4.3 Auto-navigation

The linear octree nicely solves the problem of how
to address individual octants. However, it does not
provide a programming model for octree construction.
Although it is possible for an application to construct
an octree by repeatedly inserting and deleting octants
from the database, the application program would
have to keep records of which octants have been de-
composed and which have not. Worse, many insertions
are in fact unnecessary because those octants are later
decomposed and removed from the database.

To address this problem, the etree provides a higher-
level abstraction to support automatic octree con-
struction through the function call etree_construct.
The underlying technique is called auto-navigation.
The idea of auto-navigation is based on a simple in-

sight: since the ordering of expanding an octree under
construction is independent of the correctness of the
result, the octree traversal logic can be decoupled from
the application’s logic and incorporated into the etree
library.

Auto-navigation is implemented in the etree library
through a data structure called the navigation octree,
which is an in-core octree that is dynamically grown
and pruned in the main memory, as shown in Fig-
ure 10. In addition, the application provides a splitting
predicate that takes an octant as input and determines
whether or not the octant should be decomposed.

O : octants not yet
processed (in memory)

O : non-leaf octants being
decomposed (in memory)

octants that can be @ : leaf octants (flushed to
flushed to the database database)

Figure 10: Auto-navigation through an octree being
constructed.

Initially, the navigation octree consists of the root oc-
tant. The splitting predicate is invoked to decide what
to do with the root. If a decomposition is needed, eight
children octants are allocated and linked to the root
using ordinary in-core pointers. This procedure is then
continued in depth-first order. Whenever the splitting
predicate determines that an octant does not need to
be decomposed, then we know for certain that it is
a leaf node that can be safely pruned from the nav-
igation octree and flushed to the database, typically
in a bulk transfer with other leaf octants. With this
depth-first expansion and pruning, we can guarantee
that the memory requirement of a navigation octree
of depth d is bounded by O(8d), in contrast to O(8%)
for a complete octree being constructed in the main
memory.

With auto-navigation, applications are relieved from
the burden of traversing an out-of-core octree for ex-
pansion, which is a complicated and error-prone task.
Further, database operations can be significantly op-
timized. Since the order (preorder) of flushing the leaf
octants is the same as the order imposed by the loca-
tional codes, a new leaf octant that is pruned off the
navigation octree can be appended to the end of all
octants that are currently stored in the database. In
fact, the complexity of an append operation is only

o).

4.4 Local balancing

An octree obtained after the construction step must
be balanced to conform to the 2-to-1 constraint. For
example, the initial domain decomposition shown in
Figure 1 violates this constraint because octant e has
a neighbor h on the north whose edge size is four times
as large as e’s. A balancing operation will discover this
illegal status and decompose octant h further to obtain
a legal octree mesh as shown in Figure 11.

hZ h4
m
h, hy
e |9
b j |
d|f
a c i k

Figure 11: A balanced domain decomposition.

The etree library provides a function call
etree_balance to isolate the applications from
the details of enforcing the 2-to-1 constraint. One
straightforward way to implement this function is
to iterate through all the octants in the unbalanced
octree and check their neighbors to determine whether
further decomposition is necessary. We refer to this
approach as global balancing. Though conceptually
simple, global balancing has two major drawbacks.
First, multiple iterations through the domain may
be needed to propagate the impact of a tiny octant.
Second, each neighbor-finding operation will incur the
cost of searching the database.

Interactions between blocks
are absorbed by the octants

on the boundaries \ Block 2 Bloek 4

Octants in the same block are
stored consecutively on disk Bloek 1 Block 3
pages in Z-order \~>

Figure 12: Local balancing.

We avoid global balancing by doing local balancing,
which consists of three steps. First, we partition the

whole domain into equal-size blocks. Next, we con-
duct internal balancing to enforce the 2-to-1 constraint
within each block. Finally, we do boundary balancing
to resolve interactions between adjacent blocks. Fig-
ure 12 gives a conceptual view about this scheme.

Appropriate block size: The size of a block is
chosen to satisfy the following two conditions: (1) it is
equal to the size of some subtree root’s size; (2) it is at
least as large as the largest leaf octant in the domain.

With the first condition, each block is mapped to a
subtree root. (We assume the blocks are aligned prop-
erly.) We will use this condition to prove the correct-
ness of the local balancing scheme. With the second
condition, we can guarantee that all the octants in the
domain can fit into some block and thus be processed.

Internal balancing: Internal balancing is per-
formed block by block. We traverse the entire domain,
one block at a time. For each block, we read all the
octants that belong to the block. Based on the po-
sition and size information retrieved, we initialize a
structure called the blocking array. The cardinality of
each dimension of the array is set to be the size of the
block divided by the size of the smallest octant in the
domain.

The blocking array is initialized in the following man-
ner. At beginning of processing each block, all array
elements are set to be 0. Upon reading a new octant,
we determine the position of the octant’s left-lower
corner relative to the left-lower corner of the contain-
ing block. Suppose the position is (i, j}, then the array
element [4, j] is set to be the size of the octant divided
by the size of the smallest octant in the domain. Fig-
ure 13 shows the content of the blocking array after
retrieving information of the octants belonging to the
left-lower block of the domain shown in Figure 1.

ie 19, 1i
| | 1
,,,,,,,,,,,, ‘{,‘fi,,i

Figure 13: Content of the blocking array.

After the blocking array is initialized, we can resolve
the 2-to-1 constraint within the block without query-
ing the database. The reason is that all the infor-
mation regarding octants in a vicinity (block) has al-
ready been recorded in the blocking array. Finding a

neighbor (of equal size) is done by modifying the array
indexes and accessing an array element directly.

To be more specific, we iterate through the blocking
array element by element. For each element [i, j], we
check whether there is an octant anchoring its left-
lower corner at (i, j) and if so, whether its neighbors
will trigger its further decomposition. The fact that
an octant needs to be decomposed is recorded but the
decomposition is not performed immediately. For a
decomposing octant, we initialize the array elements
corresponding to its eight children. Notice that one
of its children must have the same left-lower corner as
itself. Therefore, the old size value at [4, j] will be over-
written. By doing so, we always keep the latest octant
information in the blocking array. It should be noted
that several iterations may be needed to propagate the
impact of a tiny octant.

After processing all the blocks, the etree obtains a
complete list of octants that violate the 2-to-1 con-
straint locally and need to be further decomposed.
Then the actual database operations of deleting and
inserting octants are carried out in batch mode.

Also, at the time of processing each block, the octants
on the block’s boundary are recorded in a separate list.

Boundary balancing: In this step, we iterate
through the boundary octant list, checking each oc-
tant’s neighbors to determine whether the 2-to-1 con-
straint is violated, and if so, performing a decompo-
sition. During each iteration, a list of new boundary
octants is generated, which is used as the input to the
next iteration.

Note that the total cost of searching neighbors in the
database for boundary balancing is much cheaper than
the case of global balancing because the number of
boundary octants is far less than the number of the
octants in the entire domain.

Correctness of local balancing: We first study
the relationship between a boundary octant b and its
internal neighbors in the same block after internal bal-
ancing is performed. Since the 2-to-1 constraint is en-
forced locally inside this block, there are only three
possible scenarios for the internal neighbors of b, as
shown in Figure 14: (1) half as large as b; (2) as large
as b; or (3) twice as large as b.

However, scenario (3) cannot occur. Because the first
condition imposed on the block size requires that each
block maps to a subtree root, thus octant b must be
a descendant of this subtree root (block). In other
words, octant b must be a child of some octant that
is twice as large as b. However, since an octree is a
disjoint decomposition of the domain, it is impossible

= BB

() (2 @)

Figure 14: Three scenarios for internal neighbors
of a boundary octant.

for octant b to have an internal neighbor that overlaps
the region covered by b’s parent, as shown in Figure 15.

Impossible for an octant to overlap
the region covered by b’s parent

¥
il i -

o

Figure 15: Scenario (3) is impossible to occur.

Now we can show the correctness of the local balanc-
ing scheme. We prove, by induction on the number
of iteration of boundary balancing, that the decom-
position of any boundary octant b will not cause de-
compositions of its internal neighbors. That is, the
interactions between adjacent blocks are always ab-
sorbed by octants on the boundaries between blocks
and will never propagate into the blocks. In the fol-
lowing proof, we only consider non-trivial cases where
a boundary octant b does decompose during an itera-
tion of boundary balancing.

For the base case (the first iteration of boundary bal-
ancing), the relationship between a boundary octant
b with its internal neighbors is either scenario (1) or

2).

Figure 16 shows that if scenario (1) holds for the base
case, the decomposition of b will result in four children
octants of equal size to b’s internal neighbors. There-
fore, no decomposition is needed for b’s internal neigh-
bors. On the other hand, the two children of b in the
bottom half become the new boundary octants whose
internal neighbors are their siblings of the same size.
Consequently, scenario (2) is the relationship between
the new boundary octants and their internal neigh-
bors. (For clarity, we use unfilled (white) squares to
represent boundary octants and filled (dark) squares
to represent internal octants.)

Figure 17 shows that if scenario (2) holds for the base
case, the decomposition of b will result in four children

Internal octants Internal octants
in the same block not affected by the
asb decomposition

Decompose
octant b ’/¢

/'

A tiny octant on
the boundary of
another block

Figure 16: Scenario (1): internal neighbors not af-
fected by the decomposition of the boundary oc-
tant.

octants half as large as b’s internal neighbor. Since the
2-to-1 constraint is still maintained, no decomposition
of b’s internal neighbors is needed. Again, the rela-
tionship between the new boundary octants and their
internal neighbors is scenario (2).

Internal octant Internal octant not

in the same affected by the

block as b decomposition
octant b

/ /
- -

A tiny octant on
the boundary of
another block

Decompose

Figure 17: Scenario (2): internal neighbors not af-
fected by the decomposition of the boundary oc-
tant.

The inductive case is straightforward to prove. Be-
cause scenario (2) is the only possible relationship be-
tween the boundary octants and their internal neigh-
bors for iteration k, we can use the same argument for
the base case to show that the internal neighbors do
not need to be decomposed and scenario (2) will hold
for iteration k + 1.

Note that in Figures 16 and 17, it is a drawing arti-
fact that the tiny octant on the boundary of another
block appears to be one fourth of the size of octant
b. It seems that only one iteration of boundary bal-
ancing will suffice to enforce the cross-boundary 2-to-1
constraint. But in general, the tiny octant can be ar-
bitrarily small. Thus, multiple iterations of boundary
balancing will be needed to enforce the cross-boundary
2-to-1 constraint. Also, the trigger that causes the de-
composition of a boundary octant b can be either a

tiny octant in another block as shown in Figure 16
and Figure 17, or a newly generated tiny boundary
octant in the same block as b, not shown pictorially
in the figures. The proof given above is valid for the
general cases as well as for both types of triggers.

In summary, the local balancing scheme is correct be-
cause the impact between adjacent blocks is always
absorbed by the (dynamically changing) boundary oc-
tants.

45 B-tree

The B-tree is the most important index structure in
database and file systems [14, 15, 16, 17]. Figure 18
shows the structure of a B-tree. There are two types

Index
nodes

Leaf
+ nodes

Figure 18: B-tree structure.

of nodes in a B-tree: the leaf nodes and the index
nodes. The leaf nodes contain data to be searched.
The structure of a leaf node is an array of records
with the form (key,data), shown in Figure 19. The
entries are stored in ascending key order and all the
keys in leaf node is smaller than any key stored in the
next leaf node.

An array of records in

ascending key order Unused space
M A

Ikeylidatallkeyzidatazl lkeynidatan‘ [\{“

v
Pointer to next
leaf node

Figure 19: B-tree leaf node.

The index nodes contain routing information to guide
the search for a given key value. The structure of an
index node is an array of pairs (key, pointer), shown
in Figure 20. These entries are also stored in as-
cending order. The sequence of keys in an index node
(K1 < K2 < ... < Ku) divides the search space
covered by that node. Each key value K; has an as-
sociated pointer P;, which points to a successor node
that contains further information about all keys K,
such that K; < K; < K;y1.

An array of <key, pointer>

pairs in ascending key order Unused space
S N

ol T T T Tl <

Figure 20: B-tree index node.

B-tree nodes are mapped to disk pages. B-tree point-
ers are actually disk page numbers. A B-tree index
node can have a large number of pointers, in contrast
to a binary tree where each index node has at most
two successors. As a result, B-tree tends to be wide
and short in structure.

Operations on a B-tree are defined in such a way that
the B-tree structure is always balanced. That is, every
path from the root to the leaf always has the same
length. Therefore, the dominant performance factor
— disk page accesses, is always the same for all the
search operations.

Searching for a key k starts from the B-tree root, which
is an index node. A pointer P; is followed such that
K; <k < K;4+1. If P; leads to an index node, repeat
the procedure. Otherwise, search the leaf node for the
entry with a matching key value.

Inserting a new record into the B-tree may cause a
split of a B-tree node into two if the node is fully oc-
cupied. Similarly, deleting a record may cause two
B-tree nodes (at the same level) to be merged if one of
the node’s occupancy drops below 50%. As a result,
a B-tree has a minimum space utilization of 50% and
an average of 69% [18].

5. EVALUATION

In this section, we present the performance evaluation
of the etree. We conducted a series of experiments to
answer the following questions: (1) Is the etree method
feasible? (2) How does the running time vary with the
physical memory size? (3) What is the impact of auto-
navigation? (4) What is the impact of local balancing?

5.1 Methodology

In order to evaluate the etree method in a real-
world scenario, we developed an etree-based octree
mesh generator that produces a family of finite el-
ement meshes for San Fernando earthquake wave-
propagation simulations [19].

Figure 21 summarizes the characteristics of each mesh,
which comprises an identical volume of 50 km X
50 km x 12.5 km. Roughly speaking, mesh sfy is
sufficiently fine to resolve a wave with a period of k

seconds, under the assumption of 10 mesh nodes per
wavelength. The FElements and Nodes columns con-
tain the total number of finite (octant) elements and
nodes in the domain, respectively. The Slave Nodes
column records the number of the nodes that are lo-
cated on an edge or a face of another element, which
is a subset of the total nodes in the mesh.

Mesh | Elements Nodes Slave Nodes
SF10 7,040 12,118 1,432
SF5 76,330 105,886 34,858
SF2 1,838,524 2,213,035 407,336
SF1 13,597,124 | 15,097,365 1,649,855

Figure 21: Summary of San Fernando meshes.

The mesh generation process is driven by the mate-
rial model developed by Harold Magistrale and Steve
Day at San Diego State University [20]. We sam-
pled the material model and stored the result in an
etree database, which we will refer to as the material
database. The size of the material database is 785 MB.

‘We conducted all the experiments on a PIII 1GHz ma-
chine with Ultra 160 SCSI controller and disk running
Linux 2.4.17. The physical memory for the experi-
ments ranges from 128 MB to 880 MB. Before each
experiment, we sequentially scan two 1.5 GB files to
flush the operating system’s buffer cache.

5.2 Is the etree method feasible?

To answer this question, we generated meshes of differ-
ent sizes and measured the time required to generate
them. For this experiment we configured the physical
memory to be 128 MB, and fixed the size of the B-tree
buffer in the etree library to 8 MB and the size of the
blocking array to 16 MB. Figure 22 shows the elapsed
wall clock times to generate meshes of different sizes.
Although these measurements are specific to this par-
ticular application, they show the result of generating
a non-trivial, real-world octree mesh, serving as a good
indication of whether the etree method is feasible in
terms of running time and memory requirement.

Mesh | Elements | DB size Time Thrput

(MB) (s) (elem/s)
SF10 7,940 2.5 39.9 199
SF5 76,330 24 186.0 410
SE2 1,838,524 583 | 1,636.7 1,123
SF1 13,597,124 4,300 | 9,448.8 1,439

Figure 22: Etree-based mesh generator running
time and throughput.

Our first observation is that the total running time to
generate our largest mesh, SF1, is approximately 2.6
hours. Although we have no benchmark to compare
our results, generating a 13.6 million element mesh

(4.3 GB) in the order of 2 to 3 hours appears to be
reasonable.

Second, the overall throughput increases with mesh
size. Our intuition is that since the etree library caches
mesh data in its memory buffer, as more data access to
the cache occur, higher throughput is achieved. There-
fore, larger mesh generations are more likely to benefit
from the caching. The bottom line is that the through-
put does not decrease as the mesh size increases, which
implies that the total running time increases at most
linearly as the mesh size increases.

Third, all the experiments are performed on a machine
with only 128 MB of physical memory. The buffers
allocated by the etree library is only 24 MB. Thus,
the etree method is a feasible solution to generate large
octree meshes on memory-limited machines.

5.3 How does the running time vary with the
physical memory size?

We are not only interested in the effect of memory size
on the running time of our method, but also inter-
ested in determining the running time of etree related
operations and application-specific computation. We
perform an experiment similar to the one described
in the previous section; we generated the meshes with
the same library parameters, i.e., B-tree buffer and
blocking array size, except that this time we varied
the amount of physical memory available to operating
system.

Besides the total running time, we measured the time
for the following operations of our mesh generator:
(1) construct, (2) balance, (3) transform, (4) query and
(5) findslave. The first three operations are general
etree operations, i.e., excluding application-specific
computation, in the corresponding construct, balance
and transform step described in section 3. These op-
erations account for the time executing library code to
navigate and search the etree. Query is an application-
specific operation and accounts for the time required
to query the materials database in all the steps of
the mesh generator. Findslave is also an application-
specific operation and accounts for the time required
to compute the master / slave relationship between
nodes.

Figure 23 shows the running time for the mesh genera-
tion process. The results are presented in four groups,
one for each mesh. Each group presents the running
time for a given mesh with different physical memory
configuration. Within each group the running time is
normalized to the 128 MB case. We can see that the
performance improves slightly (less than 15%) as the
physical memory size increases from 128 MB to 880
MB.

The figure also shows us that the general etree op-

SF10 SF5 SF2 SF1

100% -
I
1
80% (HE
) I 1 !
£ | 1
= 04 1
5 60% 1HE
£ X ,
& o b
40% 1 St
20% - "
0%
© & 9 © © o 9o © © o 9o ©® © N o
I8 58 & 8 53 & 8 53 d 8 33
S Qb3 5 d b3 S d b3 5 d b3
Memory size (MB)

#Aconstruct Mbalance transform
B query Olfindslave

Figure 23: Total running time vs. Physical memory
size.

erations of construct, balance and transform account
for at maximum 30% of the total running time. Fig-
ure 24 magnifies the running time of the general etree
operations to a larger scale. Again, there is no signifi-
cant performance change as the physical memory size
increases.

Both sets of results show that the memory size does
not have a significant impact on running time. We also
deduce from the results that the etree is not relying
on the operating system’s internal caching mechanism
to achieve its performance.

Y/ 777777

Running time

N 9 @
o ® N
@ -

) IS

256
512

Memory size (MB)

O balance

| B@construct Ntransform |

Figure 24: Etree operation running time vs. Physi-
cal memory size.

5.4 What is the impact of auto-navigation?

For these experiments we made 830 MB of physical
memory available to the operating system and varied
the size of the B-tree buffer in the etree library. Fig-
ure 25 shows the effectiveness of the auto-navigation

technique. In all four cases, the construction time of
the etree does not depend on the size of B-tree buffer
as long as there is a buffer, even if it is a small one.
auto-navigation requires only small amount of mem-
ory footprint to cache the B-tree nodes on the path
from the B-tree root node to the rightmost B-tree leaf
node, which is no more than a few disk pages. Reduc-
ing the B-tree buffer size does not increase the octree
construction time as long as the buffer is big enough
to hold this path.

We can also see from Figure 23 and Figure 24 that
the construct step only accounts for a very insignifi-
cant portion of the total running time. This is a proof
that the auto-navigation is very effective and does not
deserve further effort for optimization.

1e+06

100000 4

10000 - 1

1000 b

Octree construction time(ms)

1000 10000
B-tree buffer size(KB)

Figure 25: Octree construction time vs. B-tree
buffer size (log-log scale)

5.5 What is the impact of local balancing?

In these experiments we fixed the amount of the phys-
ical memory and the B-tree buffer size and varied the
blocking array size. Figure 26 shows the effect of local
balancing. The z-axis is the maximum blocking ar-
ray size allowed in the etree library. The y-axis is the
time to balance an octree. The data-points plotted on
the y-axis, i.e., £ = 1, corresponds to the case where
local balancing is disabled and global balancing is per-
formed. In all the four cases, a significant reduction
in execution time is achieved by enabling the blocking
array and doing local balancing. The speed-up factor
ranges from 8x (SF1) to 28x (SF10).

A simple analysis can show why there is a wide dis-
crepancy between the speed-up factors. The perfor-
mance gain of local balancing comes from two aspects:
the faster array-based neighbor-finding algorithm, and
the one-time traversal of the domain. In the case of
SF10, the size of the mesh etree is small enough to
be entirely cached in the etree memory buffer, thus
multiple traversals through the domain required by

1e+08

1e+07 \ 1

1e+06 f-----__ 1

@
g
T
E
S 100000 |]
g f .
2 .
m
3
8 10000 | T]
it
1000 |]
=
100 y ; T =

1 10 100 1000 10000 100000
Blocking array size(KB)

Figure 26: Octree balancing time vs. Etree blocking
array size (log-log scale)

global balancing do not incur additional disk I/O. So
the larger speed-up factor is mainly due to the faster
array-based neighbor-finding algorithm, which avoids
the costly operations of searching the B-tree.

On the other hand, the size of the SF1 mesh etree far
exceeds the etree buffer size. As a result, multiple
traversals of global balancing requires a substantial
amount of repeated disk accesses, and thus becomes
the bottleneck. Local balancing achieves its speed-up
mainly by traversing the domain once, with the array-
based neighbor-finding algorithm playing a secondary
but still important role. In fact, for the SF1 mesh,
the global balancing method traverses the domain four
times. But we get a speed-up of 8 by enabling blocking
array. The extra performance gain can be attributed
to the array-based neighbor-finding.

6. CONCLUSION

We focus on how to generate large octree meshes out
of core. Our solution is the etree, a database-oriented
method that enables an application to generate meshes
by querying a database. We introduce two new tech-
niques, auto-navigation and local balancing, for fast
construction and balancing of an out-of-core octree.
The main result from our experiments is that the etree
method can generate large octree meshes on memory-
limited machines in a reasonable amount of time.

In sum, we have demonstrated that incorporating ex-
isting database techniques (linear octree and B-tree)
with new algorithms (auto-navigation and local bal-
ancing) in a unified design scheme (the etree method)
can deliver new capabilities (generating large octree
meshes desktop machines).

In addition to the work described in this paper, we

have also developed database methods for octree mesh
finite element solvers and visualization services. For
each timestep, the octree mesh solver iterates through
the octree mesh, retrieves the displacement values for
an element from the database produced in the previous
timestep, solves the element-wise linear equations, and
then updates the displacement values in the database
for the current timestep. All intermediary results and
final results for the simulation are stored and retrieved
directly from databases. Similarly, the visualization
service queries the result database to service requests
for images.

Interesting questions have surfaced as we investigate
such database-oriented methods. For example, what
strategy should the solver adopt to iterate through
the octree mesh such that the locality of reference can
be best exploited? Similarly, how should we order a
series of queries from the visualization service to bet-
ter use the content already cached? Another example
is how to automatically compress the (intermediary)
result databases where spatial or temporal similarity
is discovered? All these questions need to be stud-
ied and answered before we can fully support running
large-scale physical simulations on desktop machines.

ACKNOWLEDGEMENTS

We gratefully acknowledge Jacobo Bielak, Omar
Ghattas and Eui Joong Kim for developing the octree-
based finite element method and for using our large oc-
tree meshes of the San Fernando Valley in their teras-
cale ground motion simulations at Pittsburgh Super-
computing Center. We also thank Tom Jordan, Phil
Maechlin, Kim Olsen, Steve Day, Harold Magistrale,
and Karl Kesselman, our colleagues on the South-
ern California Earthquake Center (SCEC) Community
Modeling Environment Project, for their suggestions
and encouragement. Finally, thanks to Natassa Aila-
maki and Christos Faloutsos for helping us understand
spatial databases. This work was sponsored in part by
the National Science Foundation under Grants CMS-
9980063 and 0122464, and in part by a grant from the
Intel Corporation.

References

[1] Bryant R., O’Hallaron D. Computer Systems: A
Programmer’s Perspective. Prentice-Hall, 2003

[2] Samet H. Applications of Spatial Data Structures:
Computer Graphics, Image Processing and GIS.
Addison-Wesley Publishing Company, 1990

[3] Shephard M.S., Georges M.K. “Automatic Three-
Dimensional Mesh Generation by the Finite Oc-
tree Technique.” International Journal for Nu-
merical Methods in Engieering, vol. 32, 1991

[4]

[5]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Bern M., Eppstein D., Gilbert J. “Provably Good
Mesh Generation.” Proceedings of 81st Sympo-
sium on Foundation of Computer Science, pp-
231-241. 1990

Young D.P., Melvin R.G., Bieterman M.B., John-
son F.T., Samant S.S., Bussoletti J.E. “A Locally
Refined Rectangular Grid Finite Element: Ap-
plication to Computational Fluid Dynamics and
Computational Physics.” Journal of Computa-
tional Physics, vol. 92, 1-66, 1991

Wang J. Octree-Based Finite Element Method
for Elastic Wave Propagation with Application to
FEarthquake Ground Motion. Master’s thesis, De-
partment of Civil and Environmental Engineer-
ing,Carnegie Mellon University, May 1999

Kim E.J. Terascale Ground Motion Simulation
Using Octree-Based Adaptive Mesh. Ph.D. the-
sis, Dept of Civil and Environmental Engineering,
Carnegie Mellon University, Jan. 2003

Salmon J., Warren M.S. “Parallel, out-of-core
methods for N-body simulation.” Proceedings of
the Eighth SIAM Conference on Parallel Process-
ings for Scientific Computing. 1997

Gargantini I. “An Effecive Way to Repre-
sent Quadtrees.” Communicatoins of the ACM,
vol. 25, no. 12, 905-910, Dec 1982

Morton G.M. “A computer oriented geodetic data
base and a new technique in file sequencing.”
Tech. rep., IBM, Ottawa, Canada, 1966

Orenstein J.A., Merrett T.H. “A Class of Data
Structure for Associative Searching.” Proceedings
of ACM SIGACT-SIGMOD, pp. 181-190. Water-
loo,Ontario,Canada, 1984

Orenstein J.A. “Spatial Query Processing in an
Object-Oriented Database System.” Proceedings
of ACM SIGMOD, pp. 326-336. Washington D.C,
1986

Faloutsos C., Roseman S. “Fractals for Secondary
Key Retrieval.” Proceedings of the Eighth ACM
SIGACT-SIGMID-SIGART Symposium on Prin-
ciples of Database Systems (PODS). 1989

Bayer R., McCreight E.M. “Organization and
Maintenance of Large Ordered Indices.” Acta In-
formatica, vol. 1, 173-189, 1972

Comer D. “The ubiquitous B-Tree.” ACM Com-
puting Surveys, vol. 11, no. 2, 121-137, Jun 1979

Gray J., Reuter A. Transaction Processing: Con-
cepts and Techniques, chap. 15. Morgan Kauf-
mann Publishers, Sep 1992

[17]

[18]

[19]

[20]

Silberschatz A., Korth H.F., Sudarshan S.
Database system concepts, chap. 11. McGrill Hill
Companies, Inc., third edn., 1997

Yao A.C. “On random 2,3 trees.” Acta Informat-
ica, vol. 9, 159-170, 1978

Bao H., Bielak J., Ghattas O., Kallivokas L.,
O’Hallaron D., Shewchunk J., Xu J. “Large-scale
Simulation of Elastic Wave Propagation in Het-
erogeneous Media on Parallel Computers.” Com-
puter Methods in Applied Mechanics and Engi-
neering, 1998

Magistrale H., Day S., Clayton R., Graves
R. “The SCEC Southern California Reference
Three-Dimensional Seismic Velocity Model Ver-
sion 2.” Bulletin of the Seismological Soceity of
America, Dec 2000

