
Balance Refinement of Massive Linear Octrees

Tiankai Tu† David R. O’Hallaron†∗
†Computer Science Department

∗Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, USA

email:{tutk,droh}@cs.cmu.edu Phone:1-412-268-3043 Fax:1-412-268-5576

Abstract

This paper presents a solution to the problem of bal-
ance refinement of massive linear octrees. We com-
bine existing database techniques (B-tree, bulk load-
ing, and range queries) with new algorithms (bal-
ance by parts, prioritized ripple propagation) and data
structures (the cache octree) into a unified framework
that provides new capabilities for large scientific ap-
plications.

1 Introduction

Extensive applications of octrees date back to the
early 1970’s [17]. Given three decades of research, it
might be thought that octrees have been fully studied.
Interestingly, an indispensable operation required by
many applications,balance refinement, has somehow
been largely ignored.

The purpose of balance refinement is to enforce a
continuity condition on an existing octree such that the
octree decomposition is relatively smooth throughout
the domain, with no abrupt changes in size between
adjacent leaf octants. This continuity condition typi-
cally requires that no two leaf octants sharing a face
or an edge should differ by a factor of more than two
in terms of their edge sizes. Or equivalently, all spa-
tially adjacent leaf octants that share a face or an edge
should differ by at most one in their tree levels. To
make the term more intuitive, we will refer to the con-
tinuity condition as the2-to-1 constraint.

Applications that require the 2-to-1 constraint on
octrees include scientific computing [5, 22, 13, 3],
quality mesh generation [21, 8, 15, 18], and computer
graphics [4]. In spite of this, there is relatively little

work on balancing octrees. Although balance refine-
ment is not a big issue when the dataset can be com-
pletely cached in main memory, it represents a serious
problem for applications such as scientific computing
that require massive balanced linear octree datasets.
Typically, in order to simulate large and complex phys-
ical phenomena, scientific applications require billions
of octants or even more to model and resolve the do-
main of interest. The sizes of these datasets can be
on the order of hundreds of gigabytes to terabytes, and
getting larger all the time.

Efficiently balancing massive linear octrees that
cannot be completely cached in main memory consti-
tutes a unique challenge. Unlike massive dataquery
problems where sophisticated synopsis data struc-
tures can be used to provide fast, approximate re-
sponses [12], balance refinement must produce ex-
act results as required by the 2-to-1 constraint. Un-
like relatively lightweightscientific workflow applica-
tions, where conventional DBMS’s can be naturally
extended to provide the functionality [2], the process
of balance refinement is much more complicated and
the dataset is too large to be treated as flowing ob-
jects. Instead we view balance refinement as a hybrid
of Vitter’s canonical categories of massive data prob-
lems (batched problemsand theonline problems) [20].
It is a batched problem because every item (octant) in
the dataset must be processed in order to enforce or
verify the 2-to-1 constraint. It is an online problem
because changes to the dataset (linear octree) are only
performed in response to violations of the continuity
condition, and are mostly confined to a small portion
of the dataset.

This paper presents an efficient and scalable balance
refinement method. Like many other database algo-

1



rithms, our method exploits locality of reference to re-
duce disk I/O. The main new algorithm is calledbal-
ance by parts (BBP). The key idea is to divide the do-
main represented by an linear octree into 3D volumes
(volume parts) that can completely fit in main mem-
ory. Each volume is streamed into main memory by a
sequential scan and is cached in a temporary pointer-
based octree called acache octree. Interactions be-
tween volumes are resolved by balancing octants on
the inter-volume boundaries (boundary parts). Octants
of a boundary part are fetched by range queries issued
on the linear octree and are also stored in a temporary
cache octree.

Once a cache octree is initialized, we apply a new
algorithm calledprioritized ripple propagation (PRP)
to balance it efficiently. While adjusting the structure
of the cache octree, we update the linear octree dataset
accordingly.

Evaluation results show that our method is both
efficient and scalable. It runs over 3 times faster
than any existing algorithm when used to balance a
20GB dataset with 1.2 billion octants on a Linux work-
station with 3GB main memory. It also maintains
high throughput rates when used to balance very large
datasets (56GB).

The paper makes two main contributions. First, we
present a new method that seamlessly integrates ex-
isting database techniques (B-tree, bulk loading, range
queries) with new scalable algorithms (BBP and PRP).
We introduce a more efficient caching mechanism (the
cache octree) to incorporate locality directly into the
algorithm design, thereby greatly outperforming algo-
rithms that use conventional B-tree page level caching.
Second, we provide a powerful data management tool
for scientists and engineers to deal with massive linear
octree datasets. In fact, our balance refinement algo-
rithm has already had significant impact in the scien-
tific computing world, making it possible for the first
time to generate unstructured hexahedral finite ele-
ment meshes with billions of elements. For generating
and simulating earthquake ground motion in the Los
Angeles basin using these meshes, the authors (along
with other members of our group) received the 2003
Gordon Bell Award [3].

Sections 2 and 3 provide background on octrees and
related work. Section 4 defines the fundamental per-
formance problems we are attempting to solve. Sec-

tions 5–8 discuss aspects of the BBP algorithm, includ-
ing the cache octree structure. Section 9 describes the
PRP algorithm. Section 10 evaluates the performance
of our approach.

2 Background

2.1 Octrees and Linear Octrees

An octree recursively subdivides a three-
dimensional domain into eight equal sizeoctants
until certain criteria are satisfied [17]. One common
way to represent an octree is to link the tree nodes
using pointers. Figure 1 shows the pointer-based
octree1 representation and its corresponding the
domain decomposition. A node with no children is
a leaf node. Otherwise, it is anon-leaf node. The
number of hops from a node to the root node defines
the level of the node. The larger the value, the lower
the level. The corresponding domain decomposition
is shown is Figure 2.

00 01 11
Level 0

a

10

Level 1

Level 2

b c

d e f g

h

i j k

l m

Level 3

Level 4

00
01 10 11

00
01 10 11

00 01 10 11

:non-leaf node :leaf node

Figure 1. Pointer-based octree.

The other common way to represent an octree is the
linear octree [1, 11], which assigns a unique key to
each node and represents an octree as a collection of
sorted leaf nodes, which can be organized on disk by
an index structure such as a B-tree [9, 7]. Linear oc-
trees are useful in practice where main memory cannot
accommodate a complete pointer-based octree. In this
paper, we only consider linear octree datasets indexed
and stored in B-trees.

The key assigned to a node is generally referred
to as itslocational code, which encodes the location
and size of the node. One particular locational code
that is commonly used is obtained by concatenating

1We may draw 2D quadtrees in figures to illustrate concepts.
But we use the term “octrees” and “octants” consistently, regard-
less of the dimension.

2



the branches (bit-patterns) on the path from the root
node to the leaf node. Zeroes may be padded to make
all the locational codes of equal length. To distin-
guish the trailing zeroes of branch bit-patterns from
zero paddings, the level of the node is attached to the
path information. An equivalent way [10] to derive the
locational code is based on bit-shuffling of the coordi-
nates, which is often used in practice.

b c
i

h
d e
f g

j k

a

l m

Figure 2. Domain decomposition.

When we sort the leaf nodes according to their loca-
tional codes (treated as binary scalar value), the order
we obtain is the same as the preorder traversal of the
octree. Therefore when we index a linear octree in a
B-tree, octants are stored sequentially on B-tree pages
in the order of preorder traversal. (In the context of
disk-resident linear octrees, we refer to the leaf nodes
simply as octants, since no non-leaf nodes are stored
on disk.)

2.2 2-to-1 Constraint and Ripple Effect

The 2-to-1 constraint requires that the edge size of
two leaf octants sharing a face or an edge should be no
more than twice as large or small. For example, octant
f in Figure 2 is adjacent to octanta andj, both of
which are more than twice as large. Figure 3 shows
the result of refining the domain to a balanced form.
The corresponding tree structure adjustment is shown
in Figure 4. Note that in 2D, we only need to consider
edge-neighbors.

One interesting property of the refinement process
is the so-calledripple effect. That is, a tiny octant may
propagate its impact out in the form of a “ripple”, caus-
ing subdivisions of octants not immediately adjacent to
it. In our example, octantm is not directly adjacent to
octantf, but it is forced to subdivide by the subdivi-
sion of octantj, which is triggered directly byf.

b c
i

h
d e
f g

j1
k

a2

l

m1

a1
a3

a4 a5

a6 a7
j2

j3 j4

m2

m3 m4

Figure 3. Balanced domain decomposition.

b c

d e f g

h

i k

l m

j

a

:node subdivided

Figure 4. Balanced octree.

3 Related Work

Moore studied the space cost of balancing gen-
eralized octrees and proved that each octree has a
uniqueleast common balance refinement [16]. Yerry
and Shepard developed a balance refinement algorithm
based on a breath-first expanded octree in [21]. We re-
cently proposed a balance refinement algorithm called
local balancing[18]. (The full paper will elaborate.)

4 Problem Statement

The balance refinement process consists of two
main operations: (1)neighbor finding: finding neigh-
bors to obtain their edge sizes information in order to
make comparison; (2)subdivision: deleting a “too-
large” octant from the dataset and inserting its eight
children. The deletion is necessary because the linear
octree datasets we are balancing should contain only
leaf octants.

Suppose we have a complete list that records the
octants that need to be subdivided, then the process of
balance refinement boils down to a sequence of simple
B-tree deletions and insertions. Unfortunately, we do
not a list of subdivision when given an unbalanced lin-
ear octree dataset. Worse, the ripple effect excludes the

3



existence of such a complete list, which should grow
gradually during the refinement process. So the only
way to decide whether an octant is too-large and needs
to be subdivided is by comparing its edge size with
those of its neighbors. Therefore, neighbor finding is
the key operation for balance refinement.

One method to implement the neighbor finding op-
eration is to manipulate the locational code of an oc-
tant to generate the keys for its neighbors and search
the B-tree directly. The average (also worse-case) cost
for a B-tree search operation is O(log N), where N is
the number of octants indexed by the B-tree. As a re-
sult, the total cost of neighbor findings for every octant
in the dataset is O(N log N). The advantage of this
method is that there is no excessive requirement on the
size of main memory, as long as there are enough space
to cache a few B-tree pages.

Another method is to map the linear octree to an
incore pointer-based octree and use the conventional
pointer-based algorithm to find neighbors [17]. The
advantage is that the average cost of neighbor finding
is reduced to O(1), with a total cost of only O(N) to
conductall the neighbor findings. But the main mem-
ory should be large enough to build a pointer-based
octree image for the linear octree.

How can we take advantage of both methods? That
is, how can we find neighbors efficiently (in O(1) time)
without excessive memory requirement (not mapping
the entire linear octree in memory)? This is the first
problem we need to address.

The second performance problem is more subtle
and is related to the ripple effect. After an octant
is checked to be balanced with respect to its neigh-
bors, one of its neighbors may be subdivided later and
become smaller. This may cause the original octant
to become “too-large”. Consequently, another round
of neighbor findings must be invoked to discover this
newly created unbalanced situation. However, mul-
tiple iterations of neighbor findings increase the total
running time by a constant factor. So the second prob-
lem we focus on ishow to avoid multiple iterations of
neighbor findings?

5 Balance by Parts (BBP)

Our method is based on an observation that al-
though balance refinement may cause ripple effect, the
impact diminish quickly due to the 2-to-1 edge size ra-

tio. In addition, most impact caused by a tiny octant
is localized in a small region. For example, octantf
in Figure 2 causes the subdivisions of octanta and its
children. But both are spatially adjacent tof. In other
words, the impact of a tiny octant is absorbed mostly
by octants surrounding it in a small neighborhood.

The strong locality of reference suggests that we
may map a small region to a pointer-based (sub)octree
in memory and resolve the 2-to-1 constraint and the
ripple effect without worrying about octants outside of
the region. This is the type of solution that fits the
paradigm of divide-and-conquer perfectly.

5.1 Overview

Figure 5 shows the outline of our main new algo-
rithm, calledbalance by parts (BBP). First the domain
represented by a linear octree is partitioned (divided)
into equal-sized 3D volumes calledvolume parts. The
size and alignment of each 3D volume should corre-
spond to some non-leaf node (of a conceptual pointer-
based octree) at certain level. Next, each volume is
cached in memory and balanced. After all the 3D vol-
umes are processed, octants on the volume face bound-
aries, calledface boundary parts, are balanced, fol-
lowed by the balance of octants on the volume line
boundaries (line boundary parts) and point boundaries
(point boundary parts). Each part, regardless of its
type, is cached in a temporary pointer-based octree
called acache octree. While balancing a cache octree
in memory, we update the B-tree to record the subdi-
visions of leaf octants. Another new algorithm called
prioritized ripple propagation (PRP)is used to effi-
ciently balance cache octrees (see Section 9).

An intuitive way to understand the balance by parts
algorithm is to imagine a moving window inside the
3D domain. At any moment, the content (octants) in-
side this window is retrieved from disk and cached
in a temporary data structure (cache octree). When
we adjust the data structure to enforce 2-to-1 con-
straint in memory, the content on disk is updated ac-
cordingly (by deleting subdivided octants and insert-
ing their children in the B-tree). The window size is
set differently for four separate stages, ranging from
the largest (for the 3D volumes) to the smallest (for
the point boundary parts).

Although similar in principle to divide-and-
conquer, this method is different from our previous

4



Algorithm 1 (Balance by parts).

Input:
An unbalanced linear octree indexed in a B-tree.

Output:
A balanced linear octree indexed in the same B-tree.

Method:
Organize the dataset as smaller, memory cacheable
parts, and balance each part independently.

Step 1: [Partition the domain into equal-sized 3D vol-
umes.]
Based on the available memory size, decide
the maximum number of octants that can be
cached and calculate the corresponding subtree
root level. Each 3D volume maps to a subtree
root.

Step 2: [Balance the 3D volume parts.]
Fetch data from database:Octants belonging to
each 3D volume is sequentially scanned from B-
tree pages and cached in an internal temporary
data structure calledcache octree.

Balance cache octree:Each cache octree is bal-
anced independently. Subdivisions of leaf nodes
causes octants to be deleted from and inserted
into the B-tree.

Release cache octree:After an cache octree is
balanced and the B-tree updated accordingly, re-
lease memory used by the cache octree.

Step 3: [Balance the face boundary parts.]
Similar to Step 2 except thatrange queriesare
issued to fetch octants on theface boundarybe-
tween adjacent 3D volumes for each part.

Step 4: [Balance the line boundary parts.]
Similar to Step 2 except that range queries are
issued to fetch octants on theline boundariesof
adjacent 3D volumes for each part.

Step 5: [Balance the point boundary parts.]
Similar to Step 2 except that range queries are
issued to fetch octants on thepoint boundariesof
adjacent 3D volumes for each part.

Figure 5. Balance by parts.

work [18] in many key aspects. First, instead of
caching data in a flat structure (blocking array), we
install octants in a temporary pointer-based octree.
Second, no additional iterations of boundary post-
processing are necessary. Interactions between 3D
volumes gradually diminish after being assimilated by
face boundaries, then line boundaries and finally point
boundaries. Third, we apply a same routine to balance
all the parts. No special treatment for the boundary
octants is needed. Fourth, we have developed a new
algorithm that can balance a pointer-based octree effi-
ciently (O(n)), rather than using a variant of Yerry and
Shepard’s algorithm.

Volume 1 Volume 2

Volume 3 Volume 4

Figure 6. Partition the domain into 4 volumes
corresponding to tree level 1.

5.2 An Example

Here is an example of applying BBP on the octree
of Figure 1 and Figure 2. Note that in the context of
linear octrees, theglobal pointer-based tree structure
does not exist physically in memory or on disk.

Assuming that the largest volumes that can fit in
memory are the non-leaf nodes (of the conceptual
quadtree) at level 1, we partition the domain into 4 vol-
umes, as shown in Figure 6. Each volume is cached in
memory independently as a temporary pointer-based
cache octree and then balanced. Figure 7 shows the
cache octree for volume 2.

After all the volumes are processed, the line bound-
ary parts are balanced one by one, in arbitrary order.
Note that for 2D cases, there are only line boundaries
and point boundaries. Figure 8 shows the cache octree
representing octants on the boundary between volume
1 and volume 2. The corresponding region is shown
in Figure 9. Note that all the subdivisions triggered by

5



b c

d e f g

h

i kj

:node subdivided

root maps to level 1 

Figure 7. The balanced cache octree repre-
senting volume 2.

octantf are confined on the boundary. Also, the cache
octree root for boundary parts is mapped to the entire
domain (level 0) instead of the subtree root level as
does the cache octree for the volumes. As a result, the
cache octree has null branches. We will justify these
design decisions in the remainder of this paper.

b

d f

a

:node subdivided

j1 j3

:null branch

root maps to level 0 

Figure 8. The balanced cache octree repre-
senting line boundary part between volume 1
and volume 2.

b

d
f

j1

a2
a1

a3

a4 a5

a6 a7
j3

The line boundary between volume 1 and volume 2.

Figure 9. The boundary part between volume
1 and volume 2.

The point boundary part consists of the four oc-
tants anchored at the center point of the domain. Since
no subdivision occurs inside the point part, we omit
the cache octree representation for the point boundary
part.

5.3 Questions to be Answered

Although structurally simple, our algorithm raises a
number of questions. First of all, is it correct? How
can a linear octree be balanced when only parts of the
tree are being balanced? Second, how to fetchparts
of different types from a linear octree dataset and what
is the I/O implication? Third, how to build the internal
temporary cache octree and speed up the balance oper-
ation itself? Detailed answers are presented in the next
three sections.

6 Correctness

We first define an important concept calledstable
octants:

Definition 1. An octant isstableif (1) it will not trig-
ger other octants to subdivide; and (2) it will not be
triggered to subdivide.

Stable octants are isolated from other octants in
terms of interactions that might trigger subdivisions.
While other octants are undergoing subdivisions, sta-
ble octants remain intact in the dataset. They exist in
a balanced linear octree dataset in the same form as
when they become stable. It is trivial to show:

Theorem 1. An octree is balanced if and only if all its
octants are stable.

So instead of directly proving that each individual
octant conforms to the 2-to-1 constraint with respect
to its neighbors, we prove the correctness of our algo-
rithm by constructing the set of stable octantsS. Ini-
tially empty,S is augmented monotonically every time
we balance a part of some type. When the algorithm
terminates,S contains all the octants in the domain.
Thus, we have a balanced octree.

To complete the proof by construction, we need to
show: (1) which octants become stableafter a part of
some type is balanced; (2) whyS contains all the oc-
tants on termination of the algorithm. Both problems
can be solved using the concepts of internal octants
and boundary octants. See Appendix A for details.

7 Data Retrieval

We retrieve data from a linear octree dataset in two
different ways: bulk loadingand range queries. 3D

6



volume parts can be retrieved by bulk loading, since a
3D volume maps to a virtual subtree root whose leaf
octants are clustered sequentially on B-tree pages (see
Section 2.1). We can identify the position of thefirst
octant of a 3D volume in the B-tree by a simple search
operation, and then sequentially scan each octant from
the B-tree in constant time until we encounter an oc-
tant that is outside of the 3D volume. The first octant
of a 3D volume is well-defined. It refers to the octant
that occurs first in the preorder traversal of the subtree
represented by the 3D volume. Since the first octant is
always anchored at the left-lower corner of a 3D vol-
ume, we can easily derive its locational code.

To retrieve octants for parts of other types, we im-
plement range queries on linear octree datasets. For
example, face boundary parts are fetched by search-
ing for octants tangentially intersecting particular rect-
angles (shared by 3D volumes) in space. Since our
algorithm reduces interactions from face boundaries,
to line boundaries and finally to point boundaries, the
sizes of range queries are reduced over the stages. In
fact, our experiments (see Section 10.3) show that only
about 1.5% of a linear octree dataset is fetched by
range queries.

In summary, the structural design of our algorithm
results in an I/O optimal case where most data is effi-
ciently retrieved by bulk loading and the remainder is
retrieved by standard spatial database range queries.

8 Cache Octree

When the octants for a part (of any type) are re-
trieved from the linear octree, we cache them in a tem-
porary data structure calledcache octree. A cache oc-
tree is a pointer-based octree with special link lists em-
bedded (see Figure 10). We use this single data struc-
ture repeatedly to cache all the parts, regardless of their
types. The advantage is that we can apply the same
algorithm on all cache octrees. No special treatment
of boundary parts is needed. The procedures of build-
ing cache octrees for parts of different types are almost
identical except for a few minor details.

Before a part is fetched from database, we initial-
ize an cache octree with a single root node2. For a
3D volume part, we map the root node to the non-leaf

2We usenodesto refer to octants in a cache octree to avoid
confusion with octants stored in the linear octree on disk.

node corresponding the 3D volume. For other parts,
we map the root node to level 0. We will justify this
arrangement shortly. For each octant retrieved, we in-
stall it in the cache octree as a leaf node. The installa-
tion process is straightforward. As we have shown in
Section 2.1, it is trivial to descend from the root node
to find a leaf node by extracting the path information
(branch bit-patterns) from the its locational code. The
only difference here is that we do not have a tree struc-
ture in place. So some extra work needs to be done to
create non-leaf nodes as necessary when we descend
down a cache octree to install a leaf node. Leaf nodes
at same tree level are linked together and is accessible
from an array calledlevel table. The cost of building a
cache octree is linear to the number of leaf nodes.

Level table

0

1

2

3

Figure 10. A cache octree is a pointer-based
octree with leaf nodes at the same level linked
together.

We must guarantee that each octant of a particu-
lar part can be properly installed by traversing down
a cache octree from its root node. This is not a prob-
lem for a 3D volume part since all the octants belong
to the same subtree and we have mapped the cache oc-
tree root node to that level. For a part with type other
than 3D volumes, two octantsmayhave different bit-
pattern at the first branch in their locational codes. To
see an example, check the locational codes of octant
a andf in Figure 2. Therefore, we have to to map a
cache octree root node to level 0 to ensure proper in-
stallation of all octants of the part. In this case, some
branches of non-leaf nodes may be empty (null) and
the cache octree becomessparse.

We have now developed all the techniques needed
to resolve the first performance problem stated in Sec-
tion 4. The solution is to divide the domain into small
pieces and then cache each piece in a pointer-based
cache octree. In this way, we can work with small main
memory and still take advantage of the faster pointer-
based neighbor finding algorithm.

7



9 Prioritized Ripple Propagation (PRP)

The algorithm presented in this section resolves the
second performance problem, namely avoiding multi-
ple iterations of neighbor findings. The key ideas are
to (1) decouple node visiting from tree structure traver-
sal; and (2) combine neighbor findings with node sub-
divisions.

Figure 11 shows the outline of our algorithm named
prioritized ripple propagation(PRP), which operates
on cache octrees. The overall structure is to visit the
link lists of leaf nodes at different levels in a prioritized
manner. The link list of each level is accessible from
the level table associated with an cache octree. We
start from the lowest level (with the largest value) and
move one level up after processing leaf nodes at each
level.

Algorithm 2 (Prioritized ripple propagation).

Input:
An unbalanced cache octree.

Output:
A balanced cache octree.

Method:
Visit leaf nodes directly from the level link list and
change the tree structure immediately when a too-large
(neighbor) leaf node is identified.

Step 1: [Set the current level to the lowest level.]

Step 2: [Initialize a link list traversal for the current
level.]

Step 3: [Applyripple routine on each node at the current
level.]
For each node, search for its neighbors to check
their sizes. If a neighbor is too large, divide it
(and its descendants) as many times as needed.

Step 4: [Set current level to one level up.]

Step 5: [Goto Step 2 if the current level is more than 1
below the highest level recorded; Otherwise, ter-
minate.]

Figure 11. Prioritized ripple propagation.

The benefit of visiting leaf nodes directly from the
link lists is that we can now take an eager approach
of subdividing neighbor (leaf) nodes and changing the
tree structure on the fly. Had we tied node visiting
with tree structure traversal in whatever order, an eager
approach would cause great difficulty if a previously
visited node were to be subdivided. We would have to
interrupt the tree traversal and roll back to the newly
subdivided node to check its impact on others.

The key to this algorithm is Step 3, where arip-
ple routine is invoked to implement the eager strat-
egy. The ripple routine combines neighbor findings
with node subdivisions. It is based on the well-known
pointer-based neighbor finding algorithm [17], which
consists of two stages: (1) ascending the octree to lo-
cate the nearest common ancestor; and (2) descending
the octree (on a mirror-reflected path) to find the de-
sired neighbor of equal size or larger.

The ripple routine implements the first stage with-
out modification and record the path traced in a stack.
But in the second stage, the ripple routine may sub-
divide neighbor leaf nodes in order to descend deep
enough in the octree. A neighbor leaf node needs to be
subdivided if it is more than twice as large as the leaf
node we are visiting. Three actions are taken when a
neighbor leaf node is subdivided: (1) Allocate eight
new children nodes and link them to the subdividing
node; (2) Remove the subdividing node from the leaf
node link list of its level and add its children leaf nodes
to the link list one level lower; (3) Delete the subdivid-
ing node from the linear octree and insert its eight chil-
dren. The first two actions adjust the incore cache oc-
tree to maintain a valid data structure. The third action
performs the actual database update to synchronize the
image on disk.

After a too-large neighbor leaf node is subdivided,
we obtain the next level’s branch information from the
stack and descend to one of its newly created chil-
dren node who now becomes the new neighbor. This
subdivide-descend process continues until we reach a
level that is 1 above the level of the leaf node we are
processing. When the ripple routine is completed, a
leaf node is surrounded by neighbors no more than
twice as large.

With the PRP algorithm, we avoid multiple itera-
tions of neighbor findings. The proof of the correct-
ness of the algorithm consists of three parts. First,

8



the algorithm terminates. Since the smallest leaf nodes
never subdivide, the total number of leaf nodes to be
processed is bounded. Second, a leaf node becomes
stable (see Definition 1) after we apply the ripple rou-
tine on it (proof by induction). Third, all the leaf nodes
are processed by the ripple routine and thus become
stable. This is because newly created leaf nodes are al-
ways added to link lists at least one level above the cur-
rent level being processed (due to the 2-to-1 edge size
ratio). Given the prioritized level processing order, we
are guaranteed to process all newly created leaf nodes.

Since the average running time of pointer-based
neighbor finding algorithm is O(1), the ripple routine
runs in O(1) on average. Thus the PRP algorithm has
an average cost of O(n), where n is the number of leaf
nodes in a cache octree. Since the PRP algorithm is ap-
plied repeatedly on all cache octrees, the total cost of
running the PRP algorithm is O(N) on average, where
N is the total number of octants in the linear octree.
Plus the cost of building cache octrees, the overall cost
is still O(N).

10 Evaluation

This section attempts to answer the following ques-
tions: (1) How does running time of our algorithms
compare to previous approaches? What is the impact
of performing neighbor findings using pointer-based
cache octrees rather than directly searching the B-tree?
And what is the impact of avoiding multiple iterations
of neighbor findings? (2) Is our method scalable to
massive linear octrees? (3) What is the impact of mem-
ory size on performance?

10.1 Methodology

We implemented three different balance refinement
algorithms: (1) our method (BBP/PRP), (2) an exter-
nal memory version of Yerry and Shepard’s algorithm
(YS) [21], and an improved version of our previously
published algorithm (IMR) [18]. BBP/PRP was im-
plemented using the etree library, a runtime system
for creating and manipulating linear octrees stored on
disk [19].

The experiments were conducted with a collection
of massive real-world linear octree datasets from the
Carnegie Mellon Quake project [3, 6]. The original
(unbalanced) octrees partition a100km × 100km ×

37.5km region of the Greater Los Angeles Basin. The
sizes of the particular octants are determined by the
density of the ground and the desired frequency reso-
lution, with softer regions represented by smaller oc-
tants. An unbalanced octree is first balanced and then
transformed into an unstructured hexahedral mesh that
serves as the input dataset for an octree-based finite
element solver [3, 14, 22].

Dataset Octs (before) Octs (after) Subdivs Size
la0.5h 9,903,330 9,922,286 2,708 139MB
la1h 113,642,903 113,988,717 49,402 1.6GB
la2h 1,192,888,861 1,224,212,902 4,474,863 20GB
la3h 3,656,944,427 3,734,593,936 11,092,787 56GB

Figure 12. Quake project LA datasets.

Figure 12 summarizes the characteristics of the bal-
anced linear octree datasets. The dataset names char-
acterize the frequency resolution of the octree in Hz.
For example, the la2h octree can resolve seismic waves
of up to 2 Hz. The “Octs (before/after)” columns
record the numbers of octants in the linear octree be-
fore and after the balance refinement, respectively;
“Subdivs” records the number of subdivisions trig-
gered; “Size”reports the sizes of the B-tree files stor-
ing the linear octrees after balance refinement. (The
unbalanced datasets are about10% smaller).

10.2 Is the method efficient?

This set of experiments was conducted on a Linux
2.4 workstation with PIII 1GHZ processor and 3GB
physical memory. Figure 13 shows the running times
for all three algorithms on all but the largest octree
(la3h). For the YS algorithm, we allocated as much
memory as available (up to 3GB) to cache B-tree pages
(with an underlying LRU buffer manager).

Dataset YS IMR BBP/PRP
la0.5h 00:29:36 00:05:37 00:01:57
la1h 10:07:09 1:44:55 00:28:06
la2h > 2 weeks 19:48:24 05:51:30

Figure 13. Running times.

There are three interesting observations: (1)
BBP/PRP runs much faster than YS or IMR. When
applied on a large dataset (la2h), BBP is about 3 times
faster than IMR, and 2 orders of magnitude faster than

9



YS. (2) The benefit of finding neighbors using an in-
core octree rather than searching a B-tree is signifi-
cant. The YS algorithm suffers from the O(log N) cost
of searching a neighbor from the B-tree. With a total
cost of O(N log N) for neighbor findings, its running
time is not linearly scalable. Worse, when the dataset
size far exceeds that of main memory, neighbor find-
ings may cause page faults and disk I/O. For example,
the YS algorithm ran for more than 2 weeks on the
la2h dataset. (3) The benefit of avoiding multiple it-
erations of neighbor findings is clear from the perfor-
mance difference between IMR, which uses the con-
ventional multiple-iteration algorithm, and BBP/PRP,
which uses prioritized ripple propagation. Although
not a critical issue in complexity analysis, constant fac-
tors introduced by multiple iterations do make a big
difference in practice, especially for large datasets.

An important conclusion from these observations
is that a sophisticated caching mechanism (cache oc-
trees) is much more effective than simple B-tree page-
level caching.

10.3 Is the method scalable?

The experiments in this section were run on an HP
AlphaServer with 64 1.1 GHz EV7 processors and 256
GB of shared memory. All of our experiments were
run on one PE and requested 2GB of main memory.

Figure 14 summarizes the performance of the
BBP/PRP algorithm on the large la2h and la3h
datasets. “Queries” is the number of octants retrieved
by range queries; “Time” is the measured running time
(hh:mm:ss); “DB” is the percentage of time spent in
database operations, including range queries and B-
tree updates (bulk loading time not included); and
“Thruput” is the throughput rate in octants/sec (i.e.,
total octants in the balanced dataset as shown in Fig-
ure 12 divided by running time).

Dataset Queries Time DB Thruput
la2h 15,595,416 03:04:50 10.3% 111k
la3h 55,340,273 10:00:15 6.1% 104k

Figure 14. Sustained BBP/PRP throughput.

The most striking result is that the throughput for
the la3h dataset (104k octants/sec) is almost identi-
cal to that of the la2h dataset (111k octants/sec), even
though its size is almost three times as large (56GB vs.

20GB). Given that both experiments requested only
2GB memory, the sustained throughput rate suggests
that BBP/PRP scales gracefully to handle very large
datasets without requiring a larger main memory. Sec-
ond, fewer than1.5% octants are retrieved by range
queries, representing a very small overhead to pro-
cess the boundary parts. Third, database operations ac-
count for about10% of the total running time. In other
words,90% of time is spent in “real computation”, i.e.,
constructing and balancing cache octrees. Since the
average running time of PRP is O(N), the scalability
achieved as sustained high throughput rate has a theo-
retical foundation. (The final paper will elaborate.)

10.4 What is the impact of memory size?

Figure 15 summarizes the result of running
BBP/PRP on the la2h dataset using different main
memory sizes (on the same HP AlphaServer). “Mem-
ory” lists peak memory usage; “Time” is the mea-
sured running time. The important conclusion is that
BBP/PRP does not require an extremely large memory
size in order to run efficiently. (The final paper will
elaborate.)

Memory 418MB 1.43GB 5.39GB 15.4GB 43.8GB
Time 03:07:15 03:04:50 03:08:00 03:23:37 03:25:23

Figure 15. Impact of memory size on run time.

11 Conclusion

This paper presents a solution to the problem of bal-
ance refinement of massive linear octrees. We combine
existing database techniques (B-tree, bulk loading, and
range queries) with new algorithms (balance by parts,
prioritized ripple propagation) and data structure (the
cache octree) in a unified framework that delivers new
capability to support large scientific applications.

In general, hybrid problems such as balancing mas-
sive linear octrees present a new challenge to dealing
with massive data. The fundamental nature of such
problems is that the entire dataset has to be processed,
multiple passes sometimes, to identify data items that
need to be inserted, deleted, or updated. Given the
complexity of such problems, a good solution should
not only reduce the disk I/O time but also improve the

10



computational cost. As a result, conventional database
techniques should be used with discretion in order to
avoid creating unexpected performance bottlenecks.

Acknowledgements

We thank Christos Faloutsos and Natassa Ailamaki
for helping us understand spatial databases. This work
is sponsored in part by the National Science Founda-
tion under Grant CMS-9980063, in part by a subcon-
tract from Southern California Earthquake Center as
part of NSF ITR EAR-01-22464, and in part by a grant
from the Intel Corporation.

References

[1] D. J. Abel and J. L. Smith. A data structure and algorithm based
on a linear key for a rectangle retrieval problem.Computer Vi-
sion,Graphics,and Image Processing, 24:1–13, 1983.

[2] A. Ailamaki, Y. Ioannidis, and M. Livny. Scientific workflow man-
agement by database management. InProceedings of the 10th Inter-
national Conference on Scientific and Statistical DatabaseManage-
ment, Capri, Italy, 1998.

[3] V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez,
O. Ghattas, E. J. Kim, J. Lopez, D. O’Hallaron, T. Tu, and J. Ur-
banic. High resolution forward and inverse earthquake modeling on
terasacale computers. InProceedings of SC2003, Phoenix, AZ, 2003.

[4] B. Aronov and H. Bönnimann. Cost prediction for ray shooting. In
Proceedings of the 18th Annual ACM Symposium on Computational
Geometry, pages 293–302, june 2002.

[5] R. E. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms
and data structures for regular local mesh refinement.Scientific Com-
puting, pages 3–17, 1983.

[6] H. Bao, J. Bielak, O. Ghattas, L. Kallivokas, D. O’Hallaron,
J. Shewchunk, and J. Xu. Large-scale simulation of elastic wave
propagation in heterogeneous media on parallel computers.Com-
puter Methods in Applied Mechanics and Engineering, 1998.

[7] R. Bayer and E. M. McCreight. Organization and maintenance of
large ordered indices.Acta Informatica, 1:173–189, 1972.

[8] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh genera-
tion. In Proceedings of 31st Symposium on Foundation of Computer
Science, pages 231–241, 1990.

[9] D. Comer. The ubiquitous B-Tree.ACM Computing Surveys,
11(2):121–137, Jun 1979.

[10] C. Faloutsos.Searching Multimedia Databases by Content. Kluwer
Academic Press, 1996.

[11] I. Garnagntini. Linear octree for fast processing of three-dimensional
objects. Computer Graphics,and Image Processing, 20:365–374,
1982.

[12] P. Gibbons and Y. Matias. Synopsis data structures for massive data
sets. InDIMACS: Series in Discrete Mathematics and Theoretical
Computer Science: Special Issue on External Memory Algorithms
and Visualization. 1998.

[13] M. Griebel and G. W. Zumbusch. Parallel multigrid in an adaptive
pde solver based on hashing and space-filling curves.Parallel Com-
puting, 25(7):827–843, July 1999.

[14] E. Kim, J. Bielak, and O. Ghattas. Large-scale northridge earth-
quake simluation using octree-based multiresolution meshmethod.
In Proceedings of the 16th ASCE Engineering Mechanics Confer-
ence, Seattle, Washington, July 2003.

[15] S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three
dimensions. InProceedings of the Eighth Symposium on Computa-
tional Geometry, pages 212–221, Feb 1992.

[16] D. Moore. The cost of balancing generalized quadtrees.In Pro-
ceedings of the 3rd Symposium on Solid Modeling and Applications,
pages 305–312, 1995.

[17] H. Samet. Applications of Spatial Data Structures: Computer
Graphics, Image Processing and GIS. Addison-Wesley Publishing
Company, 1990.

[18] T. Tu, D. O’Hallaron, and J. Lopez. Etree: A database-oriented
method for generating large octree meshes. InProceedings of the
Eleventh International Meshing Roundtable, pages 127–138, Ithaca,
NY, Sep 2002.

[19] T. Tu, D. O’Hallaron, and J. Lopez. The etree library: A system
for manipulating large octrees on disk. Technical Report CMU-CS-
03-174, School of Computer Science, Carnegie Mellon University,
2003.

[20] J. S. Vitter. External memory algorithms and data structures: Dealing
with massive data.ACM Computing Survey, 33(2):209–271, june
2001. A shorter version appeared in Proceedings of the 17th Annual
ACM Symposium on Principles of Database Systems (PODS ’98).

[21] M. A. Yerry and M. S. Shepard. Automatic three-dimensional mesh
generation by the modified-octree technique.International Journal
for Numerical Methods in Engineering, 20:1965–1990, 1984.

[22] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson,S. S.
Samant, and J. E. Bussoletti. A locally refined rectangular grid finite
element: Application to computational fluid dynamics and computa-
tional physics.Journal of Computational Physics, 92:1–66, 1991.

11



A Detailed Correctness Proof for the Balance
by Parts Algorithm

A.1 Internal Octants and Boundary Octants

As shown in Figure 5, our algorithm works on four
different types of parts in order: 3D volume, face
boundary, line boundary, and point boundary.After
a part of some type is balanced, we can partition its
octants in two disjoint sets:boundary set, which con-
tains the octants on boundary of the part (boundary
octants); and internal set, which contains all the re-
maining octants (internal octants).

Obviously, different definitions for “boundary” and
“internal” are needed for parts of different types.

Definition 2.

• In a balanced 3D volume part, an octant is a
boundary octant if it is adjacent to some octant
outside the 3D volume. Otherwise, it is an inter-
nal octant.

• In a balanced face boundary part, an octant is
a boundary octant if it is on some line boundary
shared by adjacent 3D volumes. Otherwise, it is
an internal octant.

• In a balanced line boundary part, an octant is a
boundary octant if it is on a some point (corner)
boundary shared by adjacent 3D volumes. Oth-
erwise, it is an internal octant.

• In a balanced point boundary part, all octants are
internal octants.

Boundary octants associated with balanced parts of
one type correspond to the parts of the next type to be
balanced. For example, the boundary octants of bal-
anced 3D volumes are those on volume face bound-
aries and, by definition (see Section 5.1), form the face
boundary parts.

If we perceive our algorithm as consisted of four
stages as shown in Figure 16, every stage processes
the inflow data and separate the result as internal oc-
tants and boundary octants. The latter form the inflow
data stream to the next stage. The final stage does not
produce any boundary octants. So if we can show all
internal octants are stable, we are done with the proof.

Stage 1

3D parts

Stage 2

2D parts

Stage 3

1D parts

Stage 4

0D parts

Linear 

octree 

dataset

Stable octants

:Internal octants :Boundary octants

Figure 16. Four stages of balancing parts of
different types.

A.2 A Proof Template

The proofs of internal octants being stable in the
context of different types (3D volumes, face bound-
ary, line boundary, and point boundary) are identical
in their structures. So, without loss of generality, we
present, as a template, a detailed proof showing that in-
ternal octants of balanced 3D volumes are indeed sta-
ble. Other proofs can be adapted from this template
easily and are not presented in this paper.

In order to proveinternal octantsof a balanced3D
volume are stable, we need to show that they satisfy
the two sufficient conditions of Definition 1. The first
condition is trivially true. Since all neighbors of an
internal octant belong to the same 3D volume, the in-
ternal octant will not cause any of them to subdivide
any more. Otherwise, the 3D volume must have not
been balanced, contradicting the assumption.

The second condition requires a more careful anal-
ysis. If an internal octant’s neighbors are all internal,
the second condition holds because none of its neigh-
bors will trigger it to subdivide (by applying condition
1 on all the neighbors). However, if an internal octant
has a boundary neighbor, the boundary neighbor may
be triggered to subdivide by some octant outside the
3D volume. The question is will the internal octant be
triggered to subdivided by the ripple effect? The an-
swer is no. The proof is built on the next two lemmas.

Lemma 2. Suppose a 3D volume is balanced, the edge
size of a boundary octant is either (1) twice as large,
or (2) as large as those of its internal neighbors.

Proof. When a 3D volume is balanced, there are only
three possibilities of edge size ratio between a bound-
ary octant and its internal neighbors: (1) twice as large,

12



(2) as large, or (3) half as large. We now prove that the
third possibility does not exist.

Recall that a 3D volume must have the same size
and alignment as some non-leaf node (of a conceptu-
ally pointer-based octree) at certain level. Thus, every
octant inside the 3D volume must be a child of the sub-
tree root corresponding to the 3D volume.

Now suppose a boundary octant is only half as large
as one of its internal neighbors, then the internal neigh-
bor is not properly aligned and cannot be a child of the
3D volume subtree root (see Figure 17). Thus the third
possibility does not exist.

Regions not 

relevant

Boundary octant

Internal octant

Figure 17. The boundary octant in a balanced
3D volume cannot be half as large as its inter-
nal neighbors.

Lemma 3. Suppose a 3D volume is balanced, if one of
its boundary octant is triggered to subdivide by an oc-
tant outside the 3D volume, the the 3D volume can be
re-balanced without subdividing any internal octants.

Proof. Due to Lemma 2, if a boundary octant subdi-
vides, its children, half of its edge size, are either (1)
as large or (2) half as large as its internal neighbors.
Therefore, the 2-to-1 constraint is maintained between
its children octants and its internal neighbors.

So if the 3D volume becomes unbalanced, it must
have been caused by a violation of the 2-to-1 constraint
between some new children octants and other bound-
ary octants. In order to re-balance the 3D volume,
these boundaries octants need to be subdivided. Al-
though they may trigger subdivision of more boundary
octants, none of the boundary octant subdivision will
trigger subdivision of any internal octants, by the same
arguments in the previous paragraph.

Consider the interactions between a tiny octant out-
side an initially balanced 3D volume. Every time the

tiny octant triggers a subdivision of a boundary octant,
the 3D volume can be re-balanced without subdividing
any internal octants (Lemma 3). This process termi-
nates when the tiny outside octant is adjacent to some
boundary octants (descendants of the original bound-
ary octant) that are no more than twice as large. There-
fore, the ripple effect of a tiny octant outside of a bal-
anced 3D volume only propagates on the volume face
and never gets into the 3D volume.

The application of Lemma 3 is critical in the above
reasoning. The claim that internal octants are not sub-
divided are based on the premise that the 3D volume
is balanced. Lemma 3 provides a “self-healing” mech-
anism to re-balance a 3D volume so that its premise
becomes valid repeatedly.

It is worth noting that after a boundary octant is
subdivided, its children who are not on the boundary
become new internal octants. Thus, when we apply
Lemma 3 again, we are actually referring to an ex-
panded internal set. Nevertheless, the original internal
octants, which belong to the expanded set, are still not
subdivided.

This proves that all internal octants satisfy the sec-
ond sufficient condition of stable octants. So we have:

Theorem 4. Internal octants of a balanced 3D volume
are stable.

In a similar way, we can prove that internal octants
of balanced parts of other types are stable. So on com-
pletion of the four stages of balancing, all the octants
in the domain become stable.

This concludes the theoretical proof of the correct-
ness of the BBP algorithm.

13


