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ABSTRACT: This paper is concerned with the problem of soil ampli�cation and structural dam-

age due to local site conditions in sedimentary valleys during earthquakes. It focuses on a small valley

in Kirovakan, for which one dimensional (1D) wave propagation analyses have failed to provide adequate

answers for the large extent and spatial distribution of damage during the 1988 Armenia Earthquake. A

more realistic two-dimensional �nite element analysis is performed herein in search of an explanation for the

observed behavior. Using as input an inferred rock accelerogram, the response of the valley is calculated for a

vertically incident SH-wave. Synthetic accelerograms of the surface ground motion are presented for di�erent

sites; these accelerograms are then used to determine the ampli�cation ratios of the surface response with

respect to that of the free-�eld motion of the rock outcrop, for di�erent frequencies and for a continuous set

of sites. In addition, response spectra are evaluated for simple oscillators representing structures located at

various sites. Results of the 2D simulations show striking di�erences with respect to those from 1D analyses.

In particular, (a) while the resonant frequencies exhibited by a 1D model for a given site also appear in the

2D model, the peak ground response and structural response are almost twice as large for the 2D as for

the 1D model; (b) the 2D model exhibits, in addition, a new set of resonant frequencies and concomitant

\mode shapes" across the valley, which are directly related to its �nite width; (c) due to these additional

resonances the ground ampli�cation ratio tends to oscillate very rapidly, both spatially and with frequency,

leading to the observation that two identical structures located in the same vicinity or two slightly di�erent

structures located essentially on the same site can be subjected to signi�cantly di�erent seismic forces, even

if the underlying soils have very similar characteristics. These results provide a meaningful explanation for

the observed damage, and thus, serve to exemplify a situation in which site e�ects caused by the �nite lateral

extent of a valley must be taken into consideration in order to model satisfactorily seismic behavior.

1Professor and Director, Computational Mechanics Laboratory, Department of Civil and Environmental Engi-

neering, Carnegie Mellon University, Pittsburgh, PA 15213
2Research Assistant, Computational Mechanics Laboratory, Department of Civil and Environmental Engineering,

Carnegie Mellon University, Pittsburgh, PA 15213.
3Associate Professor and Co-Director, Computational Mechanics Laboratory, Department of Civil and Environ-

mental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

1



INTRODUCTION

The 7 December 1988, magnitude Ms 6.8, earthquake in northern Armenia caused unprece-

dented destruction and fatalities within the epicentral region for an earthquake of this size. A

number of studies have shed considerable light on the seismological, geological, geotechnical, and

structural aspects of this earthquake (e.g., Wyllie and Filson 1989; Borcherdt, 1989; Bommer and

Ambraseys, 1989; Cisternas et al, 1989; Hadjian, 1993; Yegian et al, 1994a, 1994b, 1994c, 1994d).

Of particular interest to the present study are the papers by Yegian et al, which contain highly

useful information on the statistics of damage in several a�ected cities, correlated to geologic and

soil pro�les, and an analytical investigation of the possible role of the local soil conditions on the

extent and distribution of damage to structures. Yegian, Ghahraman, and Gazetas performed one-

dimensional (1D) wave-propagation analyses, using soil pro�les with �eld and laboratory measured

parameters, to explain the damage statistics in various zones of Leninakan (Yegian et al, 1994c)

and Kirovakan (Yegian et al, 1994d), two cities located near the fault. These 1D simulations, based

on the usual assumption of 
at horizontal layers, provided adequate answers for zones in which

the underlying soils consist of shallow (less than 30 m) dense gravelly sands and sti� clays, or for

valleys with large width-to-depth ratios. However, by comparing the results of the 1D analyses with

observed damage, they found that such analyses substantially underpredicted the ground surface

motion in one region in Kirovakan in which the soil pro�le constitutes a triangular sedimentary

basin whose width is only about �ve times its depth.

The main objective of the present study is to investigate whether an alternative, more realistic,

model of this valley can produce a closer agreement between the results of earthquake simulations

of the soil and structural response and the observed damage. Kirovakan provides a particularly

appropriate case study for two reasons: (1) the available soil pro�les with �eld and laboratory

measured parameters for its various zones allow one to construct realistic mathematical models,

and (2) the summaries of the respective building-damage statistics make it possible to compare the

simulated behavior of structures against their actual performance.

Kirovakan has been subdivided by Yegian et al (1994d) into �ve zones to describe the great

variations that exist in the subsurface soil conditions within that city. Our study will focus on one

small region comprised of soils from two adjacent zones, as shown on the geotechnical pro�le of

Fig. 1. The soil pro�le in Zone 3 consists of up to 30 m of sti� cohesionless alluvium of silty gravel

with sands and pebbles, underlain by dense sand and gravel with pebbles and boulders. Zone 2

is �lled with a thin layer of medium-sti� clays on top of sti�er clays down to about 150 m. The

width-to-maximum thickness ratio of the alluvium basin of Zone 3 and the clay basin of Zone 2

is about 15 and 5, respectively. Damage statistics within the two zones are also shown on Fig. 1.

These statistics indicate that damage in Zone 2 was very severe and much greater than in Zone 3.
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Thus, whereas nearly three fourths of the buildings in Zone 2 collapsed or were damaged beyond

repair, only �ve percent of the buildings within Zone 3 were damaged heavily, and more than half

experienced minor or no damage. Also, all the buildings that collapsed during the earthquake were

located in Zone 2. That is a very impressive contrast within a basin whose lateral extent is less

than 2 km.

Yegian et al (1994d) attributed the unusually high damage in Zone 2 to 3D valley e�ects and

used a simple analysis limited to a homogeneous deposit to explain this behavior. As a �rst step

toward gaining a better physical understanding of the di�erences in the earthquake response of

one-dimensional and multi-dimensional models of the small valley in Kirovakan depicted in Fig. 1,

in this paper we consider a layered, damped, two-dimensional, linearly elastic model subjected to a

transient incident plane SH-wave with a time signal derived from an actual record obtained during

the 1988 Armenia Earthquake within the epicentral region. SH-waves are selected as they represent

the simplest case of waves propagating in an elastic medium; their e�ect, however, is similar to

that of more complicated situations (Bard and Bouchon, 1985). While the response within Zone 2

can be expected to enter into the inelastic range for a su�ciently strong excitation, elastic analyses

such as the one reported here provide a useful reference point.

Attention is given herein to: (1) evaluating and interpreting the seismic ground motion of

Zones 2 and 3 in Kirovakan, as determined from simulations from the two-dimensional model;

(2) comparing the results with those from corresponding 1D models; (3) determining response

spectra for the various 1D and 2D synthetic accelerograms; and (4) relating the results of the

simulations to the observed damage. We illustrate not only the overall stronger ground motion in

Zone 2 with respect to that in Zone 3 but also a drastic spatial variation of ground motion within

Zone 2 itself and the corresponding structural response for structures with di�erent fundamental

natural frequencies. A comparison of results between Kirovakan and Leninakan is also included

in this paper. This comparison is of particular interest because while the response spectra for 1D

simulations in Leninakan and in Zone 2 in Kirovakan are quite similar, the corresponding levels of

damage are very di�erent.

Two-dimensional models have been used extensively over the last 25 years for investigating the

e�ects of lateral con�nement of valleys on seismic ground motion (see, e.g., Aki and Larner, 1970;

Boore et al, 1971; Trifunac, 1971; S�anchez-Sesma and Esquivel, 1979; Bard and Bouchon, 1980a,

1980b; Vidale and Helmberger, 1988 for representative papers, and Aki, 1988, 1993, for state-of-

the-art surveys). These studies have demonstrated that a curved basin bottom and body-wave

to surface-wave conversion at the valley edges can have a profound e�ect on the surface ground

motion, by prolonging the duration of shaking or by increasing the amplitude of motion. Recent

observations (e.g., Spudich and Iida, 1993; Hartzell et al, 1996) have underscored the need for doing
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2D and even 3D simulations in order to capture correctly these e�ects.

Several methods have been used to analyze the seismic response of basins. Analytical techniques

can be applied only for simple geometries and uniform deposits that allow separation of variables of

the governing equations (e.g., Trifunac, 1971; Wong and Trifunac, 1974; S�anchez-Sesma, 1983; Lee,

1990). For models of realistic basins with irregular shapes and heterogeneous materials, numeri-

cal procedures become essential. The most widely used include the �nite di�erence method (e.g.,

Alterman and Karal, 1968 and Boore, 1972 in 2D, and Frankel, 1993 in 3D), the �nite element

method (e.g., Lysmer and Drake, 1971; Smith, 1975; Li et al, 1992; Toshinawa and Ohmachi, 1992;

Bao et al, 1996), the boundary element method (e.g., Bouchon and Aki, 1977; S�anchez-Sesma,

1983; Bard and Bouchon, 1985; Kawase, 1988; S�anchez-Sesma et al, 1993), and combinations of

the latter two (e.g., Mossessian and Dravinski, 1987; Bielak et al, 1991). The �nite di�erence and

�nite element methods can deal e�ectively with geometrically complex basins with highly hetero-

geneous materials. They require, however, that the original problem, which involves the basin and

its surrounding semi-in�nite domain, be truncated by the introduction of an arti�cial boundary

on which one must specify an approximate radiation condition to limit spurious wave re
ections.

They also require that the governing di�erential equations be solved over the entire computational

domain. Upon discretization one obtains a large, yet sparse, system of algebraic equations. The

boundary element method, by contrast, is based on a boundary integral formulation of the problem.

Its main attributes are that the radiation conditions are satis�ed automatically and that only the

boundary of the basin need be considered if the valley consists of horizontal, homogeneous layers.

While the number of algebraic equations obtained upon discretization is much smaller than that

for the �nite di�erence or the �nite element method, the resulting system is dense. Also, if the

material in the basin is highly heterogeneous, the application of the boundary element method

becomes cumbersome. In this paper, we use a 2D version of a parallel elastic wave propagation

�nite element simulation code developed as an intermediate step towards a more general, 3D, �nite

element code for modelling of earthquake ground motion in large sedimentary basins on parallel

computers (Bao et al, 1996). We favor �nite elements for their ability to e�ciently resolve multi-

scale phenomena and the ease with which they handle traction interface and boundary conditions.

ANALYSIS OF THE VALLEY

Description of model

The valley model under investigation (Fig. 2) represents an idealization of the geotechnical

pro�le in Kirovakan depicted in Fig. 1. It consists of two distinct isotropic, linearly elastic subvalleys

underlain by a basement rock that extends to in�nity; like the actual pro�le, the two subvalleys are

separated by a slant edge. The two subvalleys are denoted, as in Fig. 1, as Zones 2 and 3, and are
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subdivided, respectively, into 4 and 2 homogeneous layers. The corresponding depths, shear wave

velocities, Vs, densities, �, and damping ratios, �, are also given in Fig. 2, next to a soil column

representative of each zone. The values of the shear wave velocity and density are based on Yegian

et al (1994d), while those for the damping ratio are representative of the corresponding soils. The

deposits in Zone 2 are signi�cantly softer than those in Zone 3; the impedance ratio (ratio of the

products of density and shear wave velocity) between the basement rock and the top layer in each

zone is 7.1 and 1.9, respectively. In addition, Zone 2 is deep and narrow while Zone 3 is shallow

and long. The large impedance ratio and the small width-to-depth ratio in Zone 2 foreshadow

the strong e�ect that the surface waves generated at the con
uence of the valley surface with the

surrounding rock have on the valley response.

Method of analysis

The mathematical problem under consideration is one of earthquake-induced waves traveling

from a homogeneous halfspace of rock into a basin with heterogeneous soils and irregular geome-

tries. To completely specify the problem, consider �rst a halfspace made up of the basement rock

material. Suppose there is a transient incident plane SH-wave that produces an incident plus

re
ected displacement �eld uo, which is a function of position and time, and is polarized perpen-

dicularly to the cross-sectional plane of the valley. This is the free-�eld displacement. Suppose now

that the valley, idealized as an in�nitely long cylinder with an irregular cross section, is inserted

in the free surface, as shown in Fig. 2. The problem, then, is to determine the total displacement

(antiplane) �eld, u, within and outside the valley due to the incident �eld.

Since the soil material is assumed to be piecewise uniform, u satis�es the wave equation

@2u

@t2
= V 2

s r
2u (1)

in each subdomain and in the exterior region occupied by the rock. The displacement u and the

traction are required to be continuous across each subdomain, and the traction must vanish at the

free surface. The system is initially at rest.

To solve this problem, we will use the �nite element method with a mesh tailored to the local

wavelength of the propagating waves. Two important issues must be considered for solving wave

propagation problems in in�nite domains by this method. One, mentioned already in the Introduc-

tion, is the need to render the domain of computation �nite and to limit the occurrence of spurious

re
ections. This is accomplished here by introducing the outermost circular segment I-I shown in

Fig. 3a as an arti�cial boundary. On this arc we impose an absorbing boundary condition that is

local in both space and time (Bayliss and Turkel, 1980). We use the implementation procedure

proposed by Kallivokas et al (1991), which produces symmetric element damping and sti�ness ma-
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trices. These can be readily incorporated into standard �nite element software. Physically, this

boundary condition can be interpreted as a set of springs and dashpots distributed along the arc.

The second point that requires attention is the need to incorporate the excitation into the

model when the earthquake source is located outside the computational domain. This is carried

out by means of a method developed by Bielak and Christiano (1984) and Cremonini et al (1988)

that expresses the earthquake excitation in the form of applied nodal forces acting on a strip of

�nite elements located outside the region of interest. The interface between the two regions is

chosen as the circular arc II-II. The basic idea is straightforward. One introduces a new variable

w which in the region interior to II-II coincides with the total displacement �eld u and on the

exterior is equal to the scattered �eld u � uo. Since uo is a solution of the wave equation over

the entire halfspace, then w is also governed by Eq. 1 in each subdomain. To ensure that the

solution for w is equivalent to that of the original problem, continuity of the total displacement

u and the corresponding traction must be imposed across II-II. When expressed in terms of w,

these conditions introduce the free-�eld displacement uo and the corresponding traction on II-II

explicitly into the formulation. It is these terms that upon discretization give rise to the equivalent

nodal forces on exterior elements containing nodes on II-II. Besides yielding the equivalent seismic

forces, which are exact within discretization error, another advantage of formulating the problem in

terms of the variable w is that the motion exterior to II-II will be purely outgoing. The absorbing

boundary I-I need then transmit only outgoing waves.

The reduced problem de�ned over the bounded domain shown on Fig. 3a is solved with a 2D

version of the parallel elastic �nite element wave propagation code mentioned in the preceding

section. The components of the system include a 2D and a 3D mesh generator, a mesh partitioner,

a parceler, and a parallel code generator, as well as parallel numerical methods for applying the

seismic forces, incorporating the absorbing boundaries, and solving the discretized wave propagation

problem (Bao et al, 1996). The �nite element mesh, shown in Fig. 3b, is generated by Triangle,

a 2D quality mesh generator (Shewchuk, 1996). Triangle operates on geometric boundaries and

interfaces de�ned by piecewise straight segments, as illustrated in Fig. 3a. The length of each

segment is chosen according to the local material properties and maximum frequency of interest, so

that Triangle produces a well-tailored unstructured mesh, as shown in Fig. 3b. Even though this

problem is small and can be solved on a single processor, the simulations were performed on 64

processing elements of an Intel Paragon and a Cray T3D as a test of the parallel implementation.

The corresponding partitioned mesh is presented in Fig. 3c. Each subdomain is mapped onto a

processor of the parallel machine.

Quadratic six-node subparametric elements and standard Galerkin ideas are used for the spatial

discretization of the governing wave equation over the triangular mesh in Fig. 3b. This leads to a
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system of ordinary di�erential equations of the form:

M �w+C _w+Kw = f(t) (2)

in which w is the vector of time-dependent nodal displacements, an overdot denotes di�erentiation

with respect to time, M, C, and K are the global mass, damping, and sti�ness matrices, and f

is the vector of equivalent nodal forces. The sti�ness and damping matrices K and C contain

terms representing the sti�ness and material damping in the soil as well as those arising from the

absorbing boundary condition. Damping in the soil is assumed to be of the Rayleigh type, that is,

within each �nite element the damping matrix is of the form:

Ce = � !oM
e +

�

!o
Ke (3)

in which � and � are arbitrary scalars, !o is a reference frequency, andM
e and Ke are the element

mass and sti�ness matrices. With this choice of damping, the mass proportional and sti�ness

proportional terms in Eq. 2 yield a damping ratio that is inversely and directly proportional to

frequency, respectively. Since the damping ratio in soils is usually assumed to remain constant

independently of the rate of application of the load, Rayleigh damping can represent this behavior

only approximately. This approximation is achieved here by evaluating � and � for each soil

material such that the squared di�erence between the target damping ratio within each soil and

the actual damping ratio speci�ed over a prescribed frequency range of interest [!b,!f ] is minimized;

that is

min
�;�

Z !f

!b

[� � (
�!o
2!

+
� !

2!o
)]2 d! (4)

The range [!b,!f ] is selected so as to include the dominant frequencies of the earthquake excitation

and the dominant resonant frequencies of the valley. The same approach can be used if � is

frequency-dependent.

After assembly of the individual mass, damping, and sti�ness matrices, and of the equivalent

seismic forces, Eq. 2 is solved numerically by the unconditionally stable Newmark's trapezoidal

step-by-step method. An iterative method, Jacobi preconditioned conjugate gradients, is used to

solve the resulting algebraic equations at each time step, as this is more e�cient than a direct

solver on a parallel computer.

It is important to emphasize that while Eq. 2 provides an approximate solution for the to-

tal displacement �eld within the valley and the surrounding region due to an arbitrary incident

SH-wave generated outside the computational domain, this equation strictly characterizes the re-

sponse of a bounded domain. Since M and K are symmetric and positive de�nite, it then follows

that the reduced system that governs the undamped free vibrations of the elastically supported

valley, which is obtained from Eq. 2 by setting to zero the damping and forcing terms, possesses
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undamped natural frequencies and corresponding orthogonal modes. For the damped case these

modes are not classical, in general, due both to the type of soil damping considered and to the con-

tribution to C from the absorbing boundary condition. However, the damped system has complex

conjugate eigenvalues and associated complex conjugate orthogonal eigenvectors (Foss, 1958). The

eigenvalues represent damped natural frequencies and exponential attenuation. The response to a

prescribed excitation, including the incident seismic wave, can be expressed as a linear combination

of the individual modes. The extent to which each individual complex conjugate eigenvector pair

of the valley model (mode shapes) contributes to the total response depends, of course, on the

particular spatial and temporal distribution of the seismic excitation.

SIMULATION OF ARMENIA EARTHQUAKE

Ground motion

Only one set of good-quality strong-motion records was obtained of the main shock of the 1988

Armenia Earthquake, in the town of Ghoukasian about 30 km northwest of the epicenter, in a

station located on the ground surface. This town is built on top of an extended shallow deposit

of alluvium and lake-bed clay layers underlain by rock. In order to obtain a reference motion for

this region, Yegian et al (1994a) performed a 1D wave propagation analysis to remove the soil

ampli�cation e�ects. This resulted in rock outcrop acceleration histories with a maximum value of

0.25 g in the horizontal direction. To estimate the corresponding peak ground acceleration (PGA)

in Kirovakan, they used observations of grave markers in cemeteries in that city, along with subse-

quent shaking table tests on model blocks, and found that this PGA did not exceed 0.15 g. They

then scaled the reference rock outcrop motion to 0.15 g and used the scaled records to perform

1D analyses of the soil ampli�cation in Kirovakan. The N-S component of the scaled reference

acceleration is shown on Fig. 4. This accelerogram, scaled here by one half to account for the

doubling of the amplitude as the incident SH-wave reaches the free surface of the halfspace, will be

the excitation considered in our simulations. Also, following common practice in geotechnical engi-

neering ampli�cation studies, the incident, plane SH-wave will be assumed to propagate vertically

through the halfspace. The resulting response of the valley model (Fig. 2) will consist of SH- and

surface (Love) waves. Results of the simulations will be presented both in the time domain and in

the frequency domain. To assist in their interpretation, the amplitude of the Fourier transform of

the acceleration trace is also included in Fig. 4. Notice that the frequency content of the reference

acceleration is most signi�cant in the vicinity of 2.5 Hz. The relevance of this observation will

become apparent in the next section.

Numerical results

In this section, we describe several di�erent representations of the results of the 2D ground
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motion simulation, and compare the results with those from corresponding 1D models. We also

introduce a simple rectangular valley to assist in the interpretation of the results, and calculate

response spectra of simple structures located at di�erent sites within the Kirovakan model in order

to relate the simulated performance to the observed damage. In addition, a response spectrum is

calculated for the city of Leninakan, as a means for explaining di�erences in the observed structural

performance between the two cities.

Synthetic accelerograms for several points along the free surface of the valley and its vicinity

are shown in Fig. 5a. The locations of these points are identi�ed by the labels A to I in Fig. 2.

For points outside the valley the motion di�ers little from the free-�eld motion. Inside the valley,

however, the response is ampli�ed signi�cantly, especially in Zone 2. This can further be seen in

Fig. 5b, in which the PGA along the entire valley surface is graphed as a solid line. In Zone 3, the

average ampli�cation with respect to the free-�eld value is about 30 percent, with a slight increase

toward the right edge, which is underlain by the softer soils. The site e�ects are most pronounced

within Zone 2, in which the PGA exceeds 0.5 g at a number of locations. It is also noteworthy that

the peak response is highly oscillatory across this region. Such rapid spatial variation of the ground

motion has actually been observed in real earthquakes, e.g., during several aftershocks at clusters

of sites that were instrumented in the aftermath of the 1994 Northridge earthquake (Hartzell et al,

1996; Bardet and Davis, 1996). This behavior can have important practical implications; yet, it

is generally not possible to reproduce it via 1D simulations. To illustrate this point, and to help

gain a better understanding of the di�erences between 1D and 2D e�ects on site response, a 1D

simulation was also conducted for the idealized Kirovakan valley under consideration. For each

mesh point on the valley surface a 1D analysis was performed for a soil column whose properties

are identical to those beneath that point using as input the same incident SH-wave as for the 2D

simulation. The distribution of the 1D PGA across the valley is also shown in Fig. 5b, by a dashed

line. In contrast to the 2D simulations, the peak response is constant along sections where the

valley bottom is 
at, and varies only gradually as the valley depth changes, except near the edges.

Overall, in Zone 2 the PGA is signi�cantly greater for the 2D than for the 1D simulations.

In order to help explain the rapidly oscillatory nature of the PGA across the valley, it is con-

venient to �lter temporarily the e�ect of the earthquake excitation and concentrate on the valley

response to a simple steady-state harmonic excitation. The results are best observed in the fre-

quency domain. Figure 6 shows the Fourier spectral ratio (FSR) of the response at site F near the

point of maximum depth (shown in insert), as a function of frequency, corresponding to both the

2D and 1D simulations. This ratio is obtained by dividing the amplitude of the Fourier transform

of the synthetic accelerogram at F by twice the amplitude of the Fourier transform of the free-�eld

accelerogram (Fig. 4b). The two lines shown on Fig. 6 also represent the 1D and 2D ampli�cation
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ratios of the response at F with respect to the free-�eld motion on the surface of a halfspace made

up of the same bedrock material as that underlying the valley model (Fig. 2), due to a steady-state

harmonic vertically incident SH-wave. It is apparent from this �gure that: (1) The 1D ampli-

�cation ratio exhibits the resonant behavior typical of 
at-layered systems. For this particular

example the largest peak corresponds to the second resonance, in the vicinity of 2.5 Hz; (2) The 2D

ampli�cation ratio also exhibits resonant behavior in the vicinity of the 1D resonant frequencies,

but the corresponding 2D frequencies are slightly higher than those for the 1D results, due to the

lateral con�nement of the valley. The values of the respective peaks, however, are considerably

larger for the 2D case; (3) In addition to the essentially 1D resonant frequencies, the 2D valley

experiences resonant behavior at other frequencies, which appear to be unrelated to the 1D case.

The ampli�cation ratio oscillates rapidly with frequency, reaching peak values that greatly exceed

the 1D values. Interestingly, for certain frequencies the 2D ampli�cation ratio is much smaller than

unity, denoting, in e�ect, a strong deampli�cation, or destructive interference of seismic waves.

The Fourier spectral ratios shown in Fig. 6 are for a single point on the valley surface. To

examine how the FSR varies from point to point, one can construct similar spectral curves for

all the surface mesh points across the valley and plot the results as contour ampli�cation ratios

in terms of both frequency and location. These contours are shown on Fig. 7 for the 2D and 1D

simulations, thus revealing simultaneously the spatial and frequency distribution of the ground

motion. The scale of the FSR is given by the color bar. Similar contour displays have been

presented by S�anchez-Sesma et al (1993) for homogeneous valleys of simple geometrical shapes.

For the frequency range considered in Fig. 7, the 1D simulations exhibit four resonant frequencies

near the deepest part of the softer subvalley. As expected, the values of these frequencies increase

away from the center as the valley becomes shallower. Within the sti�er Zone 3 there is only one

resonant frequency. The results of the 2D simulation are much more complex. First, multiple

resonant frequencies occur throughout the valley. For some of these frequencies the ampli�cation

ratio reaches a maximum value of 8, almost double that for the 1D case. For each resonant

frequency the ampli�cation ratio exhibits several peaks, whose number increases with frequency.

Between the peaks, the ampli�cation ratio almost vanishes at certain locations. This means that

the ground surface essentially remains at rest for these frequencies and locations, and experiences

strong motion at nearby points. By contrast, for the 1D case the FSR varies only gradually across

the valley.

To further elucidate these features of the response of the 2D valley, we consider next a simple

example involving a rectangular, undamped, homogeneous valley of width L, depth H, supported

on a rigid base and rigid side walls. While this model is substantially simpler than the valley

under study, its dynamic behavior will prove to be useful for the interpretation of Fig. 7. Bard and
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Bouchon (1985) have used the same example for a study that focused on the fundamental resonant

response.

The natural frequencies of the valley, when subjected to antiplane vibrations, can be written

as:

!mn

!1

=

s
(2m� 1)2 + n2(

2H

L
)
2

; m; n = 1; 2; ::: (5)

in which !1 is the fundamental natural frequency that the valley would exhibit if its width were

in�nite; i.e., !1 is the natural frequency of a 
at layer on a rigid base. Its value is given by

!1 = �Vs=(2H), in which Vs is the shear wave velocity of the medium.

By setting the origin of a right-handed cartesian coordinate system at the lower left corner of

the valley, the horizontal x-axis along the width, and the vertical y-axis toward the free surface,

the mode shapes wmn(x; y), associated with the natural frequency !mn, are given by:

wmn = sin
(2m� 1)� y

2H
sin

n� x

L
; m; n = 1; 2; ::: (6)

The integer m denotes mode shapes in the heightwise direction and n along the width. The �rst

factor on the right side of Eq. 6 corresponds precisely to the mode shapes of the 
at layer, whereas

the second factor introduces the e�ect of the �nite width. Thus, for each mode shape of the 
at

layer (i.e. for a �xedm), there is a set of mode shapes in the widthwise direction with corresponding

frequencies !mn. Along the width the mode shape wmn exhibits crests or troughs at a set of points

Pjn with abscissas

xjn =
2j � 1

2n
L; j = 1; 2; :::; n; n � 1 (7)

while points Qjn at

xjn =
j

n
L; j = 1; 2; :::; n � 1; n � 2 (8)

are nodes and remain at rest.

The locations of the points Pjn and Qjn are shown on Fig. 8a together with their corresponding

natural frequencies, for m = 1 and a particular valley shape ratio (L=H = 3:1). The corresponding

points for m = 2 (i.e. those associated with the second mode shape in the heightwise direction)

are shown in Fig. 8b. The symbols, asterisks and circles, denote, respectively, extremum (crests

and troughs) and nodal points. Thus, for instance, the mode shape w11 has a natural frequency

!11 = 1:19!1, a single extremum at x=L = 0:5 and no nodes; the natural frequency associated with

the mode shape w12, which has two extremum values, at x=L = 0:25 and 0.75, and a nodal point

at x=L = 0:5, is !12 = 1:69!1; similarly, the mode shapes w21 and w22 have natural frequencies

!21 = 3:07!1 and !22 = 3:27!1, and the same extremum and nodal points as w11 and w12; etc.
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One can expect that if the valley is excited at a prescribed frequency !, those modes associated

with the natural frequencies !mn which are closest to ! will be the ones that respond most strongly.

The amplitude of the surface response will thus be greatest at points located near the critical points

Pmn and smallest in the vicinity of the nodal points Qmn.

The top plot in Fig. 7a shows that the idealized Kirovakan valley also tends to respond in

its modal shapes, exhibiting crests and troughs, and nodal points, just like the much simpler

rectangular valley, even though the Kirovakan model does not have separable mode shapes along its

height and width. In fact, if one now examines the lines joining the extremum points and the nodal

points, as shown in Fig. 8, the analogy between the two situations becomes apparent. We call the

two sets of lines, extremum and nodal lines, respectively. From a comparison of Figs. 7 and 8, it is

seen that the ampli�cation ratio contours have a skeleton of extremum and nodal lines in the space-

frequency domain and that the largest crests and troughs occur at distinct resonant frequencies

akin to the natural frequencies of the simple rectangular valley. These resonant frequencies are

given by the imaginary parts of the complex eigenvalues of the homogeneous problem associated

with Eq. 2. The crests, troughs, and nodes are clustered along bands rather than lines, due to the

presence of damping.

Notice that for the particular example of Kirovakan considered herein the larger ampli�cation

ratios do not correspond to the fundamental frequency, but occur at higher ones, with a clear 2D

e�ect. It is also noteworthy that the motion in Zone 3 is in
uenced by that in Zone 2, by the energy

that leaks through their interface; one can observe how the extremum and nodal lines generated

within Zone 2 extend to Zone 3, although the amplitude of the response decreases drastically in

the sti�er zone. None of these e�ects is present in the 1D simulation, as shown at the bottom plot

of Fig. 7.

We return now to the earthquake problem in order to examine how the valley ground motion

a�ects the response of structures located at di�erent points within the valley. To this end, we con-

sider next the pseudo-acceleration response spectra shown in Fig. 9a. In this �gure, the maximum

pseudo-acceleration A = (2�fn)
2 umax, in which umax = maximum story drift of a single-story

structure with an undamped natural frequency fn. We recall that the maximum base shear, V , in

the structure is related approximately to A through V=(mg) = A=g, in which m = mass of single-

story structure. That is, A=g is the seismic coe�cient by which the weight must be multiplied to

obtain the maximum base shear. Jennings (1997) has shown that the base shear force of a regular

n-story structure, Vn�story, can also be expressed approximately in terms of A=g for a single-story,

as Vn�story=(Mg) = A=g, in which M is the total mass of the superstructure. Thus, the results of

Fig. 9 can also be applied to regular multi-story buildings. The spectra in Fig. 9a were calculated

for structures located at three di�erent sites P, Q, R, identi�ed in the insert, using as excitation
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the synthetic accelerograms obtained at those points from the 1D and 2D simulations of the 1988

Armenia Earthquake. Soil-structure interaction is not taken into consideration. With an average

shear wave velocity of 280 m/s over the top 30 m of soil in Zone 2, this e�ect is not expected to

be signi�cant for the structures and frequency range under study. Damping in the structures is 5

percent critical. Dashed and solid lines are used for the 1D and 2D results, respectively, and the

su�x K in the key refers to Kirovakan. At points P (outside the valley) and Q (in Zone 3), the

response spectra corresponding to the 1D and 2D simulations essentially coincide with each other.

This indicates negligible 2D e�ects at these points. On the other hand, the 1D and 2D spectra

for point R in the middle of Zone 2 show a huge discrepancy: the pseudo-acceleration for the 2D

ground motion exceeds the corresponding results of the 1D simulation by as much as 100 percent.

This clearly illustrates how 2D site e�ects can sometimes have a dramatic e�ect on the earthquake

response of structures.

At this point it is of interest to compare the response spectra obtained for Zone 2 in Kirovakan

with one derived for Leninakan, due to the very di�erent levels of damage experienced in the two

regions. The dashed-dotted line labeled L on Fig. 9a is the response spectrum calculated with a

base excitation obtained from a 1D simulation using the soil properties for Leninakan reported by

Yegian et al (1994b). The corresponding soil column was subjected to a vertically incident SH-

wave with the reference rock motion scaled to 0.25 g, the estimated PGA at the rock outcrop in

the Leninakan region. Since this city is located in a large and shallow valley, a 1D analysis seems

su�cient for determining the soil ampli�cation e�ects. Building-damage statistics indicate that 62

percent of the four- to �ve-story structures in Zone 2 in Kirovakan, with frequencies from 2.5 to

4 Hz, collapsed, whereas only 21 percent su�ered the same fate in Leninakan. With this damage

distribution one would expect that the response spectrum for Zone 2 should be signi�cantly higher

than the corresponding one for Leninakan. However, the computed spectra for L and R based

on 1D ground motion simulations (Fig. 9a) are quite close to each other, especially for frequencies

greater that 2.5 Hz. If, on the other hand, one compares the Leninakan spectrum with the solid line

spectrum for R, corresponding to the 2D simulation in Kirovakan, it becomes clear that the seismic

forces generated during the 1988 Armenia Earthquake must have been much stronger in Zone 2 in

Kirovakan than in Leninakan. This is in agreement with the observed damage, and suggests that

in order to explain the structural behavior within the Kirovakan Valley it is essential to take its

�nite lateral extent into consideration.

To gain further insight into the response of structures within Zones 2 and 3 in Kirovakan, the

pseudo-acceleration spectra for several natural frequencies are shown in Figs. 9b to 9d for all points

across the valley. These �gures again illustrate that 2D site e�ects, in general, increase signi�cantly

the structural response over that from a 1D analysis. Moreover, the rapid spatial variation exhibited
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by the ground motion ampli�cation is also observed in the pseudo-acceleration spectra. This is

of considerable practical importance, as it means that two identical structures separated by a

short distance can be subjected to widely di�erent seismic forces even if the underlying soils have

essentially the same properties.

In order to examine simultaneously how the peak structural response caused by the valley

ground motion varies with the structure's natural frequency and its location within the valley, a

novel representation of the response in the form of space-frequency pseudo-acceleration spectra is

introduced here. Results are presented in Fig. 10 for structures with 5 percent critical damping

for the base excitations obtained from the 1D and 2D simulations. The natural frequency of the

structure is given on the abscissa and the location within the valley is shown on the ordinate. The

corresponding value of A/g is given by the color bar. Several observations can be made from this

�gure:

1. Structural response in Zone 3 is small compared to that in Zone 2. The strongest shaking

occurs in the middle of Zone 2 and near its con
uences with Zone 3 and the rock outcrop, for

frequencies in the range of 2 to 5 Hz. These are precisely the locations within the valley and the

natural frequency range for which damage was strongest during the 1988 earthquake.

2. The strongest response by far, however, corresponds to structures with natural frequencies

close to 2.5 Hz. This is a classical double resonance phenomenon. Under the incident seismic wave,

the valley responds in its most sensitive resonant mode shapes, whose frequencies almost happen to

coincide with the dominant frequency (2.5 Hz) of the earthquake excitation (Fig. 4b). The second

resonance occurs when the ampli�ed ground motion produces strong vibration of structures whose

natural frequencies coincide with those being excited in the soil deposits.

3. The 1D response spectra also predict resonant behavior near 2.5 Hz. The spectral ordinates,

however, are much smaller than those for the 2D ground excitation. Also, whereas the 1D spectra

are quite di�use, the 2D spectra de�ne sharp, localized regions, both in space and in frequency, for

which the response is strongest. Overall, the spectral ordinates are signi�cantly greater for the 2D

case.

4. The 2D spectra exhibit islands of strong response in the 3 to 5 Hz region. The 1D spectra

show no such behavior.

5. The nodal and extremum lines identi�ed in the Fourier Soil Response Spectra in Fig. 7 are

also apparent in the structural response spectra. While this response is largest within a region near

the deepest portion of the valley, there is an adjoining region which essentially follows a nodal line.

Thus, a small change in the structure's location can result in a dramatic change of its response. In

addition, since the response spectra also vary rapidly with frequency, this means that two slightly
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di�erent structures located essentially at the same site can experience substantially di�erent re-

sponses.

CONCLUDING REMARKS

This study of the earthquake response of a small valley in Kirovakan during the 1988 Armenia

Earthquake demonstrates how 2D ground motion simulations provide a suitable explanation of the

observed damage in situations where 1D soil ampli�cation analyses have proved to be unsatisfactory.

The 2D simulations predict maximum ground and structural response in the frequency range of 2.5

to 4.5 Hz, which corresponds exactly to the natural frequencies of the four- to �ve-story structures

which experienced the greatest damage. It appears that this damage occurred as a consequence of

double resonance between the excitation, the valley, and the building structures. The amplitude of

the double resonance was greatly enhanced by the �nite lateral extent of the valley.

A novel way of visualizing structural response as a simultaneous function of the natural fre-

quency of the structure and its location within the valley was introduced in this study. This allows

one to identify the types of structures that are prone to su�er extensive damage and the loca-

tions within the valley where this damage is most likely to occur. In certain regions the soil and

structural responses are seen to vary rapidly over short distances. This behavior, which has been

observed during actual earthquakes, has practical implications for design.

In this study only one particular incident wave was considered. While thus restricted, results of

this study suggest that simulations using realistic valley models could be used to great advantage

in seismic zonation and seismic hazard analyses. Di�erent earthquake scenarios consistent with the

particular tectonic settings should, of course, be considered, and the simulation results integrated

with those from observations. One might use a probabilistic approach to include e�ects from un-

certainties in the source and model parameters.
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Figure 3: (a) Computational domain for the analysis of the basin model (top
layer in Zone 2 not shown); absorbing boundary on I-I; e�ective forces applied
on II-II; (b) Finite element mesh; (c) Partitioned mesh for parallel computing.
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Figure 7: Fourier spectral ratio as a simultaneous function of position of observer
and frequency. Top: 2D simulation; Bottom: 1D simulation.
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Figure 8: Extremum and nodal points for several mode shapes w1n and w2n,
and their corresponding frequencies !1n and !2n, for a homogeneous rectangu-
lar valley. These points are joined by the extremum line, and the nodal line,
respectively.



1
2

3
4

5
0

0.5 1

1.5 2

2.5

P Q

R

R

LN
atural Frequency (H

z)

Pseudo−acceleration A (g)

2D
  K

1D
  K

1D
  L

P
Q

R

−1.5
−1

−0.5
0

0.5

0.5 1

1.5 2

Pseudo−acceleration A (g)

2D1D

N
atural Frequency: 2.50H

z

Location (km
)

(a
)

(b
)

−1.5
−1

−0.5
0

0.5

0.5 1

1.5 2

Pseudo−acceleration A (g)

2D1D

N
atural Frequency: 3.16H

z

Location (km
)

−1.5
−1

−0.5
0

0.5

0.5 1

1.5 2

Pseudo−acceleration A (g)

2D1D

N
atural Frequency: 4.70H

z

Location (km
)

(c
)

(d
)

F
ig
u
re

9
:
P
se
u
d
o
-a
cce

le
ra
tio

n
stru

ctu
ra
l
re
sp
o
n
se

sp
e
ctra

fo
r
�
v
e
p
e
rce

n
t
crit-

ica
l
d
a
m
p
in
g
u
sin

g
g
ro
u
n
d
m
o
tio

n
sy
n
th
e
tics

fro
m

1
D

a
n
d
2
D

sim
u
la
tio

n
s.

(a
)

R
e
sp
o
n
se

sp
e
ctra

fo
r
th
re
e
site

s
in

K
iro

v
a
k
a
n
sh
o
w
n
o
n
in
se
rt

a
n
d
o
n
e
in

L
e
n
i-

n
a
k
a
n
,
d
e
n
o
te
d
b
y
K

a
n
d
L
,
re
sp
e
ctiv

e
ly
;
(b
)|

(d
)
R
e
sp
o
n
se

a
lo
n
g
e
n
tire

v
a
lle
y

o
f
K
iro

v
a
k
a
n
,
fo
r
th
re
e
d
i�
e
re
n
t
n
a
tu
ra
l
fre

q
u
e
n
cie

s.



0.5 1 1.5 2 2.5
0

0.5
1

1 2 3 4 5

−1

−0.5

0

0.5

Lo
ca

tio
n 

(k
m

)

2D

Pseudo−acceleration A, g

1 2 3 4 5

−1

−0.5

0

0.5

Lo
ca

tio
n 

(k
m

)

Natural Frequency (Hz)

1D

Figure 10: Pseudo-acceleration response spectra for �ve percent critical damp-
ing, as a simultaneous function of the location of the structure and its natural
frequency. Top: For 2D simulation of 1988 Armenia Earthquake; Bottom: For
corresponding 1D simulation.


