Acrophile: An Automated Acronym Extractor and Server

Leah S Larkey, Paul Ogilvie, M. Andrew Price

Department of Computer Science
University of Massachusetts
Amherst, MA 01003

Email: {larkey, pogil, maprice} @cs.umass.edu

ABSTRACT

We implemented a web server for acronym and abbrevia-
tion lookup, containing a collection of acronyms and their
expansions gathered from a large number of web pages by
a heuristic extraction process. Several different extraction
algorithms were evaluated and compared. The corpus re-
sulting from the best algorithm is comparable to a high-
quality hand-crafted site, but has the potential to be much
more inclusive as data from more web pages are processed.

KEYWORDS: Acronyms, information extraction

INTRODUCTION

Acronyms are everywhere; we read and hear them but
rarely think about them, except when we do not know what
they mean. Every content domain has its own acronyms
and abbreviations. In many of these areas, particularly
those that are highly technical or bureaucratic, acronyms
occur frequently enough to make it difficult for outsiders to
comprehend text.

Many acronym and abbreviation dictionaries are available,
both in printed form and on the World Wide Web. Some
attempt to be all inclusive, others are speciaized for par-
ticular domains. There are searchable databases and ssimple
lists. Some general problems in building such collections,
or any dictionaries, are getting comprehensive coverage,
and keeping the collection current. New abbreviations
continually come into use. To keep their dictionaries
growing, some maintainers allow users to submit new acro-
nyms and definitions. This openness, however, can result in
poor-quality data.

Acrophile is an automated system that builds and serves a
searchable database of acronyms and abbreviations using
information retrieval techniques and heuristic extraction. It
was developed and built by students during an NSF REU
(Research Experience for Undergraduates) summer pro-
gram. The current version, available on the web at
http://ciir.cs.umass.edu/ciirdemo/acronym/, contains a set
of acronyms and expansions that were extracted from a

To appear in DLOO.

Copyright © 2000 by the Assciation for Computing Machinery, Inc.
Permisson to make digital or hard copies of part of this work for
personal or clasgoom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page or initial
screen of the document. Copyrights for components of this work owned
by others than ACM must be honored. Abstrading with credit is
permitted. To copy otherwise, to repulish, to post on servers, or to
redistribute to lists, requires prior spedfic permission and/or afee

Brenden Tamilio

School of Cognitive Science
Hampshire College
Amherst, MA 01002

Email: bat96@hampshire.edu

large static collection of web pages. The system can crawl
the web for additional pages, extract additional acro-
nym/expansion pairs, and collect them in a file. Periodi-
caly, the database can be rebuilt, incorporating the addi-
tional new pairs.

Another important goal of this project was to evaluate the
quality of our automatically-built acronym and abbreviation
databases. We developed evaluation techniques to compare
different extraction algorithms and to compare the quality
of our automatically-built databases with manually col-
lected databases.

Our evaluation goals were to test the following hypotheses:

1. It should be possible to use IR techniques and heuristic
extraction to collect a set of acronyms and expansions
which is at least as good and as comprehensive as care-
fully constructed manually built lists available on the
web.

2. In order to collect as many correctly expanded acro-
nyms as possible from an essentially unlimited corpus
like the web, one should choose a strict algorithm that
accepts few errors, even at the cost of missing some
cases in specific documents. It should be possible to
pick up those missed definitions from other contexts by
processing more text, and the resulting lists should
have higher precision than a similar-sized list produced
by aless strict algorithm.

3. We should be able to increase the coverage of our col-
lection more efficiently by searching for acronyms than
by processing random pages.

Related Work

Many acronym and abbreviation dictionaries have been
compiled and published in books and many lists are avail-
able on the web, such as Acronym Finder [1] and the World
Wide Web Acronym and Abbreviation Server
(WWWAAS) [17]. The Opaui Guide to Lists of Acronyms,
Abbreviations, and Initialisms [13] has 124 links to acro-
nym and abbreviation lists, some of them general, and some
as specialized as the Dog fanciers acronym list [4] or the
Mad Cow disease list [10].

All of these web-based lists appear to be built manually
rather than by automatic extraction. The lists range in size
from a few dozen items to over 127,000 acronym defini-

tions in Acronym Finder [1]. The acarracy seems to vary
widely. The primary problem with many large lists on the
web is that they alow people to submit expansions. Some
sites sreen submisgons carefully [12], others do not. As
far as we can determine, no previous automatic extradion
eff orts have resulted in publicly searchable online databases
of aconyms and none have recaved thorough evaluations.
IBM advertises a toal for abbreviation extradion, IBM In-
telligent Miner for Text, which alows corporations to proc-
ess and categorize text documents [16]. Among the prod-
uct’s fedures is the aility to extrad abbreviation phrases.
But the paper does not present any information on the heu-
ristics used, nor does it present data on the quality of the re-
sults.

Two small-scde aconym extradion projeds have been de-
scribed and recedved limited evaluation in unrefereed lit-
erature. AFP (Acronym Finding Program) [15] is an aco-
nym extradion algorithm which considers strings of from 3
to 10uppercase letters as an aconym, and looks for candi-
date expansions in windows of twice the number of letters
in the aconym before and after the aconym. It only looks
for matching letters occurring at word beginnings (or after
hyphens) but allows sosme mismatch between the letters of
the aconyms and the sequence of initia letters of the
words. AFP was tested on 17 dacuments from the Depart-
ment of Energy. It attained 93% recdl and 98% predsion
on aconymsin this st with length of threeor greaer, 86%
recdl and 98% predsion when two charader aconyms
were included.

TLA (Three Letter Acronyms) [18] was developed at the
University of Waikato. It has no case requirements for
aaonyms, so that any token is a candidate aconym. The
token is accepted if a matching sequenceis found by taking
up to three daraders from adjacet words. TLA was
evaluated on ten computer science technicd reports, on
which it obtained 91% recdl and 686 predsion. A newer
approach by the same researchers uses compression models
to identify aconyms and definitions [19]. This approachis
less ad-hoc than a purely heuristic gpproach like ours, but
requires a mrpus of hand-marked training data.

None of these extradion systems have been used to process
a large orpus of text and compile aseachable dictionary
of aconyms.

Automated extradion projeds for extrading non-aconym
text relations bear some interesting simil arities to the aco-
nym problem. Several emall extradors such as Atomic
Harvester 98 [4] and Email Siphon [6] can be found on the
web. They crawl through every web page & a given site
and extrad every email addressthey can find, to compile
lists to sell commercially. Extrading email addresses is
simpler than finding aconyms and expansions becaise it
does not require relating pairs of segments found in text. It
is sufficient to seach for the general pattern user-
name@location. Higher acaracy can be gained by

chedking the suffix of an addressfor the existence of com-
mon domains such as .edu, .com, and .gov.

The processes of extrading hyponyms [9] and citations [8]
are more similar to the aconym task in that they require
extrading a relation from text. Heast’s hyponym extrador
[9] finds pairs of noun phrases NP; and NP, such that NP,
is a kind of NP,, for example, nutmeg is a hyponym of
spice Her system finds hyponyms in text by looking for
some simple patterns like “spices, such as nutmeg,”
“gpices, including numeg and sage”, or “such spices as
nutmeg and sage.” As we find for aaonyms, these heuris-
tics provide reliable but not foolproof methods of finding
hyponyms. Heast ran the extradion algorithm on an ency-
clopedia, and found many corred hypornyms which could
be alded to WordNet [1].

CiteSeea [8] is a system that extrads bibliographicd cita-
tions and references. Like Acrophile, it uses a set of heu-
ristics to index information extraded from web pages.
CiteSea seaches for pages that might contain PostScript
documents and keywords such as PostScript and publica-
tion. Once the documents are retrieved, the system verifies
that they are legitimate publicaions by seaching for the
presence of a references sdion. When documents are
parsed, the system saves the title, author, yea of publica
tion, page numbers, and citation tag, a shorthand abbre-
viation for identifying the dted paper in the text body. It
uses a set of canonicd rules, for example, that citation tags
always appea at the beginning of references, author infor-
mation generally precedes the title, and the publisher usu-
ally follows the title. The developers of CiteSee provide a
fadlity on the web cdled Reseachindex where users can
seach for references and citation information [14].

Terminology

An aaonym is “a word formed from the initial letters or
parts of a word, such as PAC for politicd action commit-
tee” An abbreviation is “a shortened form of a word o
phrase used chiefly in writing...” [3]. Thus, an aconym is
an abbreviation whose letters are read as a word. This
definition excludes abbreviations guch as FBI and NAACP,
which are pronounced by saying the individual lettersin the
abbreviation.

Our projed covers a subset of abbreviations which is larger
than the set of aconyms, but smaller than the set of al ab-
breviations. We include abreviations that do not form
words, as long as their letters come from the words in the
phrase. We dso include abreviations with numbers gich
as 4WD, and 3M, athough our expansion algorithms can
only ded successfully with cases where the digit stands for
a spell ed-out number (Four Wheel Drive), or ads as a mul-
tiplier (Minnesota Mining and Manufacturing). It cannot
handle caes like Y2K. We exclude abbreviations composed
of letters that are not in the words (Ib.), and abbreviations
for single words rather than multiword phrases.

We use the term “expansion” for the phrase an aconym
stands for.

In the remainder of this paper we describe the Acrophile
system, then the acronym extraction algorithms; finaly, we
evaluate the algorithms and compare the resulting collec-
tions with some hand-crafted acronym collections on the
web.

SYSTEM DESCRIPTION

The core of Acrophileisalarge collection of acronyms and
expansions, which was automatically extracted from web
pages and indexed using Inquery 3.2, a probabilistic infor-
mation retrieval system developed at the University of
Massachusetts. Users can submit an acronym such as IRS,
and see a list of expansions for that acronym, or they can
submit words (such as Internal Revenue or revenue) and
see the acronyms whose expansions contain those words.
The system returns lists of acronyms and expansions,
ranked by a quality score. One can also submit a URL to
the acronym extractor and get a list of acronyms and expan-
sions found on the page.

We first describe this collection and how it was created,
then we describe the lookup system on the web.

Building and updating the database
Figure 1 outlines the process by which the database was
created and how it can grow. A static collection of around 1

Acronyms and
Expansions Tag,

Static HTML Acronym | Static Merge, Index
Corpus Filter Extractor Sort (Inquery)

of Web | ——p——p
pages Crawled

Acrophile
\t —» | Database

List of

Acronyms
Query
AltaVista
Crawled | crawler| URLS Filter | \tavista via
Web <—— from 1 \Web Crawler
pages AltaVista Results

Figure 1: Building and updating Acrophile

million (936,550) military and government web pages,
comprising around 5 gigabytes of text, was processed in the
manner illustrated in Figure 1.

First, a Perl script performs some simple filtering on the
web pages, to remove all HTML tags. The resulting stream
of text isfed into our acronym extractor, a C program using
flex and yacc, which incorporates the best of the four algo-
rithms we tested in the evaluation reported below. The ac-
ronym extractor produces a list of acronym and expansion
occurrences. These pairs are marked to indicate whether
they came from a parenthetical form such as DUI (Driving
under the Influence), information which is later used in
computing a confidence rating for the expansion.

Acronym/expansion sets are then sorted and merged, ac-
cumulating counts of occurrences. Occurrences in paren-

theses are also counted separately. The output is tagged,
creating pseudo-documents for indexing. Each pseudo-
document has an acronym as itstitle and an expansion as its
text. A confidence score is aso placed in a tagged field.
These data files are then indexed, with no stopping or
stemming performed on acronyms or expansions. The in-
dexing process creates a searchable Inquery database.

The shaded path through Figure 1 shows how the database
can be expanded by crawling for web pages containing
known acronyms. A list of acronyms is submitted as indi-
vidual queries to AltaVista, using a modified version of
Gnu's wget. For each query, we retrieve the top n match-
ing pages, returned from AltaVista ten at a time. Each re-
sults page is piped through a hand-coded filter which at-
tempts to remove al content except the URLSs of the found
documents. These URLs are then crawled in sets of 10 by
another instance of the crawler. This crawling accumulates
anew collection of web pages, which are processed like the
static set, to extract an add-on set of acronym/expansion
pairs. These can be added to the original set, and the data-
base rebuilt.

The Search System
The search processisillustrated in Figure 2, below.

Sorted,

Filtered Acro-Lookup

List Client
4—

Inquery
APL

User
Query via
Web
Browser

CGI

Search Commandsi 2 Ranked List

Connection Server

Search Commands
Acrophile

Database

Inquery Server

Figure 2: Searching for acronyms

The system uses a client/server architecture which could
accommodate multiple servers across a network, although
at present our client and (single) server run on the same
Unix system. The user types an acronym or phrase into a
text box on the Acrophile search page. This query is sub-
mitted via CGI to a custom Inquery web client developed
for Acrophile. The client creates a network connection to
the Inquery connection server, which issues search com-
mands to an available Inquery server, which retrieves acro-
nym/expansion pairs from the database. A ranked list is
then returned through the connection server and back to the
client. A confidence score is computed for each expansion,
based on the stored occurrence counts. The list is sorted by
this confidence score, filtered, and formatted for display in
the user's web browser. The user may select how many
expansions they would like to see.

Extraction Demonstration

In addition to the seachable aconym coll ection, the Acro-
phile splash page dso contains a link to an online extrac
tion demonstration, which accepts a URL from the user and
extrads aaonyms and expansions from the submitted
document in red time. Currently, the results of this extrac
tion are not added to the onli ne database.

EXTRACTION ALGORITHMS

The Acrophile ectradion agorithms use flex, a lexicd
analyzer, and yacg a parser, to processa text document to
extrad acdonyms. Expansions for the aconyms are found
in the text using a mmbination of document context and
canonicd rules, which match patterns in which aconyms
are ommonly defined in standard written Engli sh.

We developed several different versions of extradion algo-
rithms and tested four of them. All versions work on the
genera principle of hypothesizing that a sequence is an
aaonym if it fits certain patterns, and confirming it as an
aaonym if a plausible expansion for it is found neaby.
For dl four algorithms, some normalizaion is performed
after extradion. Two aconyms are mnsidered equivalent if
they differ only in capitalization. Two expansions for an
aaonym are onsidered equivalent if they differ only in
capitalization or in the presence or absence of periods, hy-
phens, or spaces.

Our four agorithms, cdled contexual, canorical, canoni-
cal/contextual, and simple @anonical, differ in what patterns
are taken to indicate potential aconyms, what forms ex-
pansions can be found in, and what text patterns indicate a
possible aconym/expansion pair. The ntextual, canoni-
cd, and canonicd/contextual algorithms are dl related and
arose by modifying an ealier contextua algorithm. The
simple anonicd agorithm was designed independently to
try a more limited approach that might yield higher pred-
sion on the aconyms it found. We did some initial tuning
of algorithms based on their performance on a small pilot
set of 12,380Wall Stred Journal articles from 1989

The simple canonicd algorithm (also cdled simple) is the
strictest of the four. It finds only those aconym/expansion
pairs which fit a small set of canonicd forms, such as “ex-
pansion (ACRONYM)”, or “ACRONYM or expansion”.

The oontextual algorithm, on the oppasite end of the strict-
ness continuum, looks for an expansion in the vicinity of
the potential aconym without requiring any canonicad pat-
tern (“or”, parentheses, commas, etc.) indicating their rela

tionship. The caonicd/contextual and canonicd ago-
rithms fall in between the other two. The four agorithms
are mntrasted in Table 1, which lists their major charader-
istics. The amlumns of the table summarize the four differ-
ent agorithms. The top half of the table lists properties of
hypothesized aconyms. The bottom half covers properties
of the expansions. All four algorithms are described below.

Finding Acronyms
The dgorithms identify potential aconyms by scanning
text for the patterns down in the row labeled Acronym

Patternsin Table 1. Thisrow uses a pseudo-regular-expres-
sion notation in which superscript + indicaes one or more
occurrences of asymbal, * indicaes 0 or more occurrences,
numbered superscripts indicae aspedfic number or range
of occurrences. U stands for an uppercase letter, L a lower-
case letter, D adigit, S an optional final sor ‘s, {sep} isa
period a aperiod followed by a space and {dig} isanum-
ber between 1 and 9, optionally followed by a hyphen.
Termsin sguare bradkets are dternatives.

The mntextual algorithm accets aconyms that are dl up-
percase (USA), with periods (U.SA.) or which have ase-
guence of lowercase charaders either at the end of the pat-
tern following at least three uppercase daraders
(COGSNet), or internally following at least 2 uppercase
charaders (AChemS). An uppercase pattern can also have
any number of digits, anywhere.

The canonicd/contextual and canonicd algorithms accet a
wider range of aconym patterns. They have less constraint
on lower case sequences, to alow patterns like DoD.
Slashes and hyphens are dlowed in aconyms, to get pat-
terns like AFL-CIO and 3-D. Acronyms are not allowed to
end with lower case charaders except for s, and only 1 digit
isalowed in an aconym.

The simple canonicd agorithm takes a minimalist ap-
proach, excluding aconyms with digits, periods, and
spaces. An agonym must begin with an uppercase letter,
followed by zero to 8 upper or lowercase letters, slashes, or
dashes, and ending in an uppercase letter.

Acronym Expansion

Contextual Algorithm. The mntextual algorithm finds ex-
pansions by matching from the last charader of the aco-
nym to the front. It aways saves the twenty most recent
words anned, so when a potential aconym isidentified, it
tries to find the expansion in this saved bufer. Otherwise,
it looks for the expansion in the text foll owing the aconym.
It requires no canonicd forms, so it can succesdully ded
with text like, “... isthreedimensiona. In 3D images...”

The expansion rules can refer to a list of 35 noise words
like and for, of, and the, which are often skipped in aco-
nyms, as in CIIR (Center for Intelligent Information Re-
trieval). The dgorithm tries to find a sequence of words
such that the initial 1 to 4 charaders from each non-noise
word match the charaders of the aconym, as in Bureau o
Personrel (BUPERS). In addition:

e Oneinitia charader of a noise word can match an in-
ternal adonym charader, as in Department of Defense
(DOD).

* A noise word can be skipped, as in Research Experi-
encefor Undergraduates (REV).

« Theinitial charader and the 4™, 5", or 6" charaders of
potential expansion terms could be matched to aconym
charaders as in PostScript (PS). Thisis an attempt to
simulate a ecude morphemic decomposition, but without
any knowledge of English prefixes.

ACRONYMS

Contextual Canonical/ Canonical | Simple Canonical
Contextual
Patterns for (U{sep})" eg.U.SA. (U{sep})*®S eg.U.SA,USAs | U[UL/I-®®U
Acronyms u* e.g. USA u*’s eg. USA, USA’s e.g. USA, DoD, AFL-CIO
D'U[DU]" eg.3D,62A2A | U'{digju* eg.3D,3-D, I3R
UUU'L* eg. JARtod u'L'u* e.g. DoD
UUL'U" eg.AChemS | U'[/-JU" eg. AFL-CIO
Upper vs. Lower | Firsttwo charsmustbeU, | L internal, orfinal sor ‘s Must begin and end with U
Case then any number of L DOD, DoD, DOD's Can have L elsewhere
anywhere, but adjacent DOD, DoD
Digits Any number of digits, Only 1, any nonfinal position None
anywhere 3M, 2ATAF
Spaces and After capital letters *.Or“ +space”must be dter eadr | None
periods charader. N.ASA, N.A.S A.
/or- None —treded as gacein | 1interior of /,- Any number of /, - in interior
tokenizing CD-ROM,0OB/GYN CD-ROM, OB/GYN
Max length None explicit 9 alphanumeric chars, plus any 10 charaders including any
included punctuation or final s punctuation
EXPANSIONS
Noise words Fixed list of 35 Fixed list of 40 None
Skip words Only noise words Noise words, or words foll owing Only first and last words have to

hyphens

match charsin aconym

Noise word chars | At most 1, only charadersinternal to the aconym N/A
Prefixes Yes, assumesany initial 3,4, or 5 chars may be aprefix N/A
Charsfromnon- | Upto 4. Gredly, prefersto | Upto 4. Prefersto 1. Can take more if
noise word take more Not greedy, prefersto take fewer word starts with upper case
Canonical N/A (Unordered) (Ordered)
Definition AC (Exp), Exp(AC) Expansion (ACRONYM)
(Exp) AC, (AC) Exp Exp o AC
AC or Exp, Exp or AC, Exp, or AC
AC stands for Exp Exp, AC
AC{is} anaaonym for AC (Exp)
Exp known asthe AC AC, Exp

Exp “AC”, "AC” Exp

Capitalization

Expansion canbe dl L

Can be dl
lower case

Canonicd: can be
al lower
Contextual: only
noise words can be
lower, rest must be

upper

Lower case dlowed, but with
stricter rules than upper case;
ead letter in aaonym must be
matched by aletter starting a
word in the expansion.

Numbers

Spell out or multiply

No numbers

Table 1: Properties of acronyms and expansions for four different algorithms

The ontextual algorithm scans for an expansion urtil an-
other aconym pattern is encountered, wherein the old ac
ronym is forgotten and the new one becomes the source for
matching, or until the expansion isfound or fails.

If adigit nisfound in the aconym, the aconym receves
some speda handling. The dgorithm tries repladng the
digit and the following or preceling charader with n repe-
titions of the charader, as in MMM for 3M. If it cannot
find an expansion for this transformed aconym, it then
tries matching the digit with the spelled out number, asin
three dimensional for 3D. Periods in aconyms are ignored
inlooking for expansions.

One of the mgjor problems with the mntextual agorithm
was its greediness in trying to match more than one initial
charader from expansion terms. This would lea it to ex-
pand NIST as National Institute of Standards, taking the t
from Standards, rather than as National Institute of Stan-
dards and Technology. A sewmnd problem, particularly
with two letter aaonyms, was the unacceptably high likeli-
hood d finding a sequence of lower case words with a spu-
rious match for the aconym, asin story fromfor SF.

Contextual-Canonical. The canonicd/contextual algorithm
is a modification of the contextual algorithm to addressthe
above two problems. First, canonicd rules were alded to

constrain when lower case words are accepted for expan-
sions. Only if an acronym/expansion pair is found in a
form in the row labeled Canonical Definition in Table 1, is
a lower case expansion allowed. An expansion found via
the contextual rules must be capitalized, except for noise
words. Second, the algorithm tries conservatively, rather
than greedily, to match multiple characters in an expansion
term, addressing the problem illustrated with NIST, above.
In addition, hyphens and slashes are alowed in acronyms,
and are passed over silently in expanding them. If an ex-
pansion term is hyphenated, such as Real-Time from
CRICCS (Center for Real-Time and Intelligent Complex
Computing Systems), the algorithm can either treat Real-
Time as two words, or as a single word, not requiringaT in
the acronym.

Canonical. The canonical algorithm was derived from the
canonical contextual, filtering the output list so that only
acronym/expansion pairs that were found in canonical form
were retained.

Simple Canonical. The simple canonical algorithm was an
attempt to do away with most of the complexity of the
contextual algorithm and its derivatives. Like the canonical
agorithm, the simple canonical algorithm requires that the
acronym be found in certain textual contexts, but it accepts
fewer canonical patterns for acronym/expansion pairs, and
fewer acronym patterns. The agorithm searches for the
forms in the Canonical Definition row of Table 1 in the
order they are listed.

When checking the validity of a potential expansion, the
algorithm has a few acronym/expansion matching schemes.
Each of these schemes recursively checks shorter expan-
sions first. The matching schemes are performed as fol-
lows:

1) Uppercase strict: each letter in the acronym must be
represented, in order, by an uppercase letter in the ex-
pansion. The expansion must begin with the first letter
of the acronym.

2) Lowercase strict: each letter in the acronym must be
represented, in order, by the first letter of aword in the
expansion. The expansion must begin with the first
letter of the acronym and must not contain uppercase
letters.

3) Uppercase loose: the first word must begin with the
first letter of the acronym and the last word must begin
with a letter in the acronym. This scheme is extremely
loose, and can result in expansions where some letters
in the acronym are not matched at all.

The functions that check shorter expansions first remove
words from the end of the expansion farthest from the ac-
ronym, then the functions call themselves with the modified
expansion. Each function will remove a word from the
beginning of the expansion if the expansion follows the
acronym, or from the end of the expansion if the expansion
precedes the acronym. If the shorter expansion passes the
requirements, the algorithm returns the short expansion

with the acronym as valid. For example, Air Carrier Ac-
cess Act (ACAA) fits the pattern “expansion (ACRO-
NYM).” Since Air Carrier Access Act passes the uppercase
strict test, it is returned as the valid expansion for ACAA.
While Access Act would pass the uppercase loose test for
ACAA, it would not be returned because the uppercase strict
test is performed first.

EVALUATION OF ALGORITHMS

In order to evaluate how well our algorithms correctly find
al the acronyms that are explicitly defined in a set of
documents, we use standard information retrieval measures.
Precision, that is, found correct/found total, measures the
accuracy of extraction, and recall, that is, found cor-
rect/known correct, measures the completeness of the ex-
traction. For this evauation we started with the 1M set,
that is, the 936,550 military and government web pages that
we processed for the Acrophile web database. From this
set, we selected at random 170 pages that contained text
and manually found al the acronyms with explicit defini-
tions. These documents contain 353 defined acronyms, 10
with an ampersand or slash, and none with numbers or
dashes. Variations in expansions that were accepted as
correct were the omission or addition of an ‘s,’ and differ-
ences in punctuation.

Table 2 shows recall and precision values for the four algo-
rithms on the 353 acronyms in test set and on a subset con-
taining the 328 acronyms of length three or higher.

All Acronyms Length > 2

Precision Recall Precision Recall
Contextual | .89 .61 .96 .60
CanCon .87 .84 .92 .84
Canonical .96 57 .99 .59
Simple .94 .56 .99 .57

Table 2: Recall and precision on 170 sample docs

There were sixteen cases missed by all our algorithms be-
cause the expansion was too far (more than twenty words)
away from the acronym. We do not expect any algorithm to
get these, and other researchers do not include such cases
[15][18]. The results excluding these cases can be seen in
Table 3.

All Acronyms Length > 2

Precision Recall Precision Recall
Contextual | .89 .63 .96 .63
CanCon .87 .88 .92 .88
Canonical .96 .60 .99 .61
Simple .94 .59 .99 .60

Table 3: Excluding distances > 20 words

Precision is very high, especialy on acronyms longer than
two characters. Recall is considerably higher for the ca
nonical contextual algorithm than the other three algorithms
but with lower precision. As expected, the two canonical
algorithms have lower recall but higher precision. The
contextual algorithm has lower recall, and dlightly higher

predsion than the anonical contextual algorithm, in a pat-
tern indicaing that a preponderance of its errors are on 2
letter aconyms. These results cannot be diredly compared
to the .93 recdl and .98 predsion found for aadonyms
longer than 2 charadersin [15], and .91 recdl and .68 pre-
cision in [18], and roughy .80 recdl and .90 predsion in
[19], because these studies are based on different text, and
possbly different criteriafor correaness

COMPARISON WITH HAND CRAFTED LISTS

Two web coll edions were chosen for the cmparison. We
tried to use the largest and best quality sites from which we
could eaily get and parse lists of aconyms and expan-
sions. We used WWWAAS, the World Wide Web Acro-
nym and Abbreviation server at University College Cork in
Ireland [17] and Acronym Finder, Mountain Data Sys-
tems's aconym database [1]. From WWWAAS, the
smaller of the two sites, we muld extrad the entire data-
base by submitting a “.” as a query. The out put was con-
verted from HTML to our format with lex. The items were
not added to our database. For Acronym Finder, the larger
site, we were not able to dump the entire database, but we
were &le to colled all the expansions for a test set to be
described in the next sedtion.

Size

First, Table 4 shows how our colledion compares with the
othersin overall sze WWWAAS contains far fewer aao-
nyms and expansions than our set. Acronym Finder con-
tains more aconyms, but fewer expansions than we ex-
traded from 1M set described above. Processng additional
pages outside of the military and government domain
would undoubtedly find more aconyms.

Algorithm #Acronyms #Exps Avg Exps/Acro
Contextual 44,241 143620 3.25
CanCon 51,726 161,686 3.13
Canonicd 41,832 117,746 2.81
Simple 40,073 119,081 297
WWWAAS 12,108 17,753 147
Ac.Finder 60,000 127,000 2.17

Table 4: Number of acronyms and expansions extracted
from 1M pages by each algorithm, and at 2 web sites

Evaluation method

To go beyond size and compare the crreaness of different
colledions is much more difficult than comparing algo-
rithms on a fixed set of data. A maor challenge was in
defining “corred.” A usable aiterion was to require that we
could find the aconym in use on the web. By taking a
random sample of 200 aaonyms from each of our lists, we
were &le to determine that virtually all the aconymsin all
the sets were red aaonyms, that is, we were ale to find
them used as an aconym somewhere on the web. How-
ever, it looked as though some expansions might be arone-
ous, and we devised the following method to evaluate the
acarracy of the set of expansions listed for an aconym.

The test samples of acronyms and expansions. We ini-
tially seleded a sample of 55 aaonyms for evaluating ex-
pansions. Forty aconyms were chosen to mimic the distri-
bution of aconym length found in the small Wall Stree
Journal colledion. Acronyms with length 2, 3, and 4 were
generated randomly, while others were seleded at random
from a longer list of aconyms of that type. We alded 5
aaonyms containing numbers, 5 known to have alarge
number of expansions, and 5with dashes or dashes.

For ead of the 55 aaonyms, we colleded a pod of expan-
sions from the two reference databases on the Web, and
from our four agorithms, run on the 1M set. We dso
added all the alditional expansions that came up in the
crawling experiments discussed below. We later found that
for 10 d the 55 aconyms, none of the systems found any
expansions. These 10 were removed from the evaluation,
leaving 45 aaonyms in the test set.*

Criteria for correct expansions. Our criterion for a @rred
expansion was smilar to that for a corred aaonym, that is,
that we aould find at least one example on the web defining
that expansion for that aconym. We hired evauators to
examine pages returned from an AltaVista [2] seach for a
query consisting of the aconym and the expansion. If they
could find the aconym defined with the target expansion
on any web page, using a list of explicitly defined criteria,
it was accepted as corred. Otherwise, it wasincorred.

Scoring. We defined recdl for this context as the number of
corred expansions for an aconym found by one dgorithm
or system divided by the number of known corred expan-
sions for that aconym found by all algorithms or systems
evaluated. Similarly, we defined predsion as the number
of corred expansions for an aaconym found by one dgo-
rithm or system, divided by the number of expansions, cor-
red or incorred, found by that algorithm or system. We
then averaged acossaaonyms.

To obhtain a range of recdl/predsion points, we ranked the
expansions by a mnfidence score, which was a function of
how many times the expansion was found for an aconym,
and another fador which we found highly related to reli-
abili ty — whether an occurrenceisin one of the two canoni-
cd forms “expansion (ACRONYM)” or “ACRONYM (ex-

pansion)”. Pilot reseach with the 1989Wall Stree Journal
corpus dowed that aconym/expansion pairs extraded
from this frame were aout five times more likely to be
corred than pairs extraded from any other form. There-
fore, we gave occurrences in this form more weight than

! Several patternsin ou results make us dotbt that our test set of
45 agonym is representative. First, the average number of
expansions per aaonym is much higher in the test set than in the
complete set. We ae in the processof judging a better corpus of
200 aadonyms. This list includes most of the 45 aadonyms from
the present test set, plus aconyms chasen randomly from a list of
aaonyms foundin the evaluated systems. These judgments will
allow amore reliable evaluation.

occurrences in other forms by counting them as five occur-
rences.

An aaonym’s expansion with a count of 1 in a very large
corpus is mewhat likely to be eroneous. Expansions
with a ount of 10 are much more likely to be crred and
expansions with counts of 30 are even more likely to be
corred. The higher the count we require, the better acal-
ragy (predsion) we @n obtain. However, requiring higher
counts also causes more legitimate expansions be missed.
We can therefore get higher predsion by requiring some
threshold number of counts in order to accept an expansion
for an aconym, but at the cost of lower recdl. By varying
this threshold, we obtain a range of recdl-predsion points
for our evaluation below. The mnfidence scores are dso
used in the online seach system, but they are transformed
to C/(C+2), in order to range between O and 1

Note that weighting the unt does not bias our measure-
ments of recdl and predsion, it only affeds how aaonyms
are grouped by confidenceto get a range of recdl/predsion
values.

Table 5 shows the total number of expansions found for the
45 aaonym test set by ead of the 4 tested algorithms and
the two web sites. It also shows recdl and predsion. The
contextual and canonicd/contextual algorithms find the
largest number of expansions for the test aconyms. Con-
sistent with the analysis on the 170 dauments, the simple
and canonicd agorithms have higher predsion and lower
recdl. Acronym Finder has performance similar to our
algorithms. A more complete picture of the situation can
be seenin Figure 3.

Algorithm # Exps Precision Recall
Contextual 1172 75 .28
CanCon 1055 .76 .34
Canonical 573 .79 21
Simple 344 .81 .25
WWWAAS 90 .84 .09
Acronym Finder 450 .76 .31

Table 5: Number of expansions, precision, and recall for
each system, measured on 45 test acronyms

Figure 3 shows recdl and predsion curves for the four al-
gorithms, evaluated on the 45 test aaonyms whose expan-
sions were dl judged. The points on ead curve show re-
cdl and predsion at thresholds of 1, 2, 3, 4, 5, 10, 15, 20,
25, and 30, computed as described above. The recdl and
predsion values in Table 5 correspond to the threshold 1
points on Figure 3. The graph shows that for al algo-
rithms, it is possible to attain predsion valuesin the .95-.97
range, but only at very low recdl | evels, that is, for the ae
ronyms we have the most confidence in. The worst-per-
forming agorithm is the ontextual, with substantially
lower values than the other values all along the recdl pred-
sion curve. The caonicd/contextual algorithm and the
simple dgorithm perform the best acossmost of the curve,
except at the high recdl end, where the anoni-

cd/contextual agorithm attains higher recdl. In other
words, the mntextual rules of the canonica/contextua al-
gorithm allow us to find more aconyms and/or expansions
than we @n find using canonical rules aone, but this non
canonicd set also has more erorsinit. The caonicd a-
gorithm falls between simple canonica and contextual al-
gorithmsinrecd and predsion.

—e— Contextual
0.95 —=e— Canonical/Contextual
Simple
0.9 Canonical
c X Acronym Finder
.g ® WWWAAS
‘5 0.85
Q
o
0.8
0.75
L 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08
Recall

Figure 3: Recall and Precision on 45-acronym test

The unconneded pdnts on Figure 3 show the recdl and
predsion values we measured for the handcrafted web sites,
on the 45 test aconyms. Each site mntributes a single point
to the graph rather than a arve, becaise we have no way to
vary athreshold.

WWWAAS, the smaller site, falls at the low end of recdl,
with arecdl of .09 and predsion of .84. Although predsion
(.84) appeas good, compared to the other valuesin Table 5
(al inthe .70s), we seefrom the more complete recdl-pre-
cision curves that this value is comparable to our worst-per-
forming algorithm — the mntextual — at a threshold of 3.
Our best agorithm, the canonicd/contextual, has recdl of
.25 at the comparable value of predsion, and predsion of
.96 at the comparablerecdl level.

Acronym Finder, the larger site, had recdl and predsion
values of .26 and .76, comparable to our best algorithm, the
canonicd/contextual, at athreshold of 1. These results con-
firm the hypothesis that our algorithms can creae a ©rpus
of aconyms and expansions that is comparable in quality to
the best manually built site that we could evaluate.

Note that predsion and espedally recdl values here ae
substantially lower than what we found in evaluating the
extradion from 170 web pages. The difference is due to
the different pod of expansions which were cnsidered
corred. We ae catain that some of the aconym expan-
sions we @unted asincorred were in fad corred, but were
not found in the AltaVista search, resulting in lower pred-
sion.

The pool of correct expansions has an even larger effect in
reducing recall. An expansion is counted as missed if any
other evaluated system found the expansion, whether or not
it was present in the set of documents input to the acronym
extractors. This makes the set of correct expansions a
moving target that grows the more we search. The crawl-
ing experiments below show that the same acronyms are
used in many domains, and if we go beyond our military
and government 1M set, more expansions will be found.

PROCESSING ADDITIONAL PAGES

This analysis addresses the extent to which we can find
more expansions by searching the web for acronyms. We
used the 55 test acronyms, submitted them as queries to
AltaVista, and ran our extraction algorithms on the top 30
and 100 pages that were returned for each query. This pro-
cess found many new expansions for the target acronyms.
As an illustrative example, Table 6 shows all the expan-
sions for the acronym EW, as found by al the systems
mentioned. WWWAAS does not appear in the table be-
cause it did not include the acronym EW. The other man-
ua site, Acronym Finder (AF) had three expansions listed,
two correct and one incorrect. All four of our algorithms,
run on the 1 million web pages, found the two correct ex-
pansions for EW listed by Acronym Finder, and did not get
the incorrect expansion. In addition, our algorithms found
a third correct expansion, and al but the contextual algo-
rithm found another incorrect expansion. The additional
pages found by searching and crawling more than doubled
the number of correct expansions. When 30 pages were
processed for each acronym query, four new correct expan-
sions and one incorrect expansion were found. When 100
pages were processed for each acronym query, another two
correct expansions were found.

Expansion c °
wl & % 3 é z z
<| O O O G| a| =

Edison Welding Institute + |+ [+ |+ |+]+ |+

Education With Industry + [+ |+ [+ |+ |+]+

Electronic Warfare Intelligence | -

Equa Width Increment + |+ |+ |+ |+ |+
Explosive Waste Incinerator - - 1- - |-

Eijkman Winkler Institute + | +
Elliott Wave International + | +
European Wireless Ingtitute + | +
European Web Index + | +
Edison Welding - |-

Electro World Inc +
Executive Women | nternational +

Table 6: Expansions for acronym EWI

In addition to finding more expansions for the target acro-
nyms, extraction from the crawled pages found some new
acronyms that had not been extracted before. For 1IM+30,

318 new acronyms were found, and for 1IM+100, 1120 new
acronyms were found. None of these were the 55 acronyms
targeted by the search.

1

0.95 *—1M
1M+30
09 | 1M+100

Precision
o
[00)
ol
T

o
o]
T

0.75

0 01 02 03 04 05 06 07 08

Recall

Figure 4: Adding source pages by searching for
target acronyms

Figure 4 shows the recall precision curves for the canonical
contextual agorithm, processing 30 crawled pages per ac-
ronym in addition to the basic 1M set, and 100 additional
crawled pages per acronym, along with the old curve for
the 1M set. This targeted crawling results in a huge in-
crease in recall, without dropping precision except at the
very highest recall levels— thresholds of 1. At athreshold
of 2, precision (.75) is not appreciably lower than the preci-
sion for the 1M pages aone at a threshold of 1 (.76), but
recall has almost doubled from .28 to .54.

As a control, we also measured the performance of the ca-
nonical contextual algorithm on comparably sized sets,
consisting of the 1M set with the addition of either
55x30=1650, or 55x100=5500 randomly selected docu-
ments. We did not include these results on the graph in
Figure 4, however. The results were so similar to that of
the 1M set aone that they could not be seen separately on
the graph.

CONCLUSIONS

We were able to build in a largely automated manner, a
searchable dictionary of acronyms and expansions which
rivals the quality of a good manually constructed dictionary
of acronyms, by extracting acronyms and expansions from
alarge corpus of static web pages. We showed that we can
increase the precision (accuracy) of our extraction by rais-
ing a threshold. Although this results in lower recall (cov-
erage), we can increase recall by processing more pages.
We can increase recall dramatically without loss of preci-
sion by processing web pages that are returned by a search
for the acronyms that we have aready found. This two-
stage strategy results in a collection that is superior to any

manually built database, and it can be kept up-to-date in an
automated manner.

FUTURE WORK

Dynamic Extraction

Given the great efficiency and success of finding additional
expansions for an acronym by searching for the acronym
and extracting expansions from the top 100 web pages re-
turned, we are planning to add a facility to do this online.
This will not replace the static database, however. There
are some acronyms which spell existing words (IS, TIDES)
for which the acronym may not occur in the top 100 pages
returned from a search.

We would like to have the system automatically crawl! for
pages containing known acronyms, to continue to find new
expansions for our acronyms, and to discover new acro-
nyms. We have found that our confidence scores get dis-
torted by this process because the same web pages may be
processed many times. Presently we remove duplicate
URLSs from the set of pages for one acronym, but we do not
keep a master list to prevent processing the same page
againin alater run.

HTML Parsing

Our simple method of ignoring material inside HTML tags
could be improved. We lose several occurrences of acro-
nym/expansion pairs defined within the ALT property of
 tags, asin: <IMG SRC="image.gif" HEIGHT="50"
WIDTH="50" ALT="Library of Congress (LOC)" >.

We aso do not take advantage of the <ACRONYM> and
<ABBR> tags, which alow a web author to declare acro-
nyms and abbreviations as follows: <ACRONYM ti-
tle="Rapid Eye Movement"> REM </ACRONYM> or
<ABBR title="Y2K"> Year 2000</ABBR>. These tags are
not yet in common usage, but if they become more widely
used, we would want our extraction algorithms to be able to
extract acronyms and abbreviations from them.

ACKNOWLEDGMENTS

This material is based on work supported in part by the
National Science Foundation, Library of Congress and De-
partment of Commerce under cooperative agreement num-
bers EEC-9209623 and EIA-9820309. Any opinions,
findings and conclusions or recommendations expressed in
this material are the authors and do not necessarily reflect
those of the sponsor.

We thank Mike Molloy for information about Acronym
Finder, and Morris Hirsch for an early version of the con-
textual algorithm. Thanks also to Don Byrd for his com-
ments on a draft of this paper.

REFERENCES
1. Acronym Finder. http://www.AcronymFinder.com.

2. AltaVista. http://www.altavista.com.

10

3. The American Heritage Coll ege Dictionary, Third Edi-
tion. Boston: Houghton Mifflin Company, 1993.

4. Atomic Harvester.
http://mwww.desktop-server.com/atomic.htm.

5. Dog fanciers acronym list. http://mx.nsu.ru/FAQ/F-dogs-
acronym-list/Q0-0.html.

6. Email Siphon is known by the evidence it leaves when it
crawls archives for email addresses, purportedly for
spamming purposes. See discussion in
http://archives.list-universe.com/list-moderators/9802.

7. Fellbaum, Christiane. WordNet: An Eledronic Lexical
Database, Cambridge: MIT Press, 1998.

8. Giles, C. Lee, , Bollacker, Kurt D., and Lawrence, Steve.
CiteSeer An Automatic Citation Indexing System, in
Digital Libraries 98, New York: ACM Press, 1998, pp.
89-98.

9. Hearst, Marti. Automatic Acquisition of Hyponyms
from Large Text Corpora, in Procealings of the Four-
teenth International Conference on Computational
Linguistics (Nantes, France, July 1992).

Mad Cow disease list.
http://www.maff.gov.uk/animalh/ bse/glossary.html.

10.

11.
12.

MetaCrawler. http://www.metacrawler.com.

Molloy, Michael (Acronym Finder), personal commu-
nication. February, 2000.

Opaui Guideto Lists of Acronyms, Abbreviations, and
Initialisms (http://spin.com.mx/~smarin/acro.html).

13.

14.
15.

Researchindex. http://www.researchindex.com.

Taghva, Kazem, and Gilbreth, Jeff. Recognizing Ac-
ronyms and their Definitions. Technical Report 95-03,
ISRI (Information Science Research Ingtitute) UNLV,
June, 1995. http://www.isri.unlv.edu/ir/publica-
tions/Taghva95-03.ps

Tkach, Daniel, ed. Text Mining Technology: Turning
Information into Knowledge. IBM White Paper, 1998.
http://www.software.ibm.com/data/miner/fortext/down
load/whiteweb.html.

World Wide Web Acronym and Abbreviation Server
(WWWAAYS). http://www.ucc.ie/cgi-bin/acronym.

Y eates, Stuart. Automatic extraction of acronyms from
text. In Procealings of the Third New Zealand Com-
puter Science Research Sudents' Conference. Hamil-
ton, New Zealand, April 1999, University of Waikato,
pages 117-124. http://www.cs.waikato.ac.nz/~syeates/-
pubs/acroPaper.ps.gz

Y eates, Stuart, Bainbridge, David, and Witten, lan.
Using Compression to identify acronymsin text.
Submitted to Data Compression Conference,
DCC2000.

16.

17.

18.

19.

