QI1-MLE, training error etc

We have a dataset with R records in which the i** record has one real-valued input attribute 2; and one
real-valued output attribute ;.

(a) (6 points) First, we use a linear regression method to model this data. To test our linear regressor, we
choose at random some data records to be a training set, and choose at random some of the remaining
records to be a test set.

Now let us increase the training set size gradually. As the training set size increases, what do you
expect will happen with the mean training and mean testing errors? (No explanation required)
- Mean Training Error: A. Increase; B. Decrease

- Mean Testing Error: A. Increase; B. Decrease

(b) (6 points) Now we change to use the following model to fit the data. The model has one unknown
parameter w to be learned from data.

Yi ~ N(log(wz;),1)
Note that the variance is known and equal to one. (no explanation required) Suppose you decide to

do a maximum likelihood estimation of w. You do the math and figure out that you need w to satisfy
one of the following equations. Which one?

A. Y zilog(wz;) = 37, 2:y: log(wz;)
B. Y2 ziys = o, xiy; log(w;)
C. Y ziy: =Y, z; log(wx;)

D. Y yi =", log(wx;)



QI1-MLE, training error etc

We have a dataset with R records in which the i** record has one real-valued input attribute 2; and one
real-valued output attribute ;.

(a) (6 points) First, we use a linear regression method to model this data. To test our linear regressor, we
choose at random some data records to be a training set, and choose at random some of the remaining
records to be a test set.

Now let us increase the training set size gradually. As the training set size increases, what do you
expect will happen with the mean training and mean testing errors? (No explanation required)
- Mean Training Error: A. Increase; B. Decrease

- Mean Testing Error: A. Increase; B. Decrease

Answer:

The training error tends to increase. As more examples have to be fitted, it becomes harder to "hit’,
or even come close, to all of them.

The test error tends to decrease. As we take into account more examples when training, we have more
information, and can come up with a model that better resembles the true behavior. More training
examples lead to better generalization.

(b) (6 points) Now we change to use the following model to fit the data. The model has one unknown
parameter w to be learned from data.

yi ~ N(log(wz;),1)
Note that the variance is known and equal to one. (no explanation required) Suppose you decide to

do a maximum likelihood estimation of w. You do the math and figure out that you need w to satisfy
one of the following equations. Which one?

ALY xilog(we;) = 3, 2y log(we;)
B. Y, zy: = >, wiy; log(wz;)

C. Y, ziyi =, zilog(wz;)

D. 3%y =32 log(wz:)

Answer: D.

Y ~ N(log(wz;),1)
We could write the log likelihood as:

LL =log

i — log(wz;))? - i — log(wz;))?
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Q2. Regression

Suppose we want to learn a quadratic model:

y= 1wy + wir +  woXo + wax3 + . WLT +
'U.Jllil?% - W12T129 + w13T1T3 —+ . W12} -
’UJQQ.T% + WazToxz + e WoRToT) +

wk—1,k—193£_1 + Wk kTr1Tk +
+ Wiy

Suppose we have a fixed number of records and k input attributes.

(a) (6 points) In big-O notation what would be the computational complexity in terms of k of learning
the MLE weights using matrix inversion?

O(k®) since it is O([number of basis functions]®) to solve the normal equations, and the number of
basis functions is 1 (k + 1)(k + 2).

(b) (6 points) What would be the computational complexity of one iteration of gradient descent? (The
"batch” gradient descent method, NOT the online method).



Q2. Regression
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Suppose we have a fixed number of records and k input attributes.

(a) (6 points) In big-O notation what would be the computational complexity in terms of k of learning
the MLE weights using matrix inversion?

Answer: O(k®)

O(k®) since it is O([number of basis functions]®) to solve the normal equations, and the number of
basis functions is 1 (k + 1)(k + 2).

(b) (6 points) What would be the computational complexity of one iteration of gradient descent? (The
"batch” gradient descent method, NOT the online method).

Answer: O(k?)

O(k?) since work of computing Ji for each datapoint involves 1 (k+1)(k+2) operations and then there
is one weight update for each weight.

Interesting note: If we had also included R as the number of records in the complexity then the
answers are:

(a) O(RE*+k®), where the first term is for building an X7 X matrix, and the second term is for matrix
inversion.

(b) O(RK?)



Q3-GNB

Figures 1, 2 and 3 present points from two different clusters: A (solid points) and B (hollow points). We
would like to learn a classifier that achieves zero training error on this data. To do that we allow each
classifier to divide the data into more than two classes, however, for each classifier there must be a subset
of the classes that perfectly match class A and the complementary set of classes must match cluster B. For
example, in Figure 4 classes 2 and 3 contain all of A’s points and class 1 contains all of B’s points and so
this classification is a legitimate solution to this problem.
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(a) (6 points) For a Gaussian Bayes classifier and for each of the three figures state the minimum number
of classes required to achieve the above goal. For all figures you can assume equal class priors, that is

P(A) = P(B).
minimum
number of classes
Figure 1
Figure 2
Figure 3
Figure 4 3

Answer: The number of classes is 2 for all of the cases.
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(b) (6 points) For the following figures, do we need a full covariance matrix for the classification or would
a diagonal covariance matrix be enough

Figure 2?7 Answer: Diagonal is enough. Note that the variance of the two clusters is
different. A has a large variance for both the x and the y axis while B’s variance is low
in both direction. Thus, even though both have the same mean, the variance terms are
enough to separate them.

Figuer 3? Answer: Full is needed both mean and marginal variance are the
same only the covariance terms are used to discriminate.



Q3-GNB

Figures 1, 2 and 3 present points from two different clusters: A (solid points) and B (hollow points). We
would like to learn a classifier that achieves zero training error on this data. To do that we allow each
classifier to divide the data into more than two classes, however, for each classifier there must be a subset
of the classes that perfectly match class A and the complementary set of classes must match cluster B. For
example, in Figure 4 classes 2 and 3 contain all of A’s points and class 1 contains all of B’s points and so
this classification is a legitimate solution to this problem.
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(a) (6 points) For a Gaussian Bayes classifier and for each of the three figures state the minimum number
of classes required to achieve the above goal. For all figures you can assume equal class priors, that is

P(A) = P(B).
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(b) (6 points) For the following figures, do we need a full covariance matrix for the classification or would

a diagonal covariance matrix be enough



Q4-Kmeans/gmm

(a) What is the effect on the means found by k-means (as opposed to the true means) of

overlapping clusters?
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{b) Run k-means manually for the following dataset. Circles are data points and squares
are the initial cluster centers. Draw the cluster centers and the decision boundaries
that define each cluster. Use as many pictures as you need until convergence.

Note: Execute the algorithm such that if a mean has no points assigned to it, it stays

where it is for that iteration
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Q4-Kmeans/gmm continued.

(c) Now draw (approximately) what a Gaussian mixture model of three gaussians with
the same initial centers as for the k-means problem would converge to. Assume that
the model puts no restrictions on the form of the covariance matrices and that EM

updates both the means and covariance matrices
P, pa




Q5-true/false

For polynomial regression, which one of these structural assumptions is the one that
most affects the trade-off between underfitting and overfitting:

(i) The polynomial degree
(ii) Whether we learn the weights by matrix inversion or gradient descent
(iii) The assumed variance of the Gaussian noise
(iv) The use of a constant-term unit input

For a Gaussian Bayes classifier, which one of these structural assumptions is the one
that most affects the trade-off between underfitting and overfitting:

(i) Whether we learn the class centers by Maximum Likelihood or Gradient Descent

(ii) Whether we assume full class covariance matrices or diagonal class covariance
matrices

(iii) Whether we have equal class priors or priors estimated from the data.

(iv) Whether we allow classes to have different mean vectors or we force them to share
the same mean vector



(a)

(b)

(c)

(d)

Q6-Bayes rule

(4 points) I give you the following fact:
P(A|B) = 2/3

Do you have enough information to compute P(B|A)? If not, write “not enough info”. If so,
compute the value of P(B|A). o,

(5 points) Instead, I give you the following facts:

P(AB) = 2/3
P(A|~B) = 1/3

Do you now have enough information to compute P(B|A)? If not, write “not enough info”.
If so, compute the value of P(B|A). ,

{5 points) Instead, I give you the following facts:

P(AIB) = 2/3
P(A|~B) = 1/3
P(B) = 1/3

Do you now have enough information to compute P(B]A)? If not, write “not enough info”.
If so, compute the value of P(B|A).

(5 points) Instead, I give you the following facts:

P(AIB) = 2/3
P(Al~B) = 1/3
P(B) = 1/3
P(A) = 4/9

Do you now have enough information to compute P(B|A)? If not, write “not enough info”.
If so, compute the value of P(B|A).



Q6-Bayes rule

(a) (4 points) I give you the following fact:
P(A|B) = 2/3

Do you have enough information to compute P(B|A)? If not, write “not enough info”. If so,

compute the value of P(B|A).
\fo
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(b) (5 points) Instead, I give you the following facts:

P(A|B) = 2/3
P(A|~B) = 1/3

Do you now have enough information to compute P(B|A)7 If not, write “not enough info”.
If so, compute the value of P(B|A).
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(c) (5 points) Instead, I give you the following facts:

P(AIB) = 2/3
P(A|~B) = 1/3
P(B) = 1/3

Do you now have enough information to compute P(B|A)7? If not, write “not enough info™.
If s0, compute the value of P{B|A).

P (8)x) = P(A (&) P(R) . RxA "7_"
PAIDPE PADYPCE) %%+ 5x%

(d) (5 points) Instead, I give you the following facts:

P(AIB) = 2/3
P(A|~B) = 1/3
P(B) = 1/3
P(A) = 4/9

Do you now have enough information to compute P(B|A)? If not, write “not enough info”.

If so, compute the value of P(B|A). ¥y .
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Q7-discriminative vs generative

1. You wish to train a classifier to predict the gender (a boolean variable, G) of a person based on
that person’s weight (a continuous variable, W) and whether or not they are a graduate student (a
boolean variable, S). Assume that W and S are conditionally independent given G. Also, assume
that the variance of the probability distribution P(Weight|Gender = femnale) equals the variance for
P(Weight|Gender = male).

(a) Is it reasonable to train a Naive Bayes classifier for this task?

(b) If not, explain why not, and describe how you might reformulate this problem to allow training
a naive Bayes classifier. If so, list every probability distribution your classifier must learn, what
form of distribution you would use for each, and give the total number of parameters your classi-
fier must estimate from the training data.

(c) Note one difference between the above P(Gender|Weight, Student) problem and the problems
we discussed in class is that the above problem involves training a classifier over a combination
of boolean and continuous inputs. Now suppose you would like to train a discriminative classifier
for this problem, to directly fit the parameters of P(G|W, S), under the conditional independence
assumption. Assuming that W and S are conditionally independent given G, is it correct to
assume that P(G = 1|W, S) can be expressed as a conventional logistic function:

1

PG =1W,5) = 1+ exp(wo + w1 W + w2 S)

If not, explain why not. If so, prove this.



Q7-discriminative vs generative

1. You wish to train a classifier to predict the gender (a boolean variable, G) of a person based on
that person’s weight (a continuous variable, W) and whether or not they are a graduate student (a
boolean variable, S). Assume that W and S are conditionally independent given G. Also, assume
that the variance of the probability distribution P(Weight|Gender = female) equals the variance for
P(Weight|Gender = male). ,

(a) Is it reasonable to train a Naive Bayes classifier for this task?
Yes., W and S uve Cano[ﬁumh}, mlepche«"’ Suvew G.

(b) If not, explain why not, and describe how you might reformulate this problem to allow training
a naive Bayes classifier. If so, list every probability distribution your classifier must learn, what
form of distribution you would use for each, and give the total number of parameters your classi-
fier must estimate from the training data.
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(c) Note one difference between the above P(Gender|Weight, Student) problem and the problems
we discussed in class is that the above problem involves training a classifier over a combination
of boolean and continuous inputs. Now suppose you would like to train a discriminative classifier
for this problem, to directly fit the parameters of P(G|W, S), under the conditional independence
assumption. Assuming that W and S are conditionally independent given G, is it correct to
assume that P(G = 1|/W, S) can be expressed as a conventional logistic function:

1

PG =1[W,5) = 1+ exp(wo + w1 W + w2S)

If not, explain why not. If so, prove this.
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Q1  Probability and MLE [20 pts]

1. (a) Suppose we wish to calculate P({H|E, E;) and we have no conditional independence information.
Which of the following sets of numbers are sufficient for the calculation ?

i P(Ey,E»), P(H), P(E\|H), P(E,|H) ‘ \ . _ S ¢
CiDP (B, By), P(H), P(E;, Ey)H) Bayes' Role | P(HIE, E,) = PCEEL 1) P(Y
iii. P(H),P(E\|H), P(E;|H) P(E -EZ.)
(b) Suppose we know that P(E\|H, Ez) = P(Ey|H) for all values of H, E;, Es. Now which of the :
above three sets are sufficient ?

() becavse PCE, Eoln) - PLE, 1) PCEZIH)

(12) +F yusy 1gocres the wen Vodgpendunce relabomg
2. Which of the Tollowing statements are true ? If none of them are true, write NONE.

(a) If X and Y are independent then E[2X Y] =2E[X]E[Y] and Var[X +2Y] = Var(X] + Var[Y]

Variyi ;MQW&&V#M

(b) If X and Y ate independent and X > I then Var [X+2Y?) = Var{X]+4Var[Y?) and ElX*-X]>
Var[X].

(c) It X are Y are not independent then V' ar[X +Y] = Var[X] + Var[Y]
(d) If X and ¥ are independent then E[XY?) = £ (X]E[Y)? and Var[X + Y| = Var|X] 4 Var Y|

(e) If X and Y are not independent and H(X) = X? then E[f(X)Y] = E[f(X)]E[Y] and Var|X +
Y] = Var[X] + 4Var[Y]

(v) oVER FOR. REATUNS
—

3. You are playing a game with two coins. Coin 1 has a @ probability of heads. Coin 2 has a 20 probability

of heads. You flip these coins several times and record your results:

Coin | Result

(a) What is the log-likelihood of the data given § 7 5

L&) = Pdatal®) = Plevinl = Bead) [ P(coin 2-Ta) ] = Pleown 2 = Head)
= &(-28)3 26 =262(1-26)3

AL8) = IOGJ L&) = ‘OSZ t Llog & + 2o (1 -26)

(b) What is the maximum likélihood estiniate for 6 ?
A .
O- ( - ~ ) - kS - o -
ey |z + 3(’2) = Z (! 26) -6 =0 >!%L£- /5' ,
& &  U-28) i

A 2
maxmizmg (L&) 7
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