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Part I: Short questions (10 points)

You should answer the following with at most two sentences; you can use a picture if
you want. If your answer is true, give a brief explanation. If you answer false, provide
explanation or give a counter-example.

(1 pts) The maximum likelihood estimate of the model parameter α1 can be learned using
linear regression for the model yi = α1e

Xi1+2Xi2 + εi, where εi ∼ N(0, σ2) are iid
noise. Yes. Because y is a linear function of α1. You can just use eXi1+2Xi2 as a
feature.

(1 pts) The maximum likelihood estimates of the model parameters (α1, α2) can be learned
using linear regression for the model yi = Xα1

i1 2α2 + εi, where εi ∼ N(0, σ2) are iid
noise. No. Because y is a nonlinear function of α1. Even if you take a log, you
are lost, because the errors wont be normal.

(1 pts) The maximum likelihood estimates of the model parameters (α1, α2) can be learned
using linear regression for the model yi = log(Xα1

i1 2α2) + εi, where εi ∼ N(0, σ2)
are iid noise. Yes, again, y is a linear function of α.
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(4 pts) Consider a linear regression problem with two parameters β0 and β1. We have n

datapoints (x1; y1), . . . , (xn; yn). xi is a scalar. β̂0 and β̂1 are computed as:

(β̂0, β̂1)← arg min
β0,β1

n∑
i=1

(yi − β0 − β1xi)2.

Check which of the following statements are true. Show your work. More than
one may be true.

(a) 1
n

∑n
i=1(yi − β̂0 − β̂1xi)yi = 0

(b) 1
n

∑n
i=1(yi − β̂0 − β̂1xi)(β̂0x2i − β̂1ȳ) = 0

(c) 1
n

∑n
i=1(yi − β̂0 − β̂1xi)(β̂0xi − β̂1ȳ) = 0

(d) 1
n

∑n
i=1(yi − β̂0 − β̂1xi)(xi − x̄) = 0

Consider the derivatives of the objective w.r.t β0 and β1. This gives:∑
i

(yi − β0 − β1xi) = 0∑
i

(yi − β0 − β1xi)xi = 0

So any linear combination of the above two will be zero. Number (c) and number
(d) are both linear combinations of these.

(3 pts) You are conducting a Kaggle challenge where several groups are running their
algorithm on the same dataset. Which results will you accept? Give a 1/2 line
explanation.

accept/disqualify “Our algorithm is the super awesome coolest one. It has the best training
error.” Disqualify. Training error does not measure predictive power. One
may overfit.
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accept/disqualify “Our algorithm is the super awesome coolest one. It has the best test error
among all other methods. The tuning parameter we chose for our Lasso
algorithm was λ = 1.676299211788”. Disqualify. Seems like λ was very
specific, so they probably picked it by maximizing test error. Sounds fishy.
Anyone who answered accept, and “I would like to know if they did CV ”
got full points.

accept/disqualify “Our algorithm is the super awesome coolest one. It has the best test error
among all other methods. We report the results for the best value of λ.”
Disqualify. Its not clear how λ was picked. Did they do cross validation or
picked λ that maximizes test error.
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Part II: Long questions

1. Estimation and robustness (6 points)

Consider a dataset where with probability 1−α, a datapoint comes from Uniform([0, θ])
and with probability α it can come from any arbitrary distribution. All n data-
points are i.i.d.

(a) (1 pt) You know α = 0. So there is no contamination in your dataset. What

is the Maximum Likelihood Estimate of θ? Lets call this θ̂. max(x1, . . . , xn)

(b) (2 pts) Calculate the sensitivity curve for θ̂. Recall that for an uncontam-
inated dataset x1, . . . , xn−1, and an outlier point x, the Sensitivity curve
computes

SC(x) = n
(
θ̂(x1, . . . , xn−1, x)− θ̂(x1, . . . , xn−1)

)
.

SC(x) =

{
0 If x ≥ max(x1, . . . , xn−1)

x−max(x1, . . . , xn−1) o.w.

(c) (1 pts) Based on the value of the Sensitivity curve, do you think θ̂ is ap-
propriate if there were outliers, i.e. α > 0? Explain your answer. SC(x)
depends on x, so for a large x it can be unbounded. Hence its not appropriate
for outliers.

(d) (2 pts) You happen to know that α = .01. Now construct a robust variant

of the estimator of θ. Explain your answer. Just take the bn × .99cth order
statistic. Those who replied trim data by taking .05% off both ends lost
some points.
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Figure 1: Rectangular bivariate uniform distribution

2. Classification (14 points)

We will define the density of a bivariate uniform distribution (Figure 2) over a
rectangle (X, Y ) ∼ R(x`, y`, xh, yh) as:

fX,Y (x, y) =
1(x` ≤ x ≤ xh, y` ≤ y ≤ yh)

(xh − x`)(yh − y`)
.

Recall that the marginal pdf of X and Y are also uniform. For concreteness, if
(X, Y ) ∼ R(0.1, 0, .3, 1), fX,Y (x, y) = 5 for x = .2, y = .5.

(a) ( 4 pts) Assume that we have n data points where each data point is an iid
draw from R(x`, y`, xh, yh). What are the Maximum Likelihood Estimates of
x`, y`, xh, yh? (No need to show derivation.)

x̂h = maxx1, . . . , xn

ŷh = max y1, . . . , yn

x̂` = minx1, . . . , xn

ŷ` = min y1, . . . , yn

Now consider the following example with 10 datapoints.
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x y Class
0 2 1
1 0 1
1 5 1
2 3 1
8 4 1
6 6 2
7 4 2
5 7 2
6 3 2
0 6 2

Table 1: Table of data points
Figure 2: Plot of data points

You believe that datapoints in each class come from a bivariate uniform distri-
bution. Using the data in Table 1 (plot in Figure 2) to estimate parameters of
the rectangular bivariate uniform distribution for each class, answer the following
questions.

(a) (3.5 pts) Use Bayes rule to classify the point (0, 1). Recall that Bayes rule
assigns a point (x, y) to the class k such that k = arg maxi∈{1,2} P (Class =
i|X = x, Y = y). P (X = x, Y = y|class = i) = 1/40 for i = 1 and 1/28
for i = 2. But P (X = 0, Y = 1|class = 2) = 0 since it does fall inside the
rectangle. Hence obviously it will be assigned to class 1.

(b) (3.5 pts) Use Bayes rule to classify the point (2, 4). Since the class priors are
the same, i.e. .5, for a point that belongs to both rectangles, P (X = x, Y =
y|Class = i) is maximized for the smaller rectangle. Hence assigned to class
2.

7



(c) (Outliers)

i. (3 pt) Do you think the data has outliers? If yes, which datapoints
do you think are outliers? Explain your answer. (0, 6) and (8, 4) are
outliers. Because if they weren’t then the points in each rectangle will
be a lot more spread out. Many of you have said that the points are far
away from the center of the rest etc.
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