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13.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) approximates the Bayes classifier rule by modeling
conditional class densities as multivariate normals. For the classes C ∈ 1, ..., K and a feature
vector X ∈ IRp this can be expressed:

P (X = x|C = j) = N(µj,Σ) (13.1)

Note each class j has its own mean µj ∈ IRp, but the classes together share a covariance
matrix Σ ∈ IRp×p. The LDA process can be decomposed into the following steps:

Step 1: Center Data
Given the data X1, ..., Xn and y1, ..., yn, we first center the data around their mean:

X ′i = Xi − X̄ (13.2)

Step 2: Calculate Estimators
We can then estimate the parameters given from modeling the class densities as multi-

variate normals. The class means can be estimated:

µ̂j =

∑
yi=j

X ′j∑
yi=j

1
(13.3)

where the notation
∑
yi=j

represents
∑
i

∀ i : yi = j. The pooled covariance matrix can be

estimated:

Σ̂ =

∑
j

∑
yi=j

(X ′i − µ̂j)(X
′
i − µ̂j)

T

n− k
(13.4)

Lastly, the probability of class j can be estimated:

π̂j =
1

n

∑
yi=j

1 (13.5)
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We note that to classify some data point, we can then solve the following:

argmin
j

1

2
(X ′ − µ̂j)

T Σ̂−1(X ′ − µ̂j)− log(π̂j) (13.6)

Step 3: Sphere Variables
We sphere the data points and means using the following:

X̃ = Σ̂−1/2X ′ (13.7)

µ̃j = Σ̂−1/2µ̂j (13.8)

Since Σ is the covariance matrix, X ∼ N(0,Σ), and the sphering effectively standardizes
the covariance of all the treated variables:

cov(X̃) = cov(Σ̂−1/2X ′) = Σ̂−1/2cov(X ′)Σ̂−1/2 = Σ̂−1/2Σ̂Σ̂−1/2 = I (13.9)

The equation (10.6) can then be rewritten:

argmin
j

1

2
||X̃ − µ̃j||22 − log(π̂j) (13.10)

Now we consider that X ′ and µj are p-dimensional, but there are only K clusters. There-
fore, we should only require K dimensions to classify data. Additionally, if the data are
centered, we should only require K − 1 dimensions. We thus desire some projection matrix
Pm to project the variables into a K − 1 dimensional subspace spanned by µ̃1, ..., µ̃K (if
the means µ1, ..., µK are linearly independent). In general, we can write the projection of a
variable X as:

X = PmX + P⊥mX (13.11)

where PmX is the variable X projected down onto a new set of basis functions determined
by Pm and P⊥mX is the un-projected, “left-over” features. We can then write:

||X̃ − µ̃j||22 = ||Pm(X̃ − µ̃j)||22 + ||P⊥mX̃||22 (13.12)

Noting that the two norms can be split up because Pm and P⊥m are orthogonal and the term
P⊥m µ̃j = 0 since Pm = span(µ1, ..., µK). We also note that since the second term does not
include any dependence on the class j:

argmin
j

1

2
||X̃ − µ̃j||22 = argmin

j

1

2
||pm(X̃ − µ̃j)||22 (13.13)

Step 4: Project using Pm

To determine the matrix Pm we first write M̂K×p as the matrix containing all the esti-
mated means row-wise, such that:

M̂ =


− µ̂T

1 −
− µ̂T

2 −
...

...
...

− µ̂T
K −

 (13.14)
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After sphering, the matrix is expressed:

M̃ =


− µ̃T

1 −
− µ̃T

2 −
...

...
...

− µ̃T
K −

 =


− (Σ̂−1/2µ̂1)

T −
− (Σ̂−1/2µ̂2)

T −
...

...
...

− (Σ̂−1/2µ̂K)T −

 = M̂Σ̂−1/2 (13.15)

We can then write:
B̃ = M̃TM̃ = Σ̂−1/2M̂TM̂Σ̂−1/2 (13.16)

with B̃ providing an indicator as to how separated the means µ1, ..., µK are. We then
examine the eigenvalues and eigenvectors of matrix B̃, sorting the eigenvectors such that
λ1 ≥ λ2 ≥ ... ≥ λK . Since the rank of M̂ is k − 1, the λi → 0 ∀ i > k − 1, and we formulate
Pm as the top k−1 eigenvectors of B̃. Then Pm projects X into a k−1 dimensional subspace:

X̃K−1 = [X̃Tv1, X̃
Tv2, ...X̃

TvK−1] (13.17)

where vi is the ith eigenvector of B̃. We can further introduce a new variable w such that
w = Σ̂−1/2v1:

X̃Tv1 = X ′T Σ̂−1/2v1︸ ︷︷ ︸
w

= X ′Tw (13.18)

By the definition of eigenvalues/vectors we see that w solves the following. Let B =
M̂TM̂ .

B̃v1 = M̃TM̃v1 = Σ̂−1/2M̂TM̂Σ̂−1/2v1 = λ1v1 (13.19)

Σ̂−1Bw = λ1w (13.20)

w = argmax
||u||=1

uTBu

uT Σ̂u
(13.21)

The second direction will be obtained by optimizing over u ⊥ w. This is none other than a
generalized eigenvalue problem. Moreover, this is also Fisher’s discriminant analysis which
Fisher arrived at by simply finding a direction such that when the data is projected on that
direction, the inner cluster distance is maximized and in cluster variance is minimized so as
to have maximum separation. Thus reduced rank LDA essentially just gives us the directions
along which one can project the data points to maximally separate out the two clusters.

If the mean vectors were not linearly independent, then one can in fact find fewer than
k − 1 directions to project on.

This brings us to the full algorithm.

1. Center data

2. Estimate parameters including means, pooled variance and class proportions
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3. Sphere data

4. Compute within cluster covariance matrix B and project
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