STAT 383C: Statistical Modeling I Fall 2015

Lecturer: Purnamrita Sarkar Scribe: Elaina Babayan

Lecture 9 — September 24

’ Disclaimer: These scribe notes have been slightly proofread and may have typos etc. ‘

’ Note: The latex template was borrowed from EECS, U.C. Berkeley. ‘

9.1 Cross-Validation (cont.)

Cross-validation can be used to estimate the prediction error of a model (on unseen data)
with k features. Then by varying k and comparing the error the number of features can
be selected to minimize the predictive error. Cross-validation can also be used to compare
different model classes (e.g. linear model, quadratic model, etc.).

9.1.1 How to Perform Cross-Validation

1.

Select the number of folds to be used, b, the number of model features, k (do not select
which k features, just the number k), and model type to be investigated

. Perform random shuffling on data to divide it into b folds

For each fold, i, where i= 1,...,b, leave out the i** fold and use the remaining b-1 folds
as training data

Using the best subset method, fit all possible combinations of models with k features
to the training data

Calculate the RSS training error of each of the models and select the model with the
lowest training error

Calculate and store the test error of the best model (using test data from ith fold),
err;. Average over the test points.

. Repeat for all b folds and then calculate the mean and standard deviation of the test

error
b
= 2= T (9.1)
b
o — % (9.2)
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8. Repeat for different values of k

One Standard Error Rule: The One Standard Error Rule can be used to compare
models with different numbers of parameters in order to select the most parsimonious model
with low error. To use, find model with minimum error, then select the simplest model
whose mean falls within 1 standard deviation of the minimum (Fig. 9.1).

Figure 9.1. Selecting Number of Model Parameters Using Cross-Validation and One Standard Error Rule

A
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Standard Error Rule
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9.1.2 Comparison of Cross-Validation with AIC and BIC

AIC and BIC are alternative methods of estimating the model predictive error. Both penalize
model complexity, so as k becomes large both AIC and BIC will estimate larger errors than
an RSS error which considers training error only (Fig. 9.2). This helps prevent overfitting.

As compared to cross-validation, AIC and BIC are computationally cheaper but are
limited—may not be valid for some nonlinear problems Cross-validation is more computa-
tionally expensive, but it is more broadly applicable.

9.2 Regularization

Regularization methods such as Ridge Regression and LASSO introduce a penalty term on
model complexity to prevent overfitting.
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Figure 9.2. A Comparison of RSS Model Error to Methods That Penalize Model Complexity
A
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9.2.1 Ridge Regression

For least squares regression, the model coefficients are selected by
~ n P
Brs = arg rnﬁin > (i —Bo= > wiB) (9.3)
i=1 j=1
For ridge regression, an additional term is added which penalizes all 3; for j > 0
. n p p
Bridge = arg mﬁin Z((yz —Bo — Z 245 B5)° 4+ A Z e (9.4)
i=1 j=1 j=1
A is a positive constant that we pick using Cross Validation. It is clear from this equation
that if the variables are on different scales the Ridge Regression model will penalize them
differently. Thus, the standard errors must be normalized to 1. Moreover, note that we do
not penalize the intercept term, since that would lead to a different fit (modulo scaling) if

one added a constant to all features.

Reparameterization Use redefinition of model parameters to center X and Y about their
mean values. Replace z;; with z;; — #; and estimate 3, with ¥

k
By = B+ wiB (9-5)
j=1
Now the new objective function is given by:
n p p
D (i =By =) (wiy —3)B)* + A ) (B)? (9.7)
i=1 j=1 j=1
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Lets see what the MLE of 3 is. Remember, in order to get that we derive the above
w.r.t A and set it to zero.

n p
D (=B — Y (wy —2)8) =0
i=1 j=1
Now, we have:
R nop R P X R
n(y—By) — (i — Ty) ; =n(y — By) — (Z Lij ij])ﬁ; =n(y—Fy) =0
i=1 j=1 j=1 1
= By =1

Now we have:

B =argmind (g =5 — Y (v = 7)8) + A D (8)?

Since Equation 9.5 gives us a one one correspondence between the 8 and 8's, its not hard
to argue that the optimization functions are equivalent, i.e. the argmin of one, after suitable
transformation gives the argmin of the other. So from now on we will standardize our X’s
and center our Y’s and learn a ridge regression through the origin. Unlike in OLS B will
have p dimensions instead of p + 1.

Thus the reparameterized equation for Bm-dge is

A

le'dge = H}én(y - XT:B)T(y - X:B) + /\ﬂTﬂ (98)

with solution— )
:Bm'dge = (XTX + )‘I)iley (99)

Numerical stability: Note that the ridge regression is identical to OLS except the fact
that we are adding )\ to the diagonals of X7X. Essentially this stabilizes the problem, if
XTX has small eigenvalues. Why? Because for any square symmetric matrix, adding the
same A to all diagonal terms simply adds A to all the eigenvalues and as a result makes the
matrix non-singular. In fact, ridge regression was introduced for the first time in Statistics
(Hoerl and Kennard, 1970) with this motivarion.

it basically adds A to that.

How to Choose \: Selection of ) is a tradeoff between bias, variance and mean square
error (Fig. 9.3).

1. Perform a grid search over A or log(\)
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2. For each A\ perform a cross-validation and calculate the mean and standard error on
the estimated model prediction error

3. Identify the A with the lowest mean predictive error

4. Apply One Standard Error Rule to select most parsimonious model whose mean lies
within one standard error (in this case more parsimonious means more regularization,
so a larger \)

Figure 9.3. Selecting Lambda For Ridge Regression Model
A

MS Prediction Error

/ Bias

Equivalent Bayesian Interpretation Assume that y is normally distributed, and apply
a Gaussian prior to

y~ N(XB, %) (9.10)
B~ N(0,7%1) (9.11)
Then the posterior distribution of 8 given y can be calculated as
_ - X T - X _ AT
F(Bly) o exp ( WX = XP >) exp (—f L ) 0.12)

Taking a logarithm we see that the MAP estimate (in this case also posterior mean) is
none other that—

Buap = argmin(y — XB)"(y — XB)" + 3678

From this form it can be observed that the relationship between ¢ and 7 defines A. For
example, if 7 is much smaller than o, then we penalize more for larger magnitude of B.
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Ridge regression generally has smaller MSE than linear regression, and if some of the
true parameter values were zero, Ridge Regression will make the corresponding coefficients
small. However, Ridge Regression will not drive coefficients to zero (unless A = oo, in which
case it drives all coefficients to zero), so it cannot be used for variable selection.

9.2.2 LASSO
Brasso = n}ain(y — X)) (y—XB)+ A Z 1351 (9.13)
j=1

The MSE of LASSO is comparable to Ridge Regression, and LASSO will drive some coef-
ficients to zero with a large A\. This is a convex optimization problem, for which there are
efficient optimization algorithms.

Like in the ridge regression setting, we standardize the X’s, center the Y'’s and train a
model through the origin.

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2| < t and B? + B2 < 2, respectively,
while the red ellipses are the contours of the least squares error function.
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Alternative Objective Function It can be shown that both the Ridge and Lasso regres-
sion problems can also be reformulated as follows:

~

Bridgge = mﬂin(y —XB)"(y - XB) Subject to BT B < 72 (9.14)

Blasso - mﬂln(y - X:B)T(y - Xﬂ) SU_bjGCt to ||ﬁl|1 S T (915)

In fact, the alternative objective functions are equivalent to the corresponding ones with
added penalty terms. For every A there is a 7 > 0 for which the same B minimizes the
two objective functions. Pictorially (Taken from H-T-F[1]) this essentially is telling us that
an unconstrained optimization tries to minimize the RSS in Figure 9.2.2. However the
constraints essentially forces one to pick the 8 for which the contours of the unconstrained
objective function first hits the constraint area.

The lasso constraint region has corners unlike the ridge regression constraint region.
As we go to higher dimensions there will be more faces, corners etc, which zero out some
coefficients. Thus Lasso does variable selection, unlike ridge regression.
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