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6.1 Review of Previous Lecture

6.1.1 Linear Regression

Last lecture we learned about linear regression. Recall the model for linear regression:

yyy = XXXβββ + εεε with εεε ∼ N(000, σ2III)

where:

yyy =


Y1
Y2
...
Yn

 ,XXX =


1 x12 . . . x1p
1 x22 . . . x2p
...

...
. . .

...
1 xn2 . . . xnp

βββ =


β0
β1
β2
...
βp

 , and εεε =


ε1
ε2
...
εn


Recall that the MLE of βββ is β̂ββ = (XXXTXXX)−1XXXTyyy.

Note that to solve this equation, XXXTXXX must be invertible. XXXTXXX is not invertible if it is singular. A square
matrix, such as XXXTXXX, will be singular if any row of the matrix is a linear combination of any of the other
rows, this is called collinearity. In the case of linear regression, colinearity means that one of your covariates
can be entirely explained by some combination of the other covariates. Later in this course we will discuss
ways to address colinearity.

6.2 Gauss-Markov theorem

6.2.1 Theorem

Theorem 6.1 (Gauss-Markov Theorem) In statistics, the Gauss-Markov theorem states that in a linear
regression model in which the errors are distributed iid from a N(0, σ2) distribution, for all linear estimators

of the form AAAyyy, the least squares estimate has the smallest variance. Consider an alternate estimator β̃ββ such
that

β̃ββ = AAAyyy and E(β̃ββ) = βββ.

Let the covariance matrix of β̃ββ be given by Σ̃ΣΣ and the covariance of β̂ββ be given by ΣΣΣ. Then we have Σ̃ΣΣ−ΣΣΣ � 0,
where AAA � 0 denotes that AAA is positive semidefinite.

0These notes are partially based on those of Li Kang (Kelly) and Su Chen.
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Note: Does this mean that the marginal variances of each element of β̂̂β̂β are also smaller? Yes! Recall that the
definition of positive semi-definiteness arises from the fact that for a positive semi-defnitie matrix AAA, ∀xxx 6= 000,
xxxTAAAxxx ≥ 0. Take xxx to be a zero vector with a one at the ith place. Now, xxxTAAAxxx = Aii, so var(β̂i) ≤ var(β̃i)
for every i.

6.2.2 Proof

Consider the model:
yyy = XXXβββ + εεε with εεε ∼ N(000, σ2III).

Let us consider two unbiased estimators, β̂̂β̂β and β̃̃β̃β, for βββ.

β̂̂β̂β is the MLE, β̂ββ = (XXXTXXX)−1XXXTyyy. Under the model:

E(β̂̂β̂β) = βββ, Cov(β̂̂β̂β) = σ2((XXXTXXX)−1)

E(β̃̃β̃β) = βββ, Cov(β̃̃β̃β) = σ2((BBBTBBB)−1)

E(yyy) = XXXβββ, Cov(yyy) = σ2III

Let BBB = (XXXTXXX)−1XXXT +GGG, then:

Cov(β̃̃β̃β) = σ2(BBBTBBB)−1

= σ2(((XXXTXXX)−1XXXT +GGG)((XXXTXXX)−1XXXT +GGG)T )

= σ2((XXXTXXX)−1 +GGGGGGT + (XXXTXXX)−1XXXTGGGT +GXGXGX(XXXTXXX)−1)

= σ2((XXXTXXX)−1 +GGGGGGT ).

(6.1)

Proving that Cov(β̃̃β̃β)− Cov(β̂̂β̂β) � 0, and hence the Gauss-Markov Theorem.

6.3 Hypothesis Tests

6.3.1 Hypothesis Tests

Define a null space, Θ0, and an alternate space, Θa. Define the null hypothesis as H0 : θ ∈ Θ0, and the
alternate hypothesis as Ha : θ ∈ Θa. We are interested in testing H0 vs. Ha.

There are two types of error, Type I Error and Type II Error. Type I Error occurs when you reject the null
hypothesis but should not have. Type II Error occurs when you fail to reject the null hypothesis when you
should have. Hypothesis tests deal with Type I Error, while Type II Error is addressed by the Power of a
test. We will focus on hypothesis tests. Define a hypothesis test as the probability of a Type I error, P (Type
I Error). For a hypothesis test at level α, you are calculating P (Type I Error)= α.

6.3.2 Hypothesis Tests for Linear Regression

For a linear model:
YYY = XXXβββ + εεε, εεε ∼ N(0, σ2III0, σ2III0, σ2III).
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For each βj we wish to test:
H0 : βj = 0 vs. Ha : βj 6= 0.

Since, β̂ ∼ N(βββ, σ2(XXXTXXX)−1), for each βj , β̂j ∼ N(βj , σ
2(XTX)−1

jj ). This can also be expressed as:

β̂j

σ
√

(XTX)−1
jj

∼ N(0, 1).

If σ2 is known, this is just a Z-test with zj =
β̂j

σ
√

(XTX)−1
jj

∼ N(0, 1). This is a case of a two-sided test, so for

α = 0.05 you would reject H0 if |zj | ≥ 1.96. For a one sided test, and α = 0.05, you would look at zj ≥ 1.645
or zj ≤ −1.645 depending on which tail you were interested in.

For σ2 unknown, you would use a t-test. First you would plug-in σ̂ for σ, where σ̂2 = RSS
n−p−1 =

∑n
i=1(yi−ŷi)

2

n−p−1 .

Where n is the number of observations and p is the number of covariates. Then,
β̂j√

σ̂2(XTX)−1
jj

∼ tn−p−1,

where tn−p−1 is a t-distribution with n-p-1 degrees of freedom. As n increases the t-distribution approaches
the normal distribution, given p is not increasing with n.


