
STAT 383C: Statistical Modeling I Fall 2015

Lecture 4 — September 13

Lecturer: Purnamrita Sarkar Scribe: Elisa Ferracane, Carlos Zanini

Note: These scribe notes have been slightly proofread and may have typos etc.

4.1 Review of last lecture

In the previous class, we started talking about where the MLE doesn’t work. Here we review
the Neyman-Scott example, where the estimator does not converge to the true parameter,
because the number of parameters grows with the number of data points.

4.1.1 Neyman-Scott Example

Let’s consider n groups of gaussian samples that differ only in their population mean µ:

X11, X12, . . . , X1k ∼ N (µ1, σ
2)

. . .

Xn1, Xn2, . . . , Xnk ∼ N (µn, σ
2).

If our goal is to estimate the variance of the whole population σ2, it seems obvious to consider
as an estimator the mean of the sample variances of the single populations. In fact, this is
the MLE for σ2:

σ̂2 =

∑n
i=1 S

2
i

n
, where S2

i = sample variance =
1

k

k∑
j=1

(Xij − X̄i)
2.

It is a well known fact that

(k − 1)S2
i

σ2
∼ χ2

k−1, for S2
i =

k∑
j=1

(Xij − X̂i)
2

k − 1

and so its expected value is (k − 1). Using this, as well as the law of large numbers, we
get to
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n

n∑
i=1
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i

k
=
σ2

kn

n∑
i=1
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σ2
→ σ2

k
E

(
(k − 1)S2

i

σ2

)
=
σ2

k
× (k − 1) 6= σ2.

Since σ̂2 is the MLE, this result may seems to contradict the fact that the MLE converges
to the real value of the parameter. It happens in this case as a consequence of a high
dimensionality problem: the number of parameters to be estimated in this problem grows
linearly with n.
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4.2 Shrinkage estimators

4.2.1 Admissibility

Admissibility tells us when one estimator is better than another.

Definition 4.1. (Dominance in Mean Squared Error). Consider the estimation of a
parameter θ ∈ Θ. An estimator θ̂ is said to be dominated in mean squared error by θ̃, if we
have

MSE(θ̃, θ) ≤MSE(θ̂, θ),∀θ ∈ Θ

and if there exists at least one θ0 ∈ Θ for which the inequality above is strict:

MSE(θ̃, θ0) < MSE(θ̂, θ0).

Under the same conditions, we could also say that θ̃ dominates θ̂ in mean squared error.

In other words, if we have an estimator θ̃ that dominates θ̂ in mean squared error, then
it would not be reasonable (according to this criteria) to use θ̂ as an estimator of θ, since for
any possible value of the parameter θ ∈ Θ, the second one will always have a greater mean
squared error. This concept is formalized in the following definition:

Definition 4.2. (Admissibility). An estimator θ̂ is said to be admissible if no other
estimator θ̃ dominates it in Mean Square Error.

Figure 4.1. Mean Squared Error of three different estimators as a function of the real value of the parameter
θ.
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Figure ?? illustrates the concept. For the estimators θ̂ and θ∗, neither one dominates the
other through the entire parameter space Θ. However, both of them are dominated in mean
squared error by θ̃, so they are not admissible.

Note this implies you know the true parameter (or its distribution). We use this approach
not for learning θ but for evaluating different estimators. Now a concrete case is presented
to illustrate the concept of admissibility.

4.2.2 The James-Stein estimator

Consider an i.i.d sample (X1, . . . ,Xn) from Np(µ, σ
2I) with dimension p, with known σ. If

n = 1, the natural estimator for µ would be simply that single data point, X. The James-Stein
estimator for µ is defined as

µ̂JS =

(
1− (p− 2)

||X1||2

)
X1

Note how the term on the right shrinks the value of the natural estimator towards 0 (assuming
(p−2) < ||X||). Thus, the James Stein estimator can be seen as a shrinkage estimator. This
introduces some bias, but leads to lower overall variance. In fact, the µ̂JS dominates µ̂MLE.
There is another variant of the James Stein estimator that zeros out its negative entries,
which in turn dominates the above James Stein estimator:

θ̂JS+ > θ̂JS > θ̂MLE

So why hasn’t the James Stein estimator caught on? Paraphrasing from the paper by Efron
and Morris [1], here are a few reasons:

1. “Mistrust of the statistical interpretation of the mathematical formulation leading to
Stein’s result, in particular the sum of squared errors loss function.

2. Difficulties in adapting the James-Stein estimator to the many special cases that in-
variably arise in practice;

3. Long familiarity with the general good performance of the MLE in applied problems;

4. A feeling that any gains possible from a complicated procedure like Stein’s could not
be worth the extra trouble.”

While the James-Stein estimator is not intuitive and at a first peek, looks rather suspi-
cious, we will now show that this sort of shrinkage effect can be seen in many other naturally
arising Bayesian estimators, as the next example will show.
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4.2.3 Connection to Empirical Bayes:

Consider Xj = θj + εj, where:

ε1 . . . εp ∼ N (0, 1)

Xj|θj ∼ N (θj, 1)

θ1 . . . θp ∼ N (0, τ 2)

and X|θ ∼ N (θ, I) with a prior distribution θ ∼ N (0, τ 2I). Let us calculate the posterior
mean of the gaussian.

Posterior mean of Gaussian
First note the conjugate of the normal is the normal and recall the exponential in the gaussian
density function:

exp(−(θ − µ)2

2σ2
)

We use Bayes’ Rule to get the posterior distribution:

f(θ|X) ∝ f(X|θ)f(θ)

= exp(−(X − θ)2)
2

)exp(
−θ2

2τ 2
)

= exp(−X
2

2
− θ2

2
+ θX − θ2

2τ 2
)

= exp(−θ
2

2
(1 +

1

τ 2
+ θX))

= exp(−1

2
(1 +

1

τ 2
)(θ2 − 2θX

1 + 1
τ2

))

= exp(−
(θ − X

1+ 1
τ2

)2

2 1
1+ 1

τ2

)

Note this is the exact same format as the normal, so that we can easily derive the mean and
variance of the posterior distribution:

µpost = X ∗ τ 2

1 + τ 2

σpost =
1

1 + 1
τ2

and rearranging terms, we get:

µpost = X(1− 1

1 + τ 2
)
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We can see that it is a shrinkage estimator, since it multiplies the MLE by a quantity between
0 and 1. Also note that you actually don’t know τ , so you estimate it from the data– hence the
name empirical. Bayesians may argue that such a procedure violates the Bayesian principle
of not using the data to express subjective prior information about parameters of the model.

As it turns out, plugging in the frequentist estimate of τ 2 gives us the James-Stein
estimator. How is out of the scope of this class, but if you are interested read [1].
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