STAT 383C: Statistical Modeling I Fall 2016
Lecture 2 — August 30

Lecturer: Purnamrita Sarkar Scribe: Spencer Woody

’ Disclaimer: These scribe notes have been slightly proofread and may have typos etc. ‘

’ Note: The latex template was borrowed from EECS, U.C. Berkeley. ‘

2.1 Review of Slutsky’s Theorem and the Delta Method

2.1.1 Slutsky’s Theorem
Theorem 2.1.

If X, 4 X and Y, 9y ¢ where ¢ is a constant, then

X, +Y, 5 X te (2.1)
and

XY, % Xe. (2.2)

2.1.2 Delta method (convergence in density)

Vil —6) a

g

(0,1) (2.3)

More generally, if ¢'(f) exists and is nonzero, then

\/ﬁ% 4 N(0,1). (2.4)
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2.2 Maximum Likelihood Estimators (MLEs)

2.2.1 An example with the Bernoulli distribution

Suppose we want to estimate a parameter p from X3, ..., X,, ~ Bernoulli(p), i.e.,
p rz=1
PX=z)=<1-p =0 (2.5)
0 otherwise.

The likelihood function for p is

P(Xl:mla-"aXn:xn;p):Hp(Xi:$i3p> (26)
=1

pr(L—p) T (2.7)

I
\E:

Il
—

2

We must maximize this function in order to find the MLE for p. However, this product
equation is messy to maximize as is, so we will apply the logarithm transform to obtain
the log likelihood. Maximizing the log likelihood will give us the same MLE because the
logarithm is monotonic (i.e., it is strictly increasing).

((p) =log [ [ p"(1 —p)' ™ (2.8)

= Z(Sc log(p) + (1 — ;) log(1 = p)) (2.9)

We maximize ¢(p) by setting the first derivative to zero.

=51 210

i=1
1< 1 <
S NP TR S B (2.11)
i 1_pi:1
R _
N

This is a closed-form solution to solving the problem of maximum likelihood. Sometimes,
however, there is no closed-form solution to this problem and thus we rely upon the conca-
tivity of the likelihood function and use iterative methods (e.g., gradient descent) for opti-
mization.
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2.2.2 Concativity

A function f is concave on an interval if for any x; and x5 in the interval and any « € [0, 1],

(1= a)ar +ayy) = (1= @) f(x1) + af (yr). (2.13)

When f'(x) and f”(x) both exist, f”(x) <0 iff f is concave.

From the Bernoulli example, the second derivative of the likelihood is

j—]ﬂe(p) -3 (x— + & :;;'2) <0. (2.14)

2
1=1 p

2.2.3 Properties of MLEs

1. Consistency

Under regularity conditions, from the weak law of large numbers,

050 (2.15)
From the Bernoulli example,
RS p
p=—> x; =P (2.16)
o
2. Asymptotic normality
-0
— 4 N(0,1) (2.17)
Var(6)

From the Bernoulli example,

p

_b=p
V(1 —p)/n

3. Invariance MLEs are invariant under different parameterizations. That is, if 6 is an

~

MLE for 6 and g is continuous and continuously differentiable, then g(6) is an MLE of
9(0).

4 N(0,1) (2.18)
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2.2.4 Asymptotic Relative Frequency (ARE)

VT, —0) % N(0, %) (2.19)
ViU, — 0) % N(0,u?) (2.20)
ARE(T,,U,) = %2 (2.21)

X % N(0,0? (2.22)
X 4 N, 502) (2.23)

_ o~ 52 1
ARE(X,X)=2_-=2>1 2.24
(X, X) =25 =5>1, (2.24)

so T has less variance than 7.

2.2.5 Bias, Variance, & Mean squared error (MSE) of estimators

A~ ~

Bias(0) = E[0] — 0

Var(d) = E[( — E[§])?]
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2.3 Fisher Information

Fisher information tells us the asymptotic variance of an estimator.

1,(0)(6 — 6) % N(0,1), (2.25)
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where
d
1) =E [(@ log f(m,@))] (2.26)
d2
=-E|-—1 2.2
(g ostr i) (2.27)
From the Bernoulli example
d2
1) = < ( 4z toe(t(win) (229
"z 1—=2x
- _E| = A ! 2.29
( ;(ﬁ (1 p)2>> (229)
R T R S (2.30)
P C(-pp i=1 l .
np n(p—1)
= —+ 2.31
P> (L—p)? (231)
n
= 2.32
) (2:32)
n
— N(0,1 2.33
) S N (23
2.3.1 Cramér-Rao Lower Bound
IF 0 is an unbiased estimator of # and 6 is the MLE of 0, then
Var(d) > —— ~ Var(d) (2.34)
ar(f) > T.0) ar )

2.3.2 Confidence Invervals

The use of Fisher’s Information is useful for finding confidence intervals for g, Suppose we

want to find ¢ such that P(|d — 6| <t)~ 1 — o

P(|0 — 0] <t)= P(/I,(0)0 — 9\<t\/

|z|<t\/ Z ~ N()l)

Since z is from the standard normal distribution,
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t\/ 1,(0) = 7o where 2 o = ot <1 — %) (2.37)

f— 2 2.38
I.(9) (%28
so our a-level confidence interval for 6 is
[é— A g, fig ] (2.39)
1,(0) 1,(0)

~

We rarely know the true value of I,,(#) so we approximate it using I,,(#) and so our confidence
interval becomes

(2.40)
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