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Note: These scribe notes have been slightly proofread and may have typos etc.

21.1 Bayesian Document Model

Consider the problem of classifying documents into topics based on their contents. The basic
idea is: if a document contains, for instance, several words related to statistics (e.g., data,
model, inference, likelihood), then it is likely that it belongs to Statistics topic.

We will see a model that allows more than one topic per document, but for now, the first
model we are going to consider in this lecture supposes that a given document belongs to
only one topic.

According to this model, a document is randomly generated as follows: first we randomly
pick one topic Zd, from the distribution over topics π ∼ Dirichlet(λ1, ..., λK). The latent topic
Zd is just a distribution over words, and such distribution is fully specified by the probabilities
β = (β1, ..., βV ) over the words in the vocabulary. Finally, the words for document d (denoted
by W d

i , i = 1, ..., Nd) are then randomly selected from the vocabulary with probabilities β.
The words are the observed data, and all the other variables of the model are latent.

In summary, the model can be defined by the following set of statements:

• Zd : topic of document d ∈ {1, ..., N} (N : number of documents)

• Zd ∈ {1, ..., K} (K: number of topics)

• π = (π1, ..., πK) ∼ Dir(α1, ..., αK)
πk = P (Zd = k), k ∈ {1, ..., N}.

• W d
i : word i in document d ∈ {1, ..., N}

W d
i ∈ {1, ...Nd} → vocabulary of the document d

• Distribution of W d
i varies with the topic of document d.

P (W d
i = w | Zd = k) = βkw, βk = (βk1, ..., βzV )

V : total of words in the vocabulary
βk ∼ Dir(λ1, ..., λNd

), z ∈ {1, ..., K}.
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21.1.1 Full-conditional distributions for Gibbs sampler

Now we derive the full-conditional distributions for running a Gibbs sampler and get to
the posterior distribution of the parameter of the model described before. Notice that all
full-conditionals are analytically available and sampling from them is straightforward.

1.

π(t+1) ∼ p(π | {Zd}, {W d
i }, {βk})

= p(π | {Zd})
= Dir(n1 + α1, ..., nK + αK),

where ni =
∑N

d=1 1(Zd = i).

2.

β
(t+1)
k ∼ p(βk | {Zd}, {W d

i }, {β−k}, π)

= p(βk | {Zd}, {W d
i })

= p({W d
i } | {Zd}, βk)p(βk | {Zd})

=

(
N∏
d=1

Nd∏
i=1

p(W d
i | Zd, βk)

)
βλ1λ1 . . . β

λV
λV

=

(
N∏
d=1

Nd∏
i=1

βkW d
i

)
βλ1λ1 . . . β

λV
λV

= Dir(mk1 + α1, ...,mkV + λV ),

where mkw = {(i, d) : W d
i = w, zd = k}, i.e. total number of occurrences of word w in

documents of topic k.
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3.

Z
(t+1)
d ∼ P (Zd = k | {Z−d}, {W d

i }, {βk}, π)

= P (Zd = k | W d
1 , ...,W

d
Nd
, βk, π)

∝ p(W d
1 , ...,W

d
Nd
| Zd = k, βk, π)P (Zd = k | βk, π)

=

Nd∏
i=1

βkW d
i
× πk

Hence the full conditional distribution for Zd is discrete given by

P (Zd = k | {Z−d}, {W d
i }, {βk}, π) =

∏Nd

i=1 βkW d
i
× πk∑Nd

k=1

∏Nd

i=1 βkW d
i
× πk

21.1.2 Collapse Gibbs Sampler

Sometimes it is possible to marginalize the likelihood over a set of parameters, therefore
reducing the number of nodes in the MCMC chain. This can save time during the simulation
of the chains, since we have less nodes to sample from.

Here we exemplify how it works by showing the calculations for marginalizing out π from
the full conditional of Zd. Notice that this is enough to marginalize π out of the likelihood,
since it does not appear in the full-conditional distribution of any of the βk’s.

P (Zd = k | {Zd}, {W d
i }, {βk}) ∝

∝ P ({W d
i } | {Z−d}, {βk})× P (Zd = k | {Z−d}, {βk})

=
N∏
d=1

p(W d
i | Zd, βk)× P (Zd = k | {Z−d})

∝ p(W d
i | Zd, βk)×

∫
. . .

∫
P (Zd | π, {Z−d})p(π | {Z−d})dπ1 . . . dπK

=

Nd∏
i=1

βkW d
i
×
∫
. . .

∫
πkDir(π;n−d1 + α1, ..., n

−d
K + αK)dπ

=

Nd∏
i=1

βkW d
i

∫
πkBeta

(
πk;n

−d
k + αk,

∑
j 6=k

n−dj + αj

)
dπk

=

(
Nd∏
i=1

βkW d
i

)
n−dk + αk∑
j(n
−d
j + αj)

where n−dk = |{` 6= d : Z` = k}|, k = 1, ..., K.
It is possible to marginalize over βk’s too, but the calculations involved are not as simple

as before and they will not be shown here. If you are interested, check out section 2.6 of [2].
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21.2 Latent Dirichlet Allocation

The latent Dirichlet allocation (LDA) model allows one document to belong to more than
one topic. Actually, each word has a chance of being drown from a different topic and this is
what makes a document to contain more than one topic. We now describe the model more
precisely.

According to the LDA model, documents are randomly generated as follows. First we
randomly select a distribution over topics. This distribution will tell us how often words
will be sampled from topics 1, 2, ..., K. Then for each word in the document, we randomly
select a topic from it, using the distribution over topics that was already selected. Finally,
we randomly generate a word according to the distribution over words for that specific topic.

You may consider taking a look at Figure 1 from [1], to help understanding the steps
above.

The graphical representation of this model is very similar to the one presented for the
previous model:

πd

Zid βk

Wid

K

Nd

N

although presenting the following changes:

• Each word now has its own topic. And as a result a document no longer belongs to
just one topic, but may possibly belong to many.

• πd now represents the proportion of different topics for document d. Note there was
only one π before.
πd = (πd1, ..., πdK) ∼ Dir(α1, ..., αK)
πdk = P (Zid = k), k ∈ {1, ..., K}.

• Each topic has a multinomial distribution over the vocabulary, e.g. topic k has vector
βk. P (Wid = w | Zid = k) = βkw, where βk ∼ Dir(λ1, ..., λV ), k ∈ {1, ..., K}.
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21.2.1 Full-conditional distributions for Gibbs sampler

Sampling π

π(t+1) ∼ p(πd | {Zd
i }, {W d

i }, βk)
= p(π | Zd

1 , ..., Z
d
Nd

)

= Dir(nd1 + λ1, ..., n
d
Nd

+ λNd
)

where ndi represents the numer of occurrencies of words drawn from topic i in document d.

Sampling β

β(t+1) ∼ p(βk | {Zd
i }, {W d

i }, {πd})
= Dir(m1k + λk, ...,mNdk + λNd),

where mwk = |{(i, d) : Wid = w,Zid = k}|. The expressions for the remaining full-
conditionals are to be calculated in the next lecture.
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