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18.1 Expectation Maximization (EM)

18.1.1 Missing Data

In many practical situations, we do not have all the data originally tested. Imagine that we have iid observa-
tions from a Gaussian. n data is available, but m data points go missing. y1, y2..., yn, yn+1...yn+m ∼ N

(
µ, σ2

)
After the data goes missing, we have only m data points left.
Set yn+1...yn+m as missing; y1...yn as observed. What is our µ and σ estimate?

We can use just the weighted sample mean to estimate the mean. µ̂ =
∑
yi+

−
ym

n+m
This could be done using E-M. While this example is trivial, this is applicable for more difficult situations
where the MLE is not trivial. Let us model the missing data as latent data, Z. Then we can use log likelihood.

l(y, z; θ) = log

n∏
i

exp(−(yi − µ)2/(2σ2)) ∗
n+m∏
n+1

exp(−(zi − µ)2/(2σ2))

l(y, z; θ) = −
n∑
i

(yi − µ)2/(2σ2)−
n+m∑
n+1

−(zf i− µ)2/(2σ2)

l(y, z; θ) =
−
∑n
i y

2
i −

∑n+m
i=n+1 z

2
i

2σ2

− (n+m)µ2

2σ2
+
µ(
∑n

1 yi +
∑n+m
n+1 zi)

σ2

If we model this as E-M iterative estimation, our E step will be:

n log(σ)−
∑n

y2i
2σ2

− (
σ2
t + µ2

t

2σ2
)m− (n+m) µ

2

2σ2 + µ
σ2 (
∑n
i yi +mµt)σ

2

M step:

argmaxµ,σE[]

Putting it together in an iterative manner:
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µt+1 =

∑n
yi + µtm

n+m

σ2
t+1 =

∑n
y2i + (σ2

t + µ2
t )m

n+m
− µ2

t+1

18.1.2 EM can be used for finding parameters

Multinomial with P: ( 1
2 + θ

2 ,
θ
2 , 1/2− θ) Introduce a latent variable, z

1/2− > zi

θ/2− > y1 − z1
θ/2− > y2

1/2− θ− > y3

If you write down the E.M., it converges to MLE.

18.2 Light Bulb Example

Suppose the life expectancy of a light bulb is a known distribution. Our goal here is to estimate the parameter
θ. So we do the following two experiments to collect data:

Experiment 1: Y1, Y2, · · ·Yn and Yis are iid sample time for a light bulb to die.

Experiment 2: E1, E2, · · ·En and Eis are iid where Ei = 1 if light bulb i is alive at time T . (T < θ)

How do we estimate θ?

18.2.1 Exponential Distribution Case

Suppose the life expectancy of a light bulb has an exponential distribution Exp(θ).

18.2.1.1 Using EM

We introduce a latent variable zi : Ei = 1(zi≥T )
We can remove y from the condition as z is independent of y due to iid.

E[zi|yobs, E, θt] = E[zi|Ei, θt]

When Ei = 1, due to memoryless property of Exponential Distributions, we have:

E[zi|Ei = 1, θt] = T + θt
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When Ei = 0, by using the law of total expectation:, we have:

E[zi|Ei = 0, θt]p(Ei = 0; θ) + E[zi|Ei = 1, θt]p(Ei = 1, θt) = E[zi; θt] = θt

E[zi|Ei = 0, θt](1− e−T/θt) + (T + θt)e
−T/θt = θt

E[zi|Ei = 0, θt] = θt −
Te−T/θt

1− e−T/θt

Let F =
∑
Ei, we have

θ̂ =

∑
Yi +

∑
Zi

n+m

θt+1 =

∑
Yi + E[zi|Ei = 1, θt]F + E[zi|Ei = 0, θt](m− F )

n+m

18.2.1.2 Using MLE

Loglikelihood = −nlogθ −
∑
yi
θ
−
∑

Ei ∗ T/θ + (m−
∑

Ei)log(1− e−T/θ)

Thus,

θ̂ =

∑
Yi +

∑
Zi

n+m

The EM and MLE techniques converge for this example.

18.2.2 Uniform Distribution Case

Suppose the life expectancy of a light bulb has a uniform distribution Unif(0,θ)

18.2.2.1 Using EM

In order to use EM, we need to introduce latent variables Zis where Ei = 1Zi≥T .

E-step: Assume at least one Ei = 1, calculate the expectation of Zi for given θt.

E[Zi|Ei = 1, θt] =
T + θt

2

E[Zi|Ei = 0, θt] =
T

2

M-step: Maximize the conditional expectation of the log likelihood given Yi and Ei.

l(θ|Yi, Zi) = log

(
n∏
i=1

1

θ
1Yi∈(0,θ]

m∏
i=1

1

θ
1Zi∈(0,θ]

)
= −(n+m) log θ1Ymax∈(0,θ]1Zmax∈(0,θ]

EZi
[θ̂] = EZi

[max(Ymax, Zmax)] = max(Ymax,EZi
[Zmax]) = max

(
Ymax,

T + θt
2

)
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Combine E-step and M-step, we have:

θt+1 = max

(
Ymax,

T + θt
2

)

18.2.2.2 Using MLE

L(θ|Yi, Ei) =

n∏
i=1

1

θ
1Yi∈(0,θ]

m∏
i=1

(
1− T

θ

)Ei
(
T

θ

)1−Ei

l(θ|Yi, Ei) = −n log θ +

m∑
i=1

Ei · log

(
1− T

θ

)
+

m∑
i=1

(1− Ei) · log

(
T

θ

)
dl(θ|Yi, Ei)

dθ
= −n

θ
+

m∑
i=1

Ei ·
T

θ(θ − T )
+

m∑
i=1

(1− Ei)
(
−1

θ

)

θ̂ = max

 n+m

n+m−
m∑
i=1

Ei

· T, Ymax


This estimator makes sense: it combines the usual MLE for uniform distribution with extra information
we get from Eis. The more 1s we observe from Eis, the greater θ̂ is, but it cannot be greater than
max

(
n+m
n · T, Ymax

)
.

18.2.3 What is wrong with EM here

It is easily seen that if we use the EM algorithm and start with any θ0, this procedure will converge to
θ̂EM = max(Ymax, T ), which is obviously wrong. So what is the problem here?

It turns out, the reason for the apparent EM algorithm not resulting in the MLE is that the E-step is wrong.
In the E-step, we are supposed to find the conditional expectation of likelihood function given Yis and Eis
at current parameter values. Now given the data with assumption that at least one Ei = 1, we have θ ≥ T
and hence the conditional distributions of Zi are uniform in [T, θt]. Thus for θ < θt the conditional density
of Zi takes value 0 with positive probability and hence the conditional expected value of the likelihood we
are seeking does not exist.

18.2.4 Nonapplicability of EM and The Generalized EM

Can we fix the EM by restricting the likelihood function here?

E[l(θ|Yi, Zi)] =

{
−∞, if θ < θt

−(n+m) log θ if θ ≥ θt

The answer is, sadly, no. From the log likelihood, we can see that when it is not −∞, it is maximized when
θ = θt. In other words, θt is always the maximum of the lower bound we are trying to maximize, so the
EM algorithm will stuck at θt and not go anywhere. Therefore, the EM does not apply to this particular
example.
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It is useful to note the Generalized Expectation Maximization (GEM) algorithm where in M-step, it is
not necessary to maximize the likelihood, but just to seek θt+1 such that it leads to an increase in the
expectation of conditional likelihood. It is often useful in cases where the maximization is difficult. Here we
cannot increase the the lower bound, so GEM/EM does not work.


