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Note: The latex template was borrowed from EECS, U.C. Berkeley.

11.1 L∞ norm regularization

Figure 11.1. L∞ norm penalization

Lets talk a bit about infinity norm penalization. Above you have the feasible set for
‖β‖∞ ≤ t, where the corners are at (t, t), (t,−t) etc. Note that this is convex, so if you add
this to the Least squares objective you will have a convex problem, but note that here the
corners are not on the axis. So, the solutions will give you lots of coefficients shrunk to have
absolute value t, ( if you used the alternative formulation ) but not sparse solutions.

11.2 Logistic regression

In Naive Bayes, we saw that we modeled the distribution of the X’s given the Y ’s and then
we used Bayes rule to get the distribution of Y given X. This is why Naive Bayes is also
called a Generative model for classification. In the discrete case, we modeled X as Gaussian
random variables (with different parameters for different classes), whereas for the continuous
case, we modeled X as Multinomial random variables. This raises the question, what if we
went straight for the distribution of Y given X and made no assumptions whatsoever about
the distribution of X? That brings us to Logistic Regression, which is also known as a
Discriminative model for classification. In particular we will model p := P (Y = 1|X) as
follows:

log
p

1− p
= XTβ
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Figure 11.2. exp(βx)
1+exp(βx) as x is growing along the x axis

Whats so special about this form? Well, note that we now have a function (the logit
function) which takes a real variable as an argument and spits out a number between zero
and one. This is great, because we are trying to model the probability of Y = 1. What does
this function look like? See figure 11.2. An interesting point that will come in handy later:
as one increases β, the function in 11.2 looks increasingly like a step function.

Now, let’s think about the MLE for β.

11.2.1 Maximum Likelihood Estimation for Logistic Regression

First, note that

P (yi = 1|xi, β) =
ex

T
i β

1 + ex
T
i β
.

Now, we write the conditional log likelihood:

P (yyy|XXX;βββ) =
∏
i

pyii (1− pi)1−yi =
∏
i

(
pi

1− pi

)yi∏
i

(1− pi)

` := logP (yyy|XXX;βββ) =
∑
i

yiβββ
Txxxi −

∑
i

log(1 + exp(βββTxxxi))

We start trying to find the maximum first by differentiating the log likelihood:

∂`

∂βr
=
∑
i

yixir −
∑
i

xir
exp(βββTxxxi)

1 + exp(βββTxxxi)
=
∑
i

xir(yi − pi)

∂`

∂βββ
= XXXT (yyy − ppp),
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where ppp is the vector of probabilities pi = P (Yi = 1|Xi;βββ).
We cannot find a closed form solution by setting this to zero in this case and so we will

have to resort to iterative methods like the gradient ascent or Newton Raphson. For gradient
ascent, we could keep taking small steps in the direction of the current gradient, but the
steps would need to be small and this could take a while. For Newton Raphson, we use
second-order information via the Hessian:

Hrs =
∂2`

∂βββs∂βββr
=

∂

∂βs

∑
i

xir(yi − pi) = −
∑
i

xir
∂pi
∂βs

= −
∑
i

xirxispi(1− pi)

HHH = −XXXTWWWXXX,

whereWWW is a diagonal matrix with Wij = pi(1−pi)1(i = j). Recall that the Newton Raphson
update is given by:

βββt+1 = βββt − HHH−1
∂`

∂βββ

∣∣∣∣
βββ=βββt

= βββt + (XXXTWWW tXXX)−1XXXT (yyy − pppt)

= (XXXTWWW tXXX)−1XXXTWWW t
(
XXXβββt + (WWW t)−1(yyy − pppt)

)︸ ︷︷ ︸
:= zt

= arg min
βββ′

(zt −XXXβββ′)TWWW t(zt −XXXβββ′)

Compare this to the gradient ascent with equal steps λ; here we allow our step sizes to
change. So at each step we solve a weighted least squares problem. But let’s take a detour
on weighted least squares.

11.2.2 Weighted Least Squares

Remember our model for OLS? All the yi’s had the same variance. What if each random
variable had a different variance:

yyy = XXXβ + ε, ε ∼ N(0,Σ)

where Σ is a diagonal matrix where the diagonal terms are different, i.e. Σii = σ2
i . Now

the log likelihood is proportional to −1/2(yyy −XXXβββ)TΣ−1(yyy −XXXβββ). And so the MLE would
minimize

β̂ββ = arg min
βββ′

(yyy −XXXβββ′)TΣ−1(yyy −XXXβββ′) = arg min
βββ′

∑
i

(yi − xxxTi βββ)2/σ2
i

Setting the first derivative to zero gives:

XXXTΣ−1(yyy −XXXβ̂ββ) = 0→ β̂ββ = (XXXTΣ−1XXX)−1XXXTΣ−1yyy.
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Note that this is the same as with OLS, in which case Σ = I. In our case, we are solving
a weighted regression at each step. This is why the algorithm is also called Iteratively
Reweighted Least Squares.

Now,

log

(
yi

1− yi

)
≈ log

(
pi

1− pi

)
+ (yi − pi)×

d

dy
log

(
y

1− y

) ∣∣∣∣
yi=pi

= log

(
pi

1− pi

)
+

yi − pi
pi(1− pi)

= xtiβ +
yi − pi
pi(1− pi)

:= zi

and therefore

Var(zi) =
Var(yi)

p2i (1− pi)2
=

1

pi(1− pi)
.

Now suppose that zzzt ∼ N(XXXβt+1, (WWW t)−1). Then

zt = XXXβt + (WWW t)−1(yyy − pppt),

just as before, and we again get

β̂t+1 = (XXXTΣ−1XXX)−1(XXXTΣ−1zzzt)

= (XXXTWWW tXXX)−1(XXXTWWW tzzzt).

11-4


	L norm regularization
	Logistic regression
	Maximum Likelihood Estimation for Logistic Regression
	Weighted Least Squares


