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10.1 Regularization

Regularization methods such as Ridge Regression and LASSO introduce a penalty term on
model complexity to prevent overfitting.

10.1.1 Ridge Regression

For least squares regression, the model coefficients are selected by

β̂ββLS = min
βββ

n∑
i=1

(yi − βββ0 − xTi βββ)2 (10.1)

For ridge regression, an additional term is added which penalizes all βββj for j > 0

β̂ββridge = min
βββ

n∑
i=1

((yi − βββ0 − xTi βββ)2 + λβββTβββ (10.2)

It is clear from this equation that if the variables are on different scales the Ridge Regression
model will penalize them differently. Thus, centering must be performed to remove the
means from all parameters. Additionally, the standard errors must be normalized to 1.

First lets forget about the normalization, and just consider the original problem. We will
see that centering XXX and yyy (Xc(i, j) = Xij − x̄j and yc(i) = yi − ȳ will not change the βi’s
other than the intercept term.∑

i

(yi − β0 −
∑
j

βjxij)
2 + λβ2

j

=
∑
i

(yi − (β0 +
∑
j

βjx̄j) +
∑
j

βj(xij − x̄j))2 + λβ2
j

βββ′0 = βββ0 +
k∑
j=1

xijβββj (10.3)

βββ′j = βββj,∀j > 0 (10.4)
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As it turns out, deriving the above expression w.r.t βββ′0 and setting to zero gives:

β̂ββ′0 = ȳ

Thus the reparameterized equation for β̂ββridge is

OBJridge = min
βββ

(yyyc −XXXcβββ)>(yyyc −XXXcβββ) + λβββ>βββ, (10.5)

where yyyc and XXXc are centered versions of yyy and XXX. Setting the derivative of this expression
to zero gives the solution

β̂ββridge = (XXX>XXX + λI)−1XXX>y (10.6)

Note that this ridge regularization is the same as adding λ to all eigenvalues of XXXTX.
Furthermore, exactly corresponding to the hat matrix, in this case if we write ŷ = Sy we
get:

S = XXX(XXX>XXX + λI)−1XXX> (10.7)

and so the effective degrees of freedom is:

trace(S) =

p∑
i=1

σ2
i

σ2
i + λ

(10.8)

In which σi’s are the singular values of matrix XXX.

How to Choose λ: Selection of λ is a tradeoff between bias, variance and mean square
error (Fig. 9.3).

1. Perform a grid search over λ or log(λ).

2. For each λ perform a cross-validation and calculate the mean and standard error on
the estimated model prediction error

3. Identify the λ with the lowest mean predictive error

4. Apply One Standard Error Rule to select most parsimonious model whose mean lies
within one standard error (in this case more parsimonious means smaller effective
degrees of freedom, so a larger λ)
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Figure 10.1. Selecting Lambda For Ridge Regression Model

Equivalent Bayesian Interpretation Assume that y is normally distributed, and apply
a Gaussian prior to βββ

y ∼ N(XXXβββ, σ2I) (10.9)

βββ ∼ N(0, τ 2I) (10.10)

Then the posterior distribution of βββ given y can be calculated as

f(βββ|y) = exp(
−(yyy −XXXβββ)>(yyy −XXXβββ)

2σ2
) exp(

−βββ>βββ
τ 2

) (10.11)

From this form it can be observed that the relationship between σ and τ defines λ.
Ridge regression generally has smaller LSE than linear regression, and Ridge Regression will
make coefficients small for variables which are not highly correlated to the output. However,
Ridge Regression will not drive coefficients to zero (unless λ =∞, in which case it drives all
coefficients to zero), so it cannot be used for variable selection.

10.1.2 LASSO

OBJLASSO = min
βββ

(yyy −XXXβββ)>(yyy −XXXβββ) + λ||βββ||1 (10.12)

The LSE of LASSO is comparable to Ridge Regression, and LASSO will drive some coeffi-
cients to zero with a large λ. However, there is no closed form solution. If the problem is
reformulated as

β̂ββLASSO = min
βββ

(yyy −XXXβββ)>(yyy −XXXβββ) (10.13)

s.t.
k∑
j=1

|βββj| ≤ t (10.14)
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This is a convex optimization problem, which will have a solution even without a closed-form.
Note that we can also devise an objective function using the zero-norm instead of one-

norm (All Subsets objective function):

OBJAll subsets = min
βββ

(yyy −XXXβββ)>(yyy −XXXβββ)s.t.‖βββ‖0 ≤ k (10.15)

The problem with this objective function is that it does not yield a convex problem anymore.
In fact, one would need to search through all possible subsets of size smaller than k + 1 to
evaluate the best possible subset.

Consider the easier problem where I want the best subset of size k. We will denote this
by OBJBS from now on. Typically this is a NP complete problem, which is computationally
intractable. However, as it turns out in the case where the design matrix has orthogonal
columns, i.e. the features are orthonormal to each other, i.e. XXXTXXX = I one can actually
write down effect of best subset of size k, L1 and L2 norm penalizations easily.

10.2 Orthogonal design matrix

Consider an orthogonal design matrix such that XXXTXXX = I. Now we will look at Best subset
of size k, Lasso and Ridge to get an intuition about how the different regularizations work.
The main trick is to see that in this case the loss function becomes separable w.r.t the
coefficients of βββ. Also note that in this case βββols = XXXTyyy. So

(yyy −XXXβββ)T (yyy −XXXβββ) = yyyTyyy + βββTβββ − 2yyyTXXXβββ = (βββββββββols − βββ)T (βββββββββols − βββ) + yyyT (I −XXXXXXT )yyy

Since the last term is independent of βββ, we only need to consider the first term.

10.2.1 Best subset of size k

min
βββ

(yyy −XXXβββ)>(yyy −XXXβββ) (10.16)

s.t. ‖βββ‖0 = k (10.17)

which is equivalent to:

min
βββ

(βββ − βββols)>(βββ − βββols) = min
βββ

p∑
i=1

(βi − βolsi )2 (10.18)

s.t. ||βββ||0 = k (10.19)

Now think for a second. I can only put nonzero values in k positions, and at the same
time minimize the above sum of squares. Can I put them on the smallest k βi values? That
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will incur a lot of error from the large coefficients. So, we should use:

ˆβBSi =

{
β̂OLSi If |βolsi | ≥ |βββols(k)|
0 Otherwise

Here x(k) means the kth largest element in absolute value.

10.2.2 Lasso

Now lets think about Lasso. Now the objective function is

min
βββ

∑
i

(βi − βolsi )2 + λ
∑
i

|βi| (10.20)

(10.21)

Since the function is now separable w.r.t the elements, we can reason about each coor-
dinate separately. Lets take coordinate i. If βolsi > 0, it makes sense to set βi > 0 in order
to minimize the above function. So that gives us minβi(β

ols
i − βi)

2 + λβi. Derive w.r.t βi
and set to zero to solve. βLASSOi = βolsi − λ/2, but in this case βLASSOi > 0 as well. So, use:
βLASSOi = max(βolsi − λ/2, 0). A similar argument for the negative OLS coefficients give the
following:

for βolsi > 0 : β̂i = max {βolsi −
λ

2
, 0} (10.22)

for βolsi ≤ 0 : β̂i = min {βolsi +
λ

2
, 0} (10.23)

10.2.3 Ridge

Finally, lets figure out ridge regression. This is actually quite straight forward. We want:

min
βββ

∑
i

(βi − βolsi )2 + λ
∑
i

β2
i (10.24)

Derive both sides w.r.t βi and set to zero. This gives:

β̂i =
βolsi

1 + λ

10-5


