
Homework Assignment 2

Due by Thursday Oct 6th∗

SDS 383C Statistical Modeling I

1. (2+5+3 pts) Get the passenger car mileage data from
http://lib.stat.cmu.edu/DASL/Datafiles/carmpgdat.html

(a) Fit multiple linear regression model to predict MPG (miles per gallon) from the
other variables. Summarize your analysis.

(b) Use Mallow Cp to select a best sub-model. To search through the models try (i)
forward stepwise, (ii) backward stepwise. Summarize your findings.

(c) Use the Zheng-Loh model selection method and compare to (b). You will write
your own code to do the steps.

2. (8+2) Get the Prostrate cancer data from http://statweb.stanford.edu/~tibs/

ElemStatLearn/datasets/prostate.data. More information about this dataset can
be found in http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.

info.txt.

(a) Carry out a best-subset linear regression analysis (as in Table 3.3 of the H-T-F
book). Compute the AIC, BIC, five and tenfold cross-validation estimates of
prediction error. Read section 7.10.2 first from the book.

(b) Compare the results. You will write your own code for cross validation, but you
can use builtin code for doing best subset selection.

3. (8 pts) Consider a linear regression with p parameters, fit by least squares to a set of
training data (x1, y1), . . . , (xN , yN ) drawn at random from a population. Let β̂ be the
least squares estimate. Suppose we have some test data (x̃1, ỹ1), . . . , (x̃M , ỹM ) drawn
at random from the same population as the training data. If Rtr(β) = 1

N

∑N
i=1(yi −

βTxi)
2 and Rte(β) = 1

M

∑M
i=1(ỹi − βTx̃i)2, prove that

E
[
Rtr(β̂)

]
≤ E

[
Rte(β̂)

]
where expectations are over all that is random in each expression. Note that this
setting is different from the setting we used for proving the optimism of training error
in class, namely the in sample error. Here both x and y values are random, which
makes the problem much easier.

∗If you are late, you can use a grace period of 3 days, and turn it in via email.
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4. (3+8 pts) Consider a design matrix XXX such that XXX has orthonormal columns, i.e.
XXXTXXX = I, where I is the p×p identity matrix. Consider the following regularization.

min
β

1

2
(XXXβββ − yyy)T (XXXβββ − yyy) + λ‖βββ‖0, (1)

where ‖βββ‖0 =
∑p

i=1 111(βi 6= 0).

(a) Show that the least squares estimate is β̂ββ = XXXTyyy.

(b) Show that the solution to equation 1 is given by β̃ββ, where

β̃i =

{
vvvTi yyy if |vvvTi yyy| >

√
2λ

0 if |vvvTi yyy| ≤
√

2λ
(2)

This is also called the hard thresholding estimator. vvvi is the ith column of XXX.

5. (6 pts) In this problem we will look at how collinearity affects ridge regression and
lasso.

(a) Suppose we run a ridge regression with parameter λ on p variables X1, . . . , Xp.

The coefficient I estimate for X1 (β̂ridge(1)) is a. Now m − 1 additional copies
of variable X1, i.e. X∗

1 = X∗
2 = · · · = X∗

m−1 = X1 are included and the ridge
regression is refit. How are the new coefficients of the identical copies related to
a ? Prove your answer.

(b) Repeat the above problem with lasso.
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