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Spencer Woody SDS 383C : Homework 2

Problem 1

(a) A multiple linear regression is performed to predict MPG (fuel efficieny in mi / gallon) of cars from
the dataset. the covariates VOL (cab space in ft3), HP (engine horsepower), SP (top speed in miles per
hour) and WT (vehicle weight in hundreds of pounds). Figure 1 reports a summary of this multiple
linear regression. A general R function for fitting multiple linear regression is included in the script at
the end of this report.

Covariate Estimate S.E. t-statistic p-value
(intercept) 192.48 23.53161 8.178 4.62 × 10−12

VOL −0.01565 0.02283 −0.685 0.495
HP 0.39221 0.08141 4.818 7.131 × 10−6

SP −1.29482 0.24477 −5.290 1.11 × 10−6

WT −1.85980 0.21336 −8.717 4.22 × 10−13

Figure 1: Summary of multiple linear regression for predicting MPG

(b) Here we use Mallows’s Cp to find a best sub-model under two methods: forward stepwise selection
and backward stepwise selection. Mallows’s Cp is used as a predictor of test error and is defined as

Cp = RSS(p) + 2σ̂2 p (1)

where p is the number of non-intercept covariates included in the model. Traceplots for Mallows’s Cp
for these two methods are shown in Figure 2.

(i) Forward Stepwise Selection
Here we start with a null model including only the intercept term. Then we add the most sig-
nificant covariate, determined by evaluating a model including only one covariate at a time and
then choosing the covariate with minimal Cp out of all of these options. This process is repeated
iteratively until we reach a point where adding another covariate cannot reduce Cp. We include
three variables before reaching this point, which are, in order, WT, SP and HP.

(ii) Backward Stepwise Selection
Now we start with a full model and remove the least significant covariate, determined by eval-
uating a p models, each one calculated by removing one covariate at a time, and choosing the
covariate at which the model achieves minimal Cp. This process is repeated iteratively until we
reach a point where removing an additional convariate cannot reduce Cp. We only remove one
covariate here, which is VOL.

(c) Now we use the Zheng-Loh model selection method to select a sub-model. We order the non-intercept
covariates from most to least significant according to their calculated t-statistic from the full model, and
then we find the optimal number of covariates

j∗ = arg min
j

{
RSS(j) + jσ̂2 log N

}
(2)

where RSS(j) is the residual sum of squares of the linear model containing the first j most significant
non-intercept covariates covariates, σ̂2 is the estimated variance under the full model, and N is the
number of data points.

In this particular case, the most significant covariates in decreasing order, as seen in Figure 1, are WT,
SP, HP, and VOL. Figure 3 demonstrates that we achieve optimality at j = 3, meaning that we include
WT, SP, and HP. Forward stepwise selection, backward stepwise selection, and the Zheng-Loh method all give
the same best sub-model.
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Figure 2: Forward stepwise selection and backward stepwise selection
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Figure 3: Zheng-Loh Model Selection
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Problem 2

(a) We use the leaps package within R to perform best-subset selection. Results are shown in Figure (4),
along with AIC, BIC, estimated RSS for five-fold cross validation, and estimated RSS for ten-fold cross
validation. For cross validation, we use the one-standard error rule to select the number of predictors to
include in our model. For five-fold, we include one predictor, and for ten-fold we include 2 predictors.
Best subset selection tells us that the predictors to include are lcaval and lweight.

p (Int) lcaval lweight age lbph svi lcp gleason pgg45 AIC BIC CV5 CV10

1 • • 32.82 -43.26 0.6966 0.6929
2 • • • 19.26 -51.30 0.5792 0.5998
3 • • • • 16.57 -51.16 0.6474 0.6897
4 • • • • • 13.81 -51.09 0.6269 0.5816
5 • • • • • • 15.10 -48.43 0.6496 0.6369
6 • • • • • • • 13.90 -47.50 0.5985 0.5700
7 • • • • • • • • 14.07 -45.76 0.5619 0.5436
8 • • • • • • • • • 18.05 -41.58 0.5705 0.5560

Figure 4: Best-subset linear regression analysis
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Figure 5: Cross-Validation for b = 5 and b = 10 bins

(b) The book’s model selection, whereby the two variables lcaval and lweight are chosen, is in line what is
given in the table above from ten-fold cross validation and BIC.
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Problem 3

We define

Rtr(β) =
1
N

N

∑
i=1

(yi − βTxi)
2 (3)

=
1
N
(y − Xβ)T(y − Xβ) (4)

and

Rte(β) =
1
M

M

∑
j=1

(ỹj − βT x̃j)
2 (5)

=
1
M

(ỹ − X̃β)T(ỹ − X̃β). (6)

Because all pairs (x, y) are i.i.d., the expected value of Rtr(β) is calculated as

E [Rtr(β)] = E

[
1
N

N

∑
i=1

(yi − βTxi)
2

]
(7)

=
1
N

E

[
N

∑
i=1

(yi − βTxi)
2

]
(8)

=
1
N

N

∑
i=1

E
[
(yi − βTxi)

2
]

(9)

=
1
N

× N × E
[
(yk − βTxk)

2
]

, k ∈ {1, 2, . . . N} (10)

= E
[
(yk − βTxk)

2
]

, k ∈ {1, 2, . . . N}. (11)

Similarly,

E [Rte(β)] = E
[
(ỹl − βT x̃l)

2
]

, l ∈ {1, 2, . . . M} (12)

Note that β̂ is defined as

β̂ = arg min
β

(y − Xβ)T(y − Xβ). (13)

By definition, β̂ minimizes Eqn. (3). Suppose we also computed β̃ in an analogous way where

β̃ = arg min
β

(ỹ − X̃β)T(ỹ − X̃β). (14)

Because all pairs (xi, yi), i ∈ 1, 2, . . . , N and (x̃j, ỹj), j ∈ 1, 2, . . . , M are drawn from the same distribution, the
respective expected values of Rtr(β) and Rte(β) evaluated at their respective minimized values are equal,
which can be notated as

E
[
Rtr(β̂)

]
= E

[
Rte(β̃)

]
. (15)

However, when Rte is evaluated at β̂ instead, it will be at least as large as when it is evaluated at β̃. That is
to say,

E
[
Rte(β̂)

]
≥ E

[
Rte(β̃)

]
. (16)

Combining Eqns. (15) and (16) yields

E
[
Rtr(β̂)

]
≤ E

[
Rte(β̂)

]
. (17)
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Problem 4

(a) We have it that XTX = Ip×p. The objective function for the least-squares estimate becomes

L(β) =
1
2
(Xβ − y)T(Xβ − y) (18)

=
1
2
(βTXT − yT)(Xβ − y) (19)

=
1
2
(βTXTXβ − βTXTy − yTXβ + yTy) (20)

=
1
2
(βT β − 2βTXTy + yTy) (21)

Taking the gradient with respect to β,

∇βL(β) =
1
2
(2β̂ − 2XTy) = 0 (22)

Thus we see that β̂ = XTy. Hereafter we denote this as βOLS. The ith element of βOLS is vT
i y where vi is

the ith column of X.

(b) First, let us rearrange our old objective function in Eqn. (18) as

L(β) =
1
2
(Xβ − y)T(Xβ − y) (23)

=
1
2
(yTy − yTXXTy + (β − XTy)T(β − XTy)) (24)

=
1
2
(yTy − yTy + (β − XTy)T(β − XTy)) (25)

=
1
2
(β − XTy)T(β − XTy) (26)

=
1
2
(β − βOLS)T(β − βOLS). (27)

Now our regularization stated in the problem becomes

β̃ = arg min
β

1
2
(β − βOLS)T(β − βOLS) + λ ∥β∥0 . (28)

Element-wise, this can be written as

β̃i = arg min
βi

1
2
(βi − βOLS

i )2 + λ × 1(βi ̸= 0) (29)

= arg min
βi

1
2
(βi − vT

i y)2 + λ × 1(βi ̸= 0). (30)

We can see that the solution to our objective function will take one of two forms. Either β̃i will be 0, in
which case the loss function takes on the value 1

2 (v
T
i y)2, or β̃i will be vT

i y, in which case the loss function
takes on a value of λ. Any value of β̃i between these two values will give quadratic part and λ in the
loss function. The threshold at which β̃i changes from 0 to vT

i y is when

1
2
(vT

i y)2 > λ. (31)

By solving this inequality, we have an element-wise solution to Eqn. (28)

β̃i =

{
vT

i y if |vT
i y| >

√
2λ

0 if |vT
i y| ≤

√
2λ.

(32)
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Problem 5

(a) The coefficient vector for ridge regression β̂r is found as follows:

β̂r = arg min
β

 n

∑
i=1

(
yi − β0 − β1xi,1 −

p

∑
j=2

β jxi,j

)2

+ λ

(
β2

1 +
p

∑
j=2

β2
j

) . (33)

Once we add m − 1 copies of variable X1, our ridge solution becomes

β̂∗r = arg min
β

 n

∑
i=1

(
yi − β0 −

m

∑
k=1

β1,kxi,1 −
p

∑
j=2

β jxi,j

)2

+ λ

(
m

∑
k=1

(β1,k)
2 +

p

∑
j=2

β2
j

) . (34)

This expression is similar to our original objective function because, but now each xi,1 is multiplied by
a summation of “new” coefficients. If we assume that the number of data points n is large, then the
RSS term of the loss function overwhelms the penalty term, and therefore the minimization is largely
determined by minimizing the RSS. Since the minimum of the RSS term in Eqn. (33) is achieved at β̂r,
the RSS term of Eqn. (34) is minimized at the same “fitted” coefficients for each covariate. This gives us

m

∑
k=1

βr
1,kxi,1 = βr

1 = a. (35)

We can consider this a constraint under which we must minimize the sum ∑m
k=1

(
βr

1,k

)2
, the penalty

term of Eqn. (34). A sum of squares of elements given some constaint is minimized when all those
elements are equal to one another, as a result of the Cauchy-Schwartz inequality. Thus,

βr
1,k =

a
m

, ∀ k ∈ {1, 2, . . . , m}. (36)

(b) The coefficient vector for lasso regression β̂lasso is found as follows:

β̂lasso = arg min
β

{
(y − Xβ)T(y − Xβ) + λ

p

∑
j=1

|β j|
}

(37)

= arg min
β

 n

∑
i=1

(
yi − β0 − β1xi,1 −

p

∑
j=2

β jxi,j

)2

+ λ

(
|β1|+

p

∑
j=2

|β j|
) . (38)

Similarly as in (a), we add m − 1 copies of variable X1, and our lasso solution becomes

β̂∗lasso = arg min
β

 n

∑
i=1

(
yi − β0 −

m

∑
k=1

β1,kxi,1 −
p

∑
j=2

β jxi,j

)2

+ λ

(
m

∑
k=1

|β1,k|+
p

∑
j=2

|β j|
) . (39)

So now we want to minimize ∑m
k=1 |β1,k| subject to the constraint

m

∑
k=1

βlasso
1,k xi,1 = βlasso

1 = a. (40)

However, there is no unique solution to this problem. We can pick any vector βlasso
1,• such that its com-

ponents sum to a and all have the same sign.
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###################################################

##### Created by Spencer Woody on 26 Sep 2016 #####

###################################################

5 library(microbenchmark)

library(leaps)

library(ggplot2)

library(xtable)

10 #

##

# Problem 1

##

#

15

car <- read.csv("car.csv", header = T)

attach(car)

X <- as.matrix(car[, c(2, 3, 5, 6)])

20 y <- as.matrix(car[, 4])

N <- nrow(X)

int <- rep(1, N)

X <- cbind(int , X)

25

mymodel1 <- lm(MPG ˜ VOL + HP + SP + WT)

summary(mymodel1)

30 my.lm <- function(X, y) {

# Note: this function assumes that X already has an intercept term

# (or doesn’t, if we want to force OLS through the origin)

N <- nrow(X)

p <- ncol(X)

35

XtX <- crossprod(X)

# Calculate beta.hat

beta.hat <- solve(XtX , crossprod(X, y))

40

# Calculate predicted values and residuals

y.hat <- crossprod(t(X), beta.hat)

res <- y - y.hat

45 rss <- sum(resˆ2)

# Calculate \hat{sigma^2}

var.hat <- rss / (N - p)

50 # Calculate covariance matrix of beta and SE’s of beta

var.beta <- var.hat * solve(crossprod(X))

beta.SE <- diag(var.beta) ˆ 0.5
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# Calculate t−score of each beta

55 beta.t <- beta.hat / beta.SE

# Calculate p−values for coefficients

beta.p <- 2 * (1 - pt(abs(beta.t), N - p))

60 # Calculate r−squared and adjusted r−squared
r.sq <- 1 - rss / sum((y - mean(y))ˆ2)

r.sqadj <- r.sq - (1 - r.sq) * (p - 1) / (N - p - 2)

# Create a list of calculated values, return it back

65 mylist <- list(Beta.hat = beta.hat , Beta.SE = beta.SE,

Beta.t = beta.t, Beta.p = beta.p, RSS = rss , Var.hat = var.hat ,

R.sq = r.sq, R.sqadj = r.sqadj)

return(mylist)

}

70

mymodel2 <- my.lm(X, y)

mymodel2$Beta.hat

mymodel2$Beta.SE

75 mymodel2$Beta.t

mymodel2$Beta.p

fw.stepwise <- function(X, y) {

N <- nrow(X)

80 p <- ncol(X)

CP.null <- sum((y - mean(y))ˆ2)

CP.trace <- CP.null

keep <- 1

remain <- 2:p

85 for (i in 2:p) {

CP.list <- NULL

for (j in remain) {

X.j <- X[, c(keep , j)]

model.j <- my.lm(X.j, y)

90 CP.j <- model.j$RSS + 2 * model.j$Var.hat * (ncol(X.j) - 1)

CP.list[length(CP.list) + 1] <- CP.j

}

CP.trace[length(CP.trace) + 1] <- min(CP.list)

if (min(CP.list) < CP.null) {

95 newkeep <- remain[ which(CP.list == min(CP.list)) ]

keep[length(keep) + 1] <- newkeep

remain <- remain[- which(remain == newkeep) ]

CP.null <- min(CP.list)

}

100 else {

finalvars <- keep

finalmod <- my.lm(X[, finalvars], y)

break

}

105 finalvars <- keep

finalmod <- my.lm(X[, finalvars], y)
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}

fw.list <- list(finalvars , finalmod , CP.trace)

return(fw.list)

110 }

fw <- fw.stepwise(X, y)

115 CP.tracefw <- fw [[3]]

pdf("forward.pdf")

plot (1: length(CP.tracefw) - 1, CP.tracefw ,

log = "y",

120 type = "l",

ylab = "Mallows ’s Cp",

xlab = "Number of covariates included",

main = "Traceplot of Mallows ’s CP for Forward Stepwise Selection")

points (1: length(CP.tracefw) - 1, CP.tracefw , pch = 19)

125 dev.off()

bw.stepwise <- function(X, y) {

N <- nrow(X)

p <- ncol(X)

130 fullmodel <- my.lm(X, y)

CP.null <- fullmodel$RSS + 2 * fullmodel$Var.hat * (ncol(X) - 1)

CP.trace <- CP.null

keep <- 2:p

remove <- NULL

135 for (i in 2:p) {

CP.list <- NULL

for (j in keep) {

remove.j <- keep[-which(keep == j)] # Delete one at a time

X.j <- X[, c(1, remove.j)]

140 model.j <- my.lm(X.j, y)

CP.j <- model.j$RSS + 2 * model.j$Var.hat * (ncol(X.j) - 1)

CP.list[length(CP.list) + 1] <- CP.j

}

CP.trace[length(CP.trace) + 1] <- min(CP.list)

145 if (min(CP.list) < CP.null) {

newremove <- keep[which(CP.list == min(CP.list ))]

remove[length(remove) + 1] <- newremove

keep <- keep[-which(keep == newremove )]

}

150 else {

finalvars <- keep

finalmod <- my.lm(X[, c(1, finalvars)], y)

break

}

155 }

bw.list <- list(finalvars , finalmod , CP.trace)

return(bw.list)

}

Page 10 of 14



Spencer Woody SDS 383C : Homework 2

160 bw <- bw.stepwise(X, y)

CP.tracebw <- bw [[3]]

pdf("backward.pdf")

165 plot (1: length(CP.tracebw) - 1, CP.tracebw ,

log = "y",

type = "l",

ylab = "Mallows ’s Cp",

xlab = "Number of covariates discarded",

170 xaxt = "n",

main = "Traceplot of Mallows ’s CP for Backward Stepwise Selection")

axis(1, at = 0: length(CP.tracebw ))

points (1: length(CP.tracebw) - 1, CP.tracebw , pch = 19)

dev.off()

175

zhengloh <- function(X, y) {

N <- nrow(X)

p <- ncol(X)

180 fullmodel <- my.lm(X, y)

tvec <- fullmodel$Beta.t[2:p]

indices.tvec <- cbind (2:p, tvec)

sorted <- indices.tvec[order(-abs(indices.tvec[, 1])), ]

185 zl.list <- sum((y - mean(y))ˆ2)

for (i in 1:nrow(sorted )) {

X.i <- X[, c(1, sorted [1:i, 1])]

model.i <- my.lm(X.i, y)

190 zl.i <- model.i$RSS + i * fullmodel$Var.hat * log(N)

zl.list[i + 1] <- zl.i

}

opt <- which(zl.list == min(zl.list))

vars <- sorted [1:opt , 1]

195 return(zl.list)

}

zl <- zhengloh(X, y)

200 pdf("zl.pdf")

plot (1: length(zl) - 1, zl,

log = "y",

type = "l",

ylab = "Zheng -Loh Objective function",

205 xlab = "Number of first most significant covariates included",

xaxt = "n",

main = "Traceplot of objective function for Zheng -Loh Selection")

axis(1, at = 0: length(zl))

points (1: length(zl) - 1, zl, pch = 19)

210 dev.off()

#
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##

# Problem 2

215 ##

#

# START HERE

220 # Read in data

prostate <- read.table("prostate.txt", header = T)

# Create matrices of covariates

225

X2 <- as.matrix(prostate[which(prostate$train == TRUE), 1:8])

y2 <- as.matrix(prostate[which(prostate$train == TRUE), 9])

colnames(y2)[1] <- "lpsa"

230 # Make data frame X2 and y2

mydata <- as.data.frame(cbind(X2, y2))

N2 <- nrow(mydata)

235 P2 <- ncol(mydata) - 1

# Add intercept column to X2

X2 <- cbind(rep(1, N2), X2)

240 colnames(X2)[1] <- "(Intercept)"

# Perform best−subset selection

toLatex(xtable(obj , digits = 2))

245

regsubsets.out <- regsubsets(lpsa ˜ lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45 ,

data = mydata , method = "exhaustive")

mysummary <- summary(regsubsets.out)

250 mysummary$which

# Perform cross validation

numbins <- 10

255 jumble <- sample (1:N2 , N2, replace = F)

bin.indices <- split(jumble , cut (1:N2, numbins ))

est.rss <- rep(NA , P2 + 1)

se.rss <- rep(NA, P2 + 1)

260

for (i in 0:P2) {

res.vec <- rep(NA, numbins)

for (j in 1: numbins) {

# Deifine indices

265 indices.j <- bin.indices [[j]]
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# Create testing data

mydata.j <- mydata[-indices.j, ]

270 y.te <- y2[indices.j]

if (i == 0) {

y.hat <- mean(y2[-indices.j])

}

275 else {

# Perform best subset for i variables

regsubsetsout.j <- regsubsets(lpsa ˜ lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45 ,

data = mydata.j, nvmax = i)

280 summary.j <- summary(regsubsetsout.j)

# Grab coefficients from

coefs.j <- coef(regsubsetsout.j, i)

285 # Create subset of X2 and Y2 which only contain testing data and best subset vars

colnumbers <- which(colnames(X2) %in% names(coefs.j))

X.te <- X2[indices.j, colnumbers]

# Predict

290 y.hat <- X.te %*% coefs.j

}

# Calculate average RSS, add it to rss vector

rss <- sum((y.te - y.hat )ˆ2) / length(indices.j)

res.vec[j] <- rss

295

}

est.rss[i+1] <- mean(res.vec)

se.rss[i+1] <- sqrt(var(res.vec) / numbins)

}

300

whichsmallest <- which(est.rss == min(est.rss))

redline <- est.rss[whichsmallest] + se.rss[whichsmallest]

bools <- est.rss < redline

305

if (sum(bools) > 0) {

numvarchoice <- min(which(bools == T)) - 1

} else {

numvarchoice <- whichsmallest - 1

310 }

pdf(sprintf("cv%i.pdf", numbins ))

qplot (0:P2, est.rss) +

315 geom_vline(xintercept = numvarchoice , linetype = 3, col = "gray30", size = 0.75) +

geom_hline(aes(yintercept=redline), linetype = "dotdash", col = "red") +

geom_line() +

geom_errorbar(aes(x=0:P2, ymin = est.rss - se.rss , ymax = est.rss + se.rss), width =0.25) +
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xlab("Number of predictors") +

320 ylab("Expected prediction error") +

labs(title = sprintf("%i-fold Cross -validation", numbins ))

dev.off()

if (numbins == 5) {

325 cv.5 <- est.rss[-1]

} else if (numbins == 10) {

cv.10 <- est.rss[-1]

}

330 AIC <- mysummary$cp / (mysummary$rss / (N2 - P2))

BIC <- mysummary$bic

# Make sure to run twice, once with numbins = 5, once with numbins = 10

335 toLatex(xtable(cbind(mysummary$which , AIC , BIC , cv.5, cv.10), digits = 4))
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