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Spencer Woody SDS 383C : Homework 2

Problem 1

(a)

(b)

(©)

A multiple linear regression is performed to predict MPG (fuel efficieny in mi / gallon) of cars from
the dataset. the covariates VOL (cab space in ft*), HP (engine horsepower), SP (top speed in miles per
hour) and WT (vehicle weight in hundreds of pounds). Figure 1 reports a summary of this multiple
linear regression. A general R function for fitting multiple linear regression is included in the script at
the end of this report.

Covariate | Estimate S.E. | t-statistic p-value
(intercept) 192.48 | 23.53161 8.178 | 4.62 x 10712
VOL —0.01565 | 0.02283 —0.685 0.495
HP 0.39221 | 0.08141 4818 | 7.131 x 107
SP —1.29482 | 024477 | —5290 | 1.11x10°°
WT —1.85980 | 0.21336 —8.717 | 422 x 10713

Figure 1: Summary of multiple linear regression for predicting MPG

Here we use Mallows’s C, to find a best sub-model under two methods: forward stepwise selection
and backward stepwise selection. Mallows’s C), is used as a predictor of test error and is defined as

Cy = RSS(p) +26%p 1)

where p is the number of non-intercept covariates included in the model. Traceplots for Mallows’s C,
for these two methods are shown in Figure 2.

(i) Forward Stepwise Selection
Here we start with a null model including only the intercept term. Then we add the most sig-
nificant covariate, determined by evaluating a model including only one covariate at a time and
then choosing the covariate with minimal C,, out of all of these options. This process is repeated
iteratively until we reach a point where adding another covariate cannot reduce C,. We include
three variables before reaching this point, which are, in order, WT, SP and HP.

(i) Backward Stepwise Selection
Now we start with a full model and remove the least significant covariate, determined by eval-
uating a p models, each one calculated by removing one covariate at a time, and choosing the
covariate at which the model achieves minimal C,. This process is repeated iteratively until we
reach a point where removing an additional convariate cannot reduce C,. We only remove one
covariate here, which is VOL.

Now we use the Zheng-Loh model selection method to select a sub-model. We order the non-intercept
covariates from most to least significant according to their calculated f-statistic from the full model, and
then we find the optimal number of covariates

j* = argmin { RSS(j) + jo* log N } @)
j
where RSS(j) is the residual sum of squares of the linear model containing the first j most significant
non-intercept covariates covariates, 62 is the estimated variance under the full model, and N is the
number of data points.

In this particular case, the most significant covariates in decreasing order, as seen in Figure 1, are WT,
SP, HP, and VOL. Figure 3 demonstrates that we achieve optimality at j = 3, meaning that we include
WT, SP, and HP. Forward stepwise selection, backward stepwise selection, and the Zheng-Loh method all give
the same best sub-model.
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Traceplot of Mallows's CP for Forward Stepwise Selection Traceplot of Mallows's CP for Backward Stepwise Selection
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Figure 2: Forward stepwise selection and backward stepwise selection

Traceplot of objective function for Zheng-Loh Selection

7000
|

4000 5000

Zheng-Loh Objective function
3000
!

2000
|

Number of first most significant covariates included

Figure 3: Zheng-Loh Model Selection
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SDS 383C : Homework 2

Problem 2

(a) We use the leaps package within R to perform best-subset selection. Results are shown in Figure (4),
along with AIC, BIC, estimated RSS for five-fold cross validation, and estimated RSS for ten-fold cross
validation. For cross validation, we use the one-standard error rule to select the number of predictors to
include in our model. For five-fold, we include one predictor, and for ten-fold we include 2 predictors.
Best subset selection tells us that the predictors to include are Icaval and lweight.

’ p ‘ (Int) ‘ lcaval ‘ lweight ‘ age ‘ Ibph ‘ svi ‘ lcp ‘ gleason ‘ pge4d H AIC ‘ BIC ‘ CVs ‘ CVqg ‘
1 ° ° 32.82 | -43.26 | 0.6966 | 0.6929
2 ° ° ° 19.26 | -51.30 | 0.5792 | 0.5998
3 ° ° ° ° 16.57 | -51.16 | 0.6474 | 0.6897
4 ° ° ° ° ° 13.81 | -51.09 | 0.6269 | 0.5816
5 ° ° . ° ° ° 15.10 | -48.43 | 0.6496 | 0.6369
6 ° ° ° ° ° ° 13.90 | -47.50 | 0.5985 | 0.5700
7 ° ° ° ° ° ° ° 14.07 | -45.76 | 0.5619 | 0.5436
8 ° ° ° ° ° ° ° ° 18.05 | -41.58 | 0.5705 | 0.5560

Figure 4: Best-subset linear regression analysis

5-fold Cross-validation

Expected prediction error

4
Number of predictors

Expected prediction error

16-

10-fold Cross-validation

4
Number of predictors

Figure 5: Cross-Validation for b = 5 and b = 10 bins

(b) The book’s model selection, whereby the two variables Icaval and Iweight are chosen, is in line what is

given in the table above from ten-fold cross validation and BIC.
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Problem 3
We define
1 T, \2
Ru(p) = Y (yi— B xi) (©)
i=1
= (s = XP)"(y — XP) @
and
L PR
Re(B) = 37 Y (7, - B'%) )
=1
= 7~ %B)(7 - Xp). ©
Because all pairs (x, y) are i.i.d., the expected value of R (B) is calculated as
N
E[Ru(B)] = E [;, Y (yi— .BTxi)Z] )
i=1
— 1 E = . T.,\2 8
- N i:zl(yz D) 8)
— 1 ad E T, \2 9
—ﬁ; [(]/i_ﬁ xi)} €)
:%xNxE[(yk—‘BTxk)z},ke{1,2,...N} (10)
—E [(yk - 5Txk)2} ke {1,2,...N}. (11)
Similarly,
E[Re(p)] = E (7 — B"5)?] 1 € {1,2,... M} (12)
Note that j is defined as
p= argmin(y - XB)"(y — XB). (13)

By definition, # minimizes Eqn. (3). Suppose we also computed j in an analogous way where

B= arg;nin(y — XB)" (7 — XB). (14)

Because all pairs (x;,y;),i € 1,2,...,Nand (fj, ]7/), j€1,2,..., Mare drawn from the same distribution, the
respective expected values of Ri(B) and R (B) evaluated at their respective minimized values are equal,
which can be notated as

E[Ru(B)] = E [Ree(B)] - (15)

However, when Ry, is evaluated at j instead, it will be at least as large as when it is evaluated at . That is
to say,

E[Re(B)] = E [Ree(B)] - (16)
Combining Eqns. (15) and (16) yields
E[Ru(B)] < E[Ree(B)]. (17)
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Problem 4
(a) We have it that XTX = I,,.,. The objective function for the least-squares estimate becomes
L(B) = 5(XB— ) (X~ y) 18)
= S(ETXT —yT)(XB - ) (19)
= %(ﬁTXTXﬁ — B Xy -y XBp+y'y) (20)
= (676 26"X"y +y"y) @

Taking the gradient with respect to §,
1, 4
VpL(B) = 5(2p—2X"y) =0 (22)

Thus we see that f = XTy. Hereafter we denote this as O°. The ith element of BOS is ol'y where v; is
the ith column of X.

First, let us rearrange our old objective function in Eqn. (18) as
L(B) = 5 (X6~ )" (X~ y) 3)
= 2"y~ yTXXTy + (B XTy) (B~ XTy)) (24)
= %(yTy —yTy+(B=XTy)T(B-X"y) (25)
= 26— X"y (B~ XTy) (26)
= 2(B— ) (B~ ) @)
Now our regularization stated in the problem becomes
B =argmin (6= B%)7 (6= 67) + 4 Il (8)
Element-wise, this can be written as
Bi= afgﬁl_nin;(ﬁi — B+ A X 1(B; #0) (29)
= argﬁmini(ﬁi —o[y)> + A x1(B; #0). (30)

We can see that the solution to our objective function will take one of two forms. Either ; will be 0, in
which case the loss function takes on the value % (vl'y)?, or B; will be v}y, in which case the loss function
takes on a value of A. Any value of §; between these two values will give quadratic part and A in the
loss function. The threshold at which f; changes from 0 to v]y is when

Sl > A (31)

By solving this inequality, we have an element-wise solution to Eqn. (28)

{viTy if [oly| > V2A
i:

32
0 if[v]y] < V21 =2

™
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Problem 5

(a)

The coefficient vector for ridge regression f" is found as follows:

i=1

n p 2 p
pr= arg;nin {Z <yi —Bo—Bixin— ), ﬁjxi,j> +A (5% +) 13]2> } : (33)
= =

Once we add m — 1 copies of variable X1, our ridge solution becomes
2
A ) n m p m 2 p 5
p*" = arg min {Z <]/i —Bo — Z Biixi1— Z ,Bjxi//) +A <Z (Bix)” + Z ‘3]> } . (34)
B i=1 k=1 j=2 k=1 =2

This expression is similar to our original objective function because, but now each x; ; is multiplied by
a summation of “new” coefficients. If we assume that the number of data points # is large, then the
RSS term of the loss function overwhelms the penalty term, and therefore the minimization is largely
determined by minimizing the RSS. Since the minimum of the RSS term in Eqn. (33) is achieved at j",
the RSS term of Eqn. (34) is minimized at the same “fitted” coefficients for each covariate. This gives us

m
Y Bl ixig = By = a. (35)
k=1

2
We can consider this a constraint under which we must minimize the sum Y ; (,Bﬁ k) , the penalty

term of Eqn. (34). A sum of squares of elements given some constaint is minimized when all those
elements are equal to one another, as a result of the Cauchy-Schwartz inequality. Thus,

Bl = %,v ke{1,2,...,m}. (36)

The coefficient vector for lasso regression 125 is found as follows:

A P
ﬁlasso _arg;nin{(y X’B)T(y*X‘B)+/\ E |,3]|} (37)
=1

n 1 2 P
= argmm {Z ( — Bo— B1xig — gﬁjxi,j> +A <|51| + X; 5j|> } : (38)
j= j=

Similarly as in (a), we add m — 1 copies of variable X;, and our lasso solution becomes

| ) . ) 2 " P
B350 _ are min { Y. <]/i —Bo— ) Biixii— ), ﬁsz',j) +A (Z Brel+ ) ﬁj!) } : (39)
= f k=1 j=2

B i=1

So now we want to minimize Y ;" ; |81 x| subject to the constraint
Z 'Blasso lasso —a (40)

However, there is no unique solution to this problem. We can pick any vector B35 such that its com-
ponents sum to a and all have the same sign.
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daddzasdasadasddaddasasasddataaadddaddaaddaadddad
##### Created by Spencer Woody on 26 Sep 2016 #####
#HHAAARAAFRAAFRAAFRAAFRAAFRAAFRAAFRAF SRR A SRR A HAAAHA

library(microbenchmark)

library(leaps)

library(ggplot2)

library(xtable)

#

##

# Problem 1

##

#

car <- read.csv("car.csv", header = T)

attach(car)

X <- as.matrix(car[, c(2, 3, 5, 6)1)
y <- as.matrix(car[, 41)

N <- nrow(X)
int <- rep(1, N)
X <- cbind(int, X)

mymodell <- 1Im(MPG ~ VOL + HP + SP + WT)
summary (mymodel1l)

my.lm <- function(X, y) {
# Note: this function assumes that X already has an intercept term
# (or doesn’t, if we want to force OLS through the origin)
N <- nrow(X)
p <- ncol(X)

XtX <- crossprod(X)

# Calculate beta.hat
beta.hat <- solve(XtX, crossprod(X, y))

# Calculate predicted values and residuals
y.hat <- crossprod(t(X), beta.hat)
res <- y - y.hat

rss <- sum(res”2)

# Calculate \hat{sigma”2}
var.hat <- rss / (N - p)

# Calculate covariance matrix of beta and SE’s of beta
var.beta <- var.hat * solve(crossprod(X))
beta.SE <- diag(var.beta) " 0.5
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# Calculate t—score of each beta
beta.t <- beta.hat / beta.SE

# Calculate p—values for coefficients
beta.p <- 2 * (1 - pt(abs(beta.t), N - p))

# Calculate r—squared and adjusted r—squared
r.sq <- 1 - rss / sum((y - mean(y))"2)
r.sgadj <- r.sq - (1 - r.sq) *x (p - 1) /7 (N-p - 2)

# Create a list of calculated values, return it back
mylist <- list(Beta.hat = beta.hat, Beta.SE = beta.SE,

Beta.t = beta.t, Beta.p = beta.p, RSS = rss, Var.hat

R.sq = r.sq, R.sqadj = r.sqadj)
return(mylist)

mymodel2 <- my.Im(X, y)

mymodel2$Beta. hat
mymodel2$Beta.SE
mymodel2$Beta.t
mymodel2$Beta.p

fw.stepwise <- function(X, y) {
N <- nrow(X)
p <- ncol(X)
CP.null <- sum((y - mean(y))"2)
CP.trace <- CP.null
keep <- 1
remain <- 2:p
for (i in 2:p) {
CP.list <- NULL
for (j in remain) {
X.j <= X[, c(keep, j)1I
model.j <- my.Im(X.j, y)
CP.j <- model.j$RSS + 2 * model.j$Var.hat * (ncol(X.j)
CP.list[length(CP.1list) + 1] <- CP.j
}
CP.tracel[length(CP.trace) + 1] <- min(CP.list)
if (min(CP.list) < CP.null) {

newkeep <- remain[ which(CP.list == min(CP.list)) ]
keep[length(keep) + 1] <- newkeep
remain <- remain[- which(remain == newkeep) ]
CP.null <- min(CP.list)
}
else {
finalvars <- keep
finalmod <- my.lIm(X[, finalvarsl], y)
break
}

finalvars <- keep
finalmod <- my.Im(X[, finalvars], y)

var.hat,
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}
fw.list <- list(finalvars, finalmod, CP.trace)
return(fw.list)

fw <- fw.stepwise(X, y)

CP.tracefw <- fw[[3]]

pdf ("forward.pdf")
plot(1:1length(CP.tracefw) - 1, CP.tracefw,

log = "y",

type = "1",

ylab = "Mallows’s Cp",

xlab = "Number of covariates included”,

main = "Traceplot of Mallows’s CP for Forward Stepwise Selection")

points(1:length(CP.tracefw) - 1, CP.tracefw, pch = 19)
dev.off ()

bw.stepwise <- function(X, y) {
N <- nrow(X)
p <- ncol(X)
fullmodel <- my.1lm(X, y)
CP.null <- fullmodel$RSS + 2 % fullmodel$Var.hat * (ncol(X) - 1)
CP.trace <- CP.null
keep <- 2:p
remove <- NULL
for (i in 2:p) {
CP.list <- NULL
for (j in keep) {
remove.j <- keep[-which(keep == j)] # Delete one at a time
X.j <= X[, c(1, remove.j)]
model.j <- my.1lm(X.j, y)

CP.j <- model.j$RSS + 2 * model
CP.list[length(CP.list) + 1] <-

.j$Var.hat x* (ncol(X.j) - 1)
CP.j

}

CP.tracel[length(CP.trace) + 1] <- min(CP.list)

if (min(CP.list) < CP.null) {
newremove <- keep[which(CP.list == min(CP.list))]
remove[length(remove) + 1] <- newremove

keep <- keep[-which(keep == newremove)]
}
else {
finalvars <- keep
finalmod <- my.Im(X[, c(1, finalvars)], y)
break
}

}
bw.list <- list(finalvars, finalmod, CP.trace)
return(bw.list)
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160 | bw <- bw.stepwise(X, y)

CP.tracebw <- bw[[3]]

pdf ("backward.pdf")
165 | plot(1:length(CP.tracebw) - 1, CP.tracebw,

log = "y",
type = "1",
ylab = "Mallows’s Cp",
xlab = "Number of covariates discarded”,
170 | xaxt = "n",
main = "Traceplot of Mallows’s CP for Backward Stepwise Selection”)

axis(1, at = @:1length(CP.tracebw))
points(1:length(CP.tracebw) - 1, CP.tracebw, pch = 19)
dev.off ()

175

zhengloh <- function(X, y) {
N <- nrow(X)
p <- ncol(X)
180 fullmodel <- my.1lm(X, y)
tvec <- fullmodel$Beta.t[2:p]
indices.tvec <- cbind(2:p, tvec)
sorted <- indices.tvec[order(-abs(indices.tvec[, 11)), 1

185 z1.1list <- sum((y - mean(y))"2)

for (i in 1:nrow(sorted)) {

X.i <= X[, c(1, sorted[1:1i, 11)]

model.i <- my.Im(X.i, y)
190 z1.i <- model.i$RSS + i * fullmodel$Var.hat x log(N)
zl.1list[i + 1] <- zl.i

}
opt <- which(zl.list == min(zl.list))
vars <- sorted[1:opt, 1]
195 return(zl.list)
3

z1 <- zhengloh (X, y)

200 | pdf ("zl.pdf")
plot(1:1length(zl) - 1, zl,

log = "y",
type = "1",
ylab = "Zheng-Loh Objective function”,
205 | xlab = "Number of first most significant covariates included”,
xaxt = "n",
main = "Traceplot of objective function for Zheng-Loh Selection”)

axis(1, at = @:length(zl))
points(1:1length(zl) - 1, zl1, pch = 19)
20 | dev.off ()
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##
# Problem 2
##
#

# START HERE

# Read in data

prostate <- read.table("prostate.txt”, header = T)

# Create matrices of covariates

X2 <- as.matrix(prostate[which(prostate$train == TRUE), 1:81])
y2 <- as.matrix(prostate[which(prostate$train == TRUE), 91)
colnames(y2)[1] <- "lpsa”

# Make data frame X2 and y2

mydata <- as.data.frame(cbind(X2, y2))

N2 <- nrow(mydata)
P2 <- ncol(mydata) - 1

# Add intercept column to X2

X2 <- chbind(rep(1, N2), X2)
colnames(X2)[1] <- "(Intercept)”

# Perform best—subset selection

toLatex(xtable(obj, digits = 2))

regsubsets.out <- regsubsets(lpsa = lcavol + lweight + age + lbph + svi + lcp + gleason
data = mydata, method = "exhaustive")

mysummary <- summary(regsubsets.out)
mysummary $which

# Perform cross validation

numbins <- 10
jumble <- sample(1:N2, N2, replace = F)
bin.indices <- split(jumble, cut(1:N2, numbins))

est.rss <- rep(NA, P2 + 1)
se.rss <- rep(NA, P2 + 1)

for (i in @:P2) {
res.vec <- rep(NA, numbins)
for (j in 1:numbins) {
# Deifine indices
indices.j <- bin.indices[[j]]
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# Create testing data
mydata.j <- mydatal[-indices.j, 1

y.te <- y2[indices.j]

if (i == 0) {

y.hat <- mean(y2[-indices.j])
}
else {

# Perform best subset for i variables

regsubsetsout.j <- regsubsets(lpsa = lcavol + lweight + age + lbph + svi + lcp H+
data = mydata.j, nvmax = i)

summary.j <- summary(regsubsetsout.j)

# Grab coefficients from
coefs.j <- coef(regsubsetsout.j, i)

# Create subset of X2 and Y2 which only contain testing data and best subset vaj
colnumbers <- which(colnames(X2) %in% names(coefs.j))
X.te <- X2[indices.j, colnumbers]

# Predict
y.hat <- X.te %*% coefs.j

}

# Calculate average RSS, add it to rss vector
rss <- sum((y.te - y.hat)"2) / length(indices.j)
res.vec[j] <- rss

}
est.rss[i+1] <- mean(res.vec)
se.rss[i+1] <- sqgrt(var(res.vec) / numbins)

whichsmallest <- which(est.rss == min(est.rss))

redline <- est.rss[whichsmallest] + se.rss[whichsmallest]

bools <- est.rss < redline

if (sum(bools) > 0) {

numvarchoice <- min(which(bools == T)) - 1
} else {
numvarchoice <- whichsmallest - 1

pdf (sprintf ("cv%i.pdf"”, numbins))
gplot(0:P2, est.rss) +

geom_vline(xintercept = numvarchoice, linetype = 3, col = "gray30", size = 0.75) +
geom_hline(aes(yintercept=redline), linetype = "dotdash”, col = "red") +

geom_line() +

geom_errorbar (aes(x=0:P2, ymin = est.rss - se.rss, ymax = est.rss + se.rss), width=0.25
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xlab ("Number of predictors”) +

20 | ylab("Expected prediction error”) +

labs(title = sprintf("%i-fold Cross-validation”, numbins))
dev.off ()

if (numbins == 5) {

325 cv.5 <- est.rss[-1]

} else if (numbins == 10) {
cv.10 <- est.rss[-1]

30 | AIC <- mysummary$cp / (mysummary$rss / (N2 - P2))
BIC <- mysummary$bic

# Make sure to run twice, once with numbins = 5, once with numbins = 10

335 | toLatex(xtable(cbind (mysummary$which, AIC, BIC, cv.5, cv.10), digits = 4))
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