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Problem 1. Convergence of random variables

iid . ) > (Xi—Xn)?
Assume X, ..., X, ~ f(u,0, 13, 14). The sample variance is S;; = ==——-"~. Prove the follow-

ing statements.

(@) S2 L 52, that is, the WLLN for S2.

SﬁZZA?—f%V__n1< §:X2+X2_X’§:X>

X2 n -
X2 X2 = no>, i X2
n—l( Z ) n—1 n n—1"

The second term of the sum converges in probability to 12, In fact, for the WLLN, X, i 7
and, for the continuous mapping theorem X2 2 ;2.

2
Moreover, as far as the first term is concerned, it is easy to prove that % i wo. In fact,

oE] - -

and
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Therefore, using the definition of convergence in probability,
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Thus, using (I) we get

n ZZ‘XZ v P
st (B R D=

(b) S, — o. The proof is straightforward: we can use the continuous mapping theorem with
g(z) = \/z since the square root is a continuous function on R*.
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(c) % L . The proof is straightforward: we can use the continuous mapping theorem with

g(u,v) = %, which is continuous if v # 0 In fact, we already knew that X, Lif u (WLLN) and

that S, = & (proved in (b)).
n_"; — 0,1). We know that, for the Central Limit Theorem,
(d) vatz % N(0,1). We know that, for the Central Limit Th

V(X — 1) % N(0,07).

Moreover, we proved in part (b) that .S, £> o, which implies that S, i> o, where o is a

constant. Therefore, using Slutsky’s lemma, we conclude that

=t 4 %/\/’(0,02) = N(0,1).

Problem 2. Maximum Likelihood Estimates

(a) Let Xy, ..., X, ~ Uniform([f,60 + 1]). We can compute the likelihood of the data

n

L(X1,..., Xn;0) = [[ P(Xi = 2:30)

i=1

n 1 if0<z;,<0+1 Vi=1,...,n
= [[Zvosrn (@) = )
im1 0 otherwise.

Therefore we can find an infinite number of maxima, i.e. of 4 that realize L(Xq,...,Xp; 9) =

1, by simply setting the two constraints

that correspond to 0 € [maxj—1 _ n(z;) — I;min;—; _n,(x;)]. The MLE exists but it is not
unique.
(b) Let X1,..., X, ~ Uniform([0,1]),6 < 1.

i. We can compute the likelihood of the data

n

L(X1,..., Xn:0) = [[ P(X; = 2::0)

i=1
:ﬁ{ll[e-u(x»)}z fogr HO<@m <1 Vi=1,...n
i=1 1—0 0 otherwise.

Our goal is to maximize ﬁ under the constraint # < z; < 1. The minimum is
reached for § = min;—1,_,(z;). Therefore the MLE exists and it is unique.

2
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ii. To find the limit in distribution of n(é — 0), we compute its cdf, i.e.

~

P(n(0—0) <t) = P(0 < t/n+0)
= P(min{x1,...,z,} < t/n+0)
=1- P(min{zy,...,z,} > t/n+0)
irl:d‘l—fIP(a?i>t/n—|—9)
i=1

21— [Pz > t/n+0)"
=1—[1— Pz <t/n+0)"

t/n+6—146 "
:1—[1—10]

t " s

:1_[1_71(1_0)} —1—e 1-9,

which is the cdf of an exponential distribution. Therefore n(f — 6) 4e <ﬁ) .

iii. The MLE is not behaving the way we would expect. In fact, we know that, under
mild assumptions of regularity, MLEs are asymptotically normal. However, in this case
one of the hypothesis does not hold. In particular, the support of the pdf, i.e. the set
S ={z: f(z;0) > 0} = [, 1] is not independent of 6.

(c) Let Xq,..., X, s N (i, 1), and let 6 := et. Let, in the simulations, x = 5 and n = 100.

i. Use the delta method to get the variance of the estimator and a 95% confidence interval
of 6.
Let us recall that, since X,, is the MLE for y, then eXn is the MLE for e/ (invariance

principle). Moreover, we know (central limit theorem) that

n(X, —
w 2 N(0,1). )
Actually, in the case when the observations are iid draws from the normal distribution,
not only the asymptotic distribution but also the exact distribution of the sample mean
is normal (linear combination of independent normal distributions). However, we here
use the Delta method to the expression (2), obtaining

M i)N(O, 1)’

eM

_ 21
d e
eXn SN (e“,) )
n

which corresponds to
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We can use this asymptotic distribution to obtain a 95% confidence interval for the
unknown quantity e*. In fact

P(\eX" —el<t)=1—-«

Xn o
;»P(f‘e e’_\/ft>=1—a
P(!Z!g\/ﬁt>:1—a
eM

n
:>76U t= 21704/2

X
sy € 21q)2

Vi yn

=t =

Therefore, the 95% CI for 0 is

X Xz a/2. X eX"Zlfa/2
g€ |etr — ———Lietn 4 ————2 |
vn Vn
ii. The same confidence interval can be approximated via Bootstrap. Recall, in fact, that
this method allows us to obtain the sampling distribution of the estimator §. At each
bootstrap iteration, a new dataset is obtained via sampling with replacement from the
original dataset. The estimate eX" is calculated at each iteration, yielding to a sample

D +\B ) i }
0* = (e ") s (e ”) . Then, in order to calculate the confidence interval we can

consider the 2.5% and 97.5% quantiles of this sample, i.e. C), = {9; o0l /2}. Other
methods are plausible, e.g. the normal interval and the pivotal intervals, but here we
take the quantile approach.

In Listing[A.T|the code for the Bootstrap simulation is displayed. In Listing|[T|the results
are shown: as one can see, the CIs are very similar in the two cases.

2.5% 97.5%
Delta Method 130.6150 194.2965
Bootstrap 136.8269 193.8129

Listing 1: Comparison of the Cls using the Delta method and the Bootstrap.

Problem 3. Gradient ascent

We will use a iterative algorithm to calculate the MLE of the parameters of a Dirichlet distribu-
tion. The conjugate prior to the multinomial is the Dirichlet distribution on the k-simplex, whose

density is given by:
k+1
D(Ci i) —1
flor, . apla) = == —— ]| ="
Hiif F( z) Zl;[l '
where x; > 0, ZkH =land a; > 0.
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(a) Prove that Ellog(z;)] = ¥(a;) — \I/(Zfill a;), where ¥(a) = dlogI'(cv)/da is the digamma
function. To to that, we are going to first prove that the marginals of a Dirichlet distribution
are Beta distributions.

o Proof of the neutrality property. We can prove a more general property, called neutrality
of the Dirichlet distribution, which states that, if (X1, ..., X;11) ~ Dirichlet(aq, ..., ax11)
then the following holds:

X¢L< X . Xi 1 ’ Xiy1 L Xk+1>
1-X; 1- X, 1-X; 1-X;
k+1
Xi ~ Beta(ai, Z Ozj>
JF#i
(1 i(;{i,..., 1)?);, 1%;;,..., 1)(_16—;1) NDirichlet(al,...,ai_l,aiﬂ,...,ak+1).

In particular, this implies that each marginal of a Dirichlet distribution is a Beta distri-
bution. To prove this property, we simply apply the pdf transformation theorem in the
multivariate case. We consider the mapping

Q=105 1 =q (1 —q)
gi-1 = % rio1 = qi-1(1 — q)
-1
g=9(x)=19¢=u = z=¢9 (@=qzi=q
Git1 = 155 Tiv1 = qiv1(1 — i)
Q= 75 rr = qre(1 — q;).

The Jacobian matrix of this transformation is the k& x k matrix

1—q; ... 0 —q1 0 0
0 . )
=g —qi1
J = : 0 1 0
—gi+1 1—q
: : : : 0
0 0 —qk 0 e 1—gq;
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whose determinant is ||.J|| = (1 — ¢;)*~!. Therefore,

fola) = fx(g7 (@) - I]|

—1
11(2“11 ) ¢ 1 -1 - o k—1
1 7 Q —
=~ 9 ) Hqg L—g)™ " 1-q =Y (1-q)g (1-q)
J#i J#i
ak+1—1
DSkl | k
= (Ei;az)q?”( Ejslai D an] (L—gq) et 1= g (1—gq)*!
Hi:l ( Z) j#i G

k+1

rm»r@?;zi an '
L o) &

a;—1
T 3]
JF JF#i j#i

Ozk+1—1

which is the thesis. In fact we can see that the density is factorized in two indepen-
dent terms: the first one is the density Beta(c;, Zf;l a;); the second one the density
Dirichlet(a(=9), where a(=9) = (ay,..., ai_1, g1, ..., Qpg1)- O

o Proof marginalizing out the variables. As an alternative proof, we can just find any marginal
distribution by integrating out all the other variables. In our case, given (X1, ..., Xj41) ~

Dirichlet(ay, . .., ag41), to find the marginal X; we can firstly integrate out x;, that is

£(X2,...,Xk+1) = AC(Xla---an—i—l)dxl

Xy

1‘2?:2 YT (o 4+ + age1) k
+1) a1— 1 ap—1 « -1
T X 1-— E ;)T dxy
/0 T(a1)...T(oks1) e pt i)

k

I+ + agyt) a1 op- 1/121"2% a1—1 1

= T . T (1—21— E xj) T
P(Oél) e F(Oék+1) 2 k 0 =2

Remark that, for the sake of simplicity, we are omitting the indicator function over the

k-dimensional simplex. Using the substitution u = which corresponds to

12327
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normalizing the argument of the integral, we obtain

k+1
P21 99) st

k ) Ty
[T} D(ay)

1
/0 o — 1 Z oq 1 1—U Z ak+1—1 Z%)du

L(Xa,..., Xpy1) =

e
e
>

k+1 k 1
(ZJ 1 Olj) ' ak 1 Z 041+C¥k+1 1/ ualfl(l o u)ak+1fldu
H"“+1 M) 2 i—2 0
k+1
(Z] 1 aJ) 2 1 ap—1 al1+ta _1F(041)F(Oék+1)
TG = o + )
k
_ F(ag+ -+ (o1 + agy1)) Lo2=1 0 1 Z yertaii— 1
I(a)...T(ap)T (a1 + o) 2 =
and we recognize that (X, ..., Xy, X;41) ~ Dirichlet(ag, ..., o, a1 + ag41). Integrat-
ing iteratively over all the other variables but x;, we get
k+1
(Xi7 Xk+1) ~ Dirichlet(ai, Z Ctj),
J#i
which is equivalent to X; ~ Beta(o, Zf;l a;). O

Now that we proved that X; ~ Beta(a;, Zf;l a;), using the hint we conclude

k+1
Eflog(X;)] = ¥(a;) — ¥ (Z aj) :
j=1

(b) Let us suppose now we have n data points {z(V,i = 1,...,n} generated from f(z|a). The
log-likelihood of the i-th data point is then

k+1 k+1 k+1

1(z9; a) = log F(Z aj) — Z(logf(aj)) + Z(aj —1) logarg-i).
j=1 j=1

j=1

By deriving the total log-likelihood of the sample we obtain

95" lx(i); k+1
L (u v

=1
k+1
=NV Za] — N¥(ay,) + Nlogzp,,

and, by setting the expression above to be equal to 0, we get to the following equation for
the MLE &

(> a;) = U(ap) - logzp, 3)
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(4)

where log ), = % > i logx;’ is the average computed from data.

(c) From now on, we work with a dataset for a Dirichlet over the 2-dimensional simplex.

i

The scatterplot of the data is displayed in Figure

Dirichlet density

V3

Figure 1: Scatterplot of the data represented on the simplex. Data points are represented in black.

i.

1ii.

The log-likelihood is convex in « since the Dirichlet distribution is in the exponential
family. Therefore, a simple algorithm can be obtained by setting the gradient equal to 0.
A fixed-point iteration for maximizing the likelihood can be derived from (3), yielding

k+1

T(ap) = (> _ o) +logzy.
j=1

In this iterative algorithm a convergence criterion has to be chosen. In our setting,

we used the relative increment of the log-likelihood. In other terms, we defined the

l(a(k‘*‘l))fl(a(k))
[1(alk))+e]

threshold (in our case set to 10719). The constant ¢ = 1072 is only needed in order to

quantity 6 = and the algorithm stops when ¢ is smaller than a certain
ensure numerical stability to the computation of the error at each step.

Running the gradient ascent method from the starting point oy = (1,1, 1) with a tol-
erance error equal to 10719 leads to convergence after 215 iterations. The result is the
MLE for «, i.e. & = (6.3878,12.6291, 3.4034).

The log-likelihood as a function of iterations is shown in Figure

The scatter plot of the data together with a contour plot of the Dirichlet distribution
with optimal parameters & is displayed in Figure
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Figure 2: Plot of the log-likelihood as a function of iterations.

Dirichlet density

V3

Figure 3: Scatterplot of the data represented on the simplex. Data points are represented in black; the contour plot of
the density of the Dirichlet distribution with optimal parameters & is overlapped in red.
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Appendix A

R code

n <- 100
mu <- 5

set.seed (123)
# We generate the "first" dataset: X1, ..., Xn Normal (mu, 1)

X <- rnorm(n, mu, 1)

# We compute the MLE for the mean, that is, Xbar
Xbar <- mean (X)

# BOOTSTRAP

B <- 10000

mu_hat <- array (NA,dim=B)

for (b in 1:B){
X_sampled <- sample (X, n, replace = T)
mu_hat [b] <- mean (X_sampled)

}

theta_hat <- exp(mu_hat)

var (theta_hat)

exp (2+Xbar) /n

# Set the confidence level
alpha <- 0.05

# Bootstrap CI
quantile (exp (mu_hat), probs = c(alpha/2,l-alpha/2))

# Theoretical CI
c(exp (Xbar)* (1 - gnorm(l - alpha/2)/sqgrt(n)),exp(Xbar)*(l + gnorm(l - alpha/2)/sqgrt(n)))

Listing A.1: Bootstrap simulation.
# Compute the log-likelihood of the Dirichlet distribution
log_lik <- function (alpha, y){
N <— dim(y) [1]

11 <- N« (lgamma (sum(alpha)) - sum(lgamma(alpha))) + sum((alpha-1)x*t (log(y)))
return (11)

# Function for the gradient ascent of the Dirichlet model

10
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gradient_ascent <- function(y, alphaO, maxiter, tol) {

alphas <- array(NA, dim=c(maxiter, length (alphal)))
alphas[1l,] <- alphaO # Initial guess

11 <- array(NA, dim = maxiter)

11[1] <- log_lik(alphas[1,]1, y)

for (iter in 2:maxiter) {
psialpha_new <- apply(log(y), 2, mean) + digamma (sum(alphas[iter-1,1]))
alphas[iter,] <- newton_roots (psialpha_new)
11[iter] <- log_lik(alphas[iter,]1, vy)

# Convergence check

if (abs(ll[iter-1] - 1ll[iter])/abs(ll[iter-1] + 1E-3) < tol){
cat ("Algorithm has converged after’, iter, ’'iterations’)
11 <= 11l[1l:iter]
alphas <- alphas[l:iter,]

break;
}
else if (iter == maxiter & abs(ll[iter-1] - 1ll[iter])/abs(ll[iter-1] + 1E-3) >= tol){
print (! WARNING: algorithm has not converged’)
break;
}
}
return(list ("11" = 11, "alpha" = alphas[iter,]))

Listing A.2: Gradient ascent.
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