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Problem 1. Convergence of random variables

Assume X1, . . . , Xn
iid∼ f(µ, σ, µ3, µ4). The sample variance is S2

n =
∑
i(Xi−X̄n)2

n−1 . Prove the follow-
ing statements.

(a) S2
n

P−→ σ2, that is, the WLLN for S2
n.

S2
n =

∑
i(Xi − X̄n)2

n− 1
=

n

n− 1

(
1

n

∑
i

X2
i + X̄2

n −
2

n
X̄n

∑
i

Xi

)

=
n

n− 1

(
1

n

∑
i

X2
i − X̄2

n

)
=

n

n− 1

∑
iX

2
i

n
− n

n− 1
X̄2
n.

(1)

The second term of the sum converges in probability to µ2. In fact, for the WLLN, X̄n
P−→ µ

and, for the continuous mapping theorem X̄2
n

P−→ µ2.

Moreover, as far as the first term is concerned, it is easy to prove that
∑
iX

2
i

n
P−→ µ2. In fact,

E

[∑
iX

2
i

n

]
=

1

n

∑
i

E[X2
i ] = µ2,

and

Var
[∑

iX
2
i

n

]
=

1

n2

∑
i

Var(X2
i ) =

1

n2

∑
i

[EX4
i − (EX2

i )2]

=
1

n
(µ4 − µ2

2).

Therefore, using the definition of convergence in probability,

P

(∣∣∣∣∣ 1n∑
i

X2
i − µ2

∣∣∣∣∣ < ε

)
= P

( 1

n

∑
i

X2
i − µ2

)2

< ε2


≤
E
[(

1
n

∑
iX

2
i − µ2

)2]
ε2

=
Var

(
1
n

∑
iX

2
i

)
ε2

=
µ4 − µ2

2

nε2
−−−−−→
n→+∞

0,

i.e.
∑
iX

2
i

n
P−→ µ2.

Thus, using (1) we get

S2
n =

n

n− 1

(∑
iX

2
i

n
− X̄2

n

)
P−→ µ2 − µ2 = σ2.

(b) Sn
P−→ σ. The proof is straightforward: we can use the continuous mapping theorem with

g(x) =
√
x since the square root is a continuous function on R+.
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(c) X̄n
Sn

P−→ µ
σ . The proof is straightforward: we can use the continuous mapping theorem with

g(u, v) = u
v , which is continuous if v 6= 0 In fact, we already knew that X̄n

P−→ µ (WLLN) and

that Sn
P−→ σ (proved in (b)).

(d)
√
n (X̄n−µ)

Sn

d−→ N (0, 1). We know that, for the Central Limit Theorem,

√
n(X̄n − µ)

d−→ N (0, σ2).

Moreover, we proved in part (b) that Sn
P−→ σ, which implies that Sn

d−→ σ, where σ is a
constant. Therefore, using Slutsky’s lemma, we conclude that

√
n

(X̄n − µ)

Sn

d−→ 1

σ
N (0, σ2) = N (0, 1).

Problem 2. Maximum Likelihood Estimates

(a) Let X1, . . . , Xn
iid∼ Uniform([θ, θ + 1]). We can compute the likelihood of the data

L(X1, . . . , Xn; θ) =

n∏
i=1

P (Xi = xi; θ)

=

n∏
i=1

I[θ;θ+1](xi) =

1 if θ ≤ xi ≤ θ + 1 ∀i = 1, . . . , n

0 otherwise.

Therefore we can find an infinite number of maxima, i.e. of θ̂ that realize L(X1, . . . , Xn; θ̂) =

1, by simply setting the two constraints

θ̂ ≤ min
i=1,...,n

(xi)

θ̂ + 1 ≥ max
i=1,...,n

(xi)

that correspond to θ̂ ∈ [maxi=1,...,n(xi) − 1; mini=1,...,n(xi)]. The MLE exists but it is not
unique.

(b) Let X1, . . . , Xn
iid∼ Uniform([θ, 1]), θ ≤ 1.

i. We can compute the likelihood of the data

L(X1, . . . , Xn; θ) =
n∏
i=1

P (Xi = xi; θ)

=
n∏
i=1

{
1

1− θ
I[θ;1](xi)

}
=

 1
(1−θ)n if θ ≤ xi ≤ 1 ∀i = 1, . . . , n

0 otherwise.

Our goal is to maximize 1
(1−θ)n under the constraint θ ≤ xi ≤ 1. The minimum is

reached for θ̂ = mini=1,...,n(xi). Therefore the MLE exists and it is unique.
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ii. To find the limit in distribution of n(θ̂ − θ), we compute its cdf, i.e.

P (n(θ̂ − θ) ≤ t) = P (θ̂ ≤ t/n+ θ)

= P (min{x1, . . . , xn} ≤ t/n+ θ)

= 1− P (min{x1, . . . , xn} > t/n+ θ)

ind.
= 1−

n∏
i=1

P (xi > t/n+ θ)

i.d.
= 1− [P (xi > t/n+ θ)]n

= 1− [1− P (xi ≤ t/n+ θ)]n

= 1−
[
1− t/n+ θ − θ

1− θ

]n
= 1−

[
1− t

n(1− θ)

]n
−→ 1− e−

t
1−θ ,

which is the cdf of an exponential distribution. Therefore n(θ̂ − θ) d−→ E
(

1
1−θ

)
.

iii. The MLE is not behaving the way we would expect. In fact, we know that, under
mild assumptions of regularity, MLEs are asymptotically normal. However, in this case
one of the hypothesis does not hold. In particular, the support of the pdf, i.e. the set
S = {x : f(x; θ) > 0} = [θ, 1] is not independent of θ.

(c) Let X1, . . . , Xn
iid∼ N (µ, 1), and let θ := eµ. Let, in the simulations, µ = 5 and n = 100.

i. Use the delta method to get the variance of the estimator and a 95% confidence interval
of θ.

Let us recall that, since X̄n is the MLE for µ, then eX̄n is the MLE for eµ (invariance
principle). Moreover, we know (central limit theorem) that

√
n(X̄n − µ)

1

d−→ N (0, 1). (2)

Actually, in the case when the observations are iid draws from the normal distribution,
not only the asymptotic distribution but also the exact distribution of the sample mean
is normal (linear combination of independent normal distributions). However, we here
use the Delta method to the expression (2), obtaining

√
n(eX̄n − eµ)

eµ
d−→ N (0, 1),

which corresponds to

eX̄n
d−→ N

(
eµ,

e2µ

n

)
.
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We can use this asymptotic distribution to obtain a 95% confidence interval for the
unknown quantity eµ. In fact

P (|eX̄n − eµ| ≤ t) = 1− α

⇒P

(
√
n
|eX̄n − eµ|

eµ
≤
√
n

eµ
t

)
= 1− α

⇒P
(
|Z| ≤

√
n

eµ
t

)
= 1− α

⇒
√
n

eµ
t = z1−α/2

⇒t =
eµz1−α/2√

n
≈
eX̄nz1−α/2√

n
.

Therefore, the 95% CI for θ is

θ ∈

[
eX̄n −

eX̄nz1−α/2√
n

; eX̄n +
eX̄nz1−α/2√

n

]
.

ii. The same confidence interval can be approximated via Bootstrap. Recall, in fact, that
this method allows us to obtain the sampling distribution of the estimator θ̂. At each
bootstrap iteration, a new dataset is obtained via sampling with replacement from the
original dataset. The estimate eX̄n is calculated at each iteration, yielding to a sample

θ∗ =
(
eX̄n

)(1)
, . . . ,

(
eX̄n

)(B)
. Then, in order to calculate the confidence interval we can

consider the 2.5% and 97.5% quantiles of this sample, i.e. Cn =
[
θ∗α/2, θ

∗
1−α/2

]
. Other

methods are plausible, e.g. the normal interval and the pivotal intervals, but here we
take the quantile approach.

In Listing A.1 the code for the Bootstrap simulation is displayed. In Listing 1 the results
are shown: as one can see, the CIs are very similar in the two cases.

1 2.5% 97.5%

2 Delta Method 130.6150 194.2965

3 Bootstrap 136.8269 193.8129

Listing 1: Comparison of the CIs using the Delta method and the Bootstrap.

Problem 3. Gradient ascent

We will use a iterative algorithm to calculate the MLE of the parameters of a Dirichlet distribu-
tion. The conjugate prior to the multinomial is the Dirichlet distribution on the k-simplex, whose
density is given by:

f(x1, . . . , xk|α) =
Γ(
∑k+1

i=1 αi)∏k+1
i=1 Γ(αi)

k+1∏
i=1

xαi−1
i

where xi > 0,
∑k+1

i xi = 1 and αi ≥ 0.
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(a) Prove that E[log(xi)] = Ψ(αi) − Ψ(
∑k+1

i=1 αi), where Ψ(α) = d log Γ(α)/dα is the digamma
function. To to that, we are going to first prove that the marginals of a Dirichlet distribution
are Beta distributions.

• Proof of the neutrality property. We can prove a more general property, called neutrality
of the Dirichlet distribution, which states that, if (X1, . . . , Xk+1) ∼ Dirichlet(α1, . . . , αk+1)

then the following holds:

Xi ⊥
(

X1

1−Xi
, . . . ,

Xi−1

1−Xi
,
Xi+1

1−Xi
, . . . ,

Xk+1

1−Xi

)
Xi ∼ Beta(αi,

k+1∑
j 6=i

αj)(
X1

1−Xi
, . . . ,

Xi−1

1−Xi
,
Xi+1

1−Xi
, . . . ,

Xk+1

1−Xi

)
∼ Dirichlet (α1, . . . , αi−1, αi+1, . . . , αk+1) .

In particular, this implies that each marginal of a Dirichlet distribution is a Beta distri-
bution. To prove this property, we simply apply the pdf transformation theorem in the
multivariate case. We consider the mapping

q = g(x) =



q1 = x1
1−xi

. . .

qi−1 = xi−1

1−xi

qi = xi

qi+1 = xi+1

1−xi

. . .

qk = xk
1−xi

⇒ x = g−1(q) =



x1 = q1(1− qi)

. . .

xi−1 = qi−1(1− qi)

xi = qi

xi+1 = qi+1(1− qi)

. . .

xk = qk(1− qi).

The Jacobian matrix of this transformation is the k × k matrix

J =



1− qi . . . 0 −q1 0 . . . 0

0
. . .

...
...

...
...

... 1− qi −qi−1
...

...
... 0 1 0

...
...

... −qi+1 1− qi
...

...
...

...
...

. . . 0

0 . . . 0 −qk 0 . . . 1− qi


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whose determinant is ||J || = (1− qi)k−1. Therefore,

fQ(q) = fX(g−1(q)) · ||J ||

=
Γ(
∑k+1

i=1 αi)∏k+1
i=1 Γ(αi)

qαi−1
i

k∏
j 6=i

(qj(1− qi))αj−1

1− qi −
k∑
j 6=i

(1− qi)qj

αk+1−1

(1− qi)k−1

=
Γ(
∑k+1

i=1 αi)∏k+1
i=1 Γ(αi)

qαi−1
i (1− qi)

∑k
j 6=i(αj−1)

k∏
j 6=i

q
αj−1
j (1− qi)αk+1−1

1−
k∑
j 6=i

qj

αk+1−1

(1− qi)k−1

=
Γ(αi +

∑k+1
j 6=i αj)

Γ(αi)Γ(
∑k+1

j 6=i αj)
qαi−1
i (1− qi)

∑k+1
j 6=i αj−1

·
Γ(
∑k+1

j 6=i αj)∏k+1
j 6=i Γ(αj)

k∏
j 6=i

q
αj−1
j

1−
k∑
j 6=i

qj

αk+1−1

,

which is the thesis. In fact we can see that the density is factorized in two indepen-
dent terms: the first one is the density Beta(αi,

∑k+1
j 6=i αj); the second one the density

Dirichlet(α(−i)), where α(−i) = (α1, . . . , αi−1, αi+1, . . . , αk+1).

• Proof marginalizing out the variables. As an alternative proof, we can just find any marginal
distribution by integrating out all the other variables. In our case, given (X1, . . . , Xk+1) ∼
Dirichlet(α1, . . . , αk+1), to find the marginal Xi we can firstly integrate out x1, that is

L(X2, . . . , Xk+1) =

∫
X1

L(X1, . . . , Xk+1)dx1

=

∫ 1−
∑k
j=2 xj

0

Γ(α1 + · · ·+ αk+1)

Γ(α1) . . .Γ(αk+1)
xα1−1

1 . . . xαk−1
k (1−

k∑
j=1

xj)
αk+1−1dx1

=
Γ(α1 + · · ·+ αk+1)

Γ(α1) . . .Γ(αk+1)
xα2−1

2 . . . xαk−1
k

∫ 1−
∑k
j=2 xj

0
xα1−1

1 (1− x1 −
k∑
j=2

xj)
αk+1−1dx1.

Remark that, for the sake of simplicity, we are omitting the indicator function over the
k-dimensional simplex. Using the substitution u = x1

1−
∑k
j=2 xj

, which corresponds to

6
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normalizing the argument of the integral, we obtain

L(X2, . . . , Xk+1) =
Γ(
∑k+1

j=1 αj)∏k+1
j=1 Γ(αj)

xα2−1
2 . . . xαk−1

k

·
∫ 1

0
uα1−1(1−

k∑
j=2

xj)
α1−1[(1− u)(1−

k∑
j=2

xj)]
αk+1−1(1−

k∑
j=2

xj)du

=
Γ(
∑k+1

j=1 αj)∏k+1
j=1 Γ(αj)

xα2−1
2 . . . xαk−1

k (1−
k∑
j=2

xj)
α1+αk+1−1

∫ 1

0
uα1−1(1− u)αk+1−1du

=
Γ(
∑k+1

j=1 αj)∏k+1
j=1 Γ(αj)

xα2−1
2 . . . xαk−1

k (1−
k∑
j=2

xj)
α1+αk+1−1 Γ(α1)Γ(αk+1)

Γ(α1 + αk+1)

=
Γ(α2 + · · ·+ (α1 + αk+1))

Γ(α2) . . .Γ(αk)Γ(α1 + αk+1)
xα2−1

2 . . . xαk−1
k (1−

k∑
j=2

xj)
α1+αk+1−1

and we recognize that (X2, . . . , Xk, Xk+1) ∼ Dirichlet(α2, . . . , αk, α1 + αk+1). Integrat-
ing iteratively over all the other variables but xi, we get

(Xi, Xk+1) ∼ Dirichlet(αi,
k+1∑
j 6=i

αj),

which is equivalent to Xi ∼ Beta(αi,
∑k+1

j 6=i αj).

Now that we proved that Xi ∼ Beta(αi,
∑k+1

j 6=i αj), using the hint we conclude

E[log(Xi)] = Ψ(αi)−Ψ

k+1∑
j=1

αj

 .

(b) Let us suppose now we have n data points {x(i), i = 1, . . . , n} generated from f(x|α). The
log-likelihood of the i-th data point is then

l(x(i);α) = log Γ(

k+1∑
j=1

αj)−
k+1∑
j=1

(log Γ(αj)) +

k+1∑
j=1

(αj − 1) log x
(i)
j .

By deriving the total log-likelihood of the sample we obtain

∂
∑n

i=1 l(x
(i);α)

∂αh
=

n∑
i=1

Ψ(

k+1∑
j=1

αj)−Ψ(αh) + log x
(i)
h


= NΨ(

k+1∑
j=1

αj)−NΨ(αh) +N log xh,

and, by setting the expression above to be equal to 0, we get to the following equation for
the MLE α̂

Ψ(
k+1∑
j=1

α̂j) = Ψ(α̂h)− log xh, (3)

7
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where log xh = 1
n

∑n
i=1 log x

(i)
h is the average computed from data.

(c) From now on, we work with a dataset for a Dirichlet over the 2-dimensional simplex.

i. The scatterplot of the data is displayed in Figure 1.

Dirichlet density

V1 V2

V3

Figure 1: Scatterplot of the data represented on the simplex. Data points are represented in black.

ii. The log-likelihood is convex in α since the Dirichlet distribution is in the exponential
family. Therefore, a simple algorithm can be obtained by setting the gradient equal to 0.
A fixed-point iteration for maximizing the likelihood can be derived from (3), yielding

Ψ(αnewh ) = Ψ(

k+1∑
j=1

αoldj ) + log xh.

In this iterative algorithm a convergence criterion has to be chosen. In our setting,
we used the relative increment of the log-likelihood. In other terms, we defined the
quantity δ = l(α(k+1))−l(α(k))

|l(α(k))+ε| and the algorithm stops when δ is smaller than a certain
threshold (in our case set to 10−10). The constant ε = 10−3 is only needed in order to
ensure numerical stability to the computation of the error at each step.

Running the gradient ascent method from the starting point α0 = (1, 1, 1) with a tol-
erance error equal to 10−10 leads to convergence after 215 iterations. The result is the
MLE for α, i.e. α̂ = (6.3878, 12.6291, 3.4034).

The log-likelihood as a function of iterations is shown in Figure 2.

iii. The scatter plot of the data together with a contour plot of the Dirichlet distribution
with optimal parameters α̂ is displayed in Figure 3.
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0 50 100 150 200

1
0

0
1

5
0

2
0

0

Log−likelihood

Iterations

Figure 2: Plot of the log-likelihood as a function of iterations.

Dirichlet density

V1 V2

V3

Figure 3: Scatterplot of the data represented on the simplex. Data points are represented in black; the contour plot of
the density of the Dirichlet distribution with optimal parameters α̂ is overlapped in red.
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Appendix A

R code

1 n <- 100

2 mu <- 5

3
4 set.seed(123)

5 # We generate the "first" dataset: X1, ..., Xn Normal (mu, 1)

6 X <- rnorm(n, mu, 1)

7
8 # We compute the MLE for the mean, that is, Xbar

9 Xbar <- mean(X)

10
11 # BOOTSTRAP

12 B <- 10000

13 mu_hat <- array(NA,dim=B)

14 for (b in 1:B){

15 X_sampled <- sample(X, n, replace = T)

16 mu_hat[b] <- mean(X_sampled)

17 }

18 theta_hat <- exp(mu_hat)

19 var(theta_hat)

20 exp(2*Xbar)/n

21
22 # Set the confidence level

23 alpha <- 0.05

24
25 # Bootstrap CI

26 quantile(exp(mu_hat), probs = c(alpha/2,1-alpha/2))

27
28 # Theoretical CI

29 c(exp(Xbar)*(1 - qnorm(1 - alpha/2)/sqrt(n)),exp(Xbar)*(1 + qnorm(1 - alpha/2)/sqrt(n)))

Listing A.1: Bootstrap simulation.

1 # Compute the log-likelihood of the Dirichlet distribution

2 log_lik <- function(alpha, y){

3 N <- dim(y)[1]

4 ll <- N*(lgamma(sum(alpha)) - sum(lgamma(alpha))) + sum((alpha-1)*t(log(y)))

5 return(ll)

6 }

7
8 # Function for the gradient ascent of the Dirichlet model

10
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9 gradient_ascent <- function(y, alpha0, maxiter, tol){

10
11 alphas <- array(NA, dim=c(maxiter, length(alpha0)))

12 alphas[1,] <- alpha0 # Initial guess

13 ll <- array(NA, dim = maxiter)

14 ll[1] <- log_lik(alphas[1,], y)

15
16 for (iter in 2:maxiter){

17 psialpha_new <- apply(log(y), 2, mean) + digamma(sum(alphas[iter-1,]))

18 alphas[iter,] <- newton_roots(psialpha_new)

19 ll[iter] <- log_lik(alphas[iter,], y)

20
21 # Convergence check

22 if (abs(ll[iter-1] - ll[iter])/abs(ll[iter-1] + 1E-3) < tol){

23 cat(’Algorithm has converged after’, iter, ’iterations’)

24 ll <- ll[1:iter]

25 alphas <- alphas[1:iter,]

26 break;

27 }

28 else if (iter == maxiter & abs(ll[iter-1] - ll[iter])/abs(ll[iter-1] + 1E-3) >= tol){

29 print(’WARNING: algorithm has not converged’)

30 break;

31 }

32 }

33 return(list("ll" = ll, "alpha" = alphas[iter,]))

34 }

Listing A.2: Gradient ascent.
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	R code

