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The Frequency Domain

- A (periodic) signal can be viewed as a sum of sine
waves of different strengths.

« Corresponds to energy at a certain frequency

- Every signal has an equivalent representation in the
frequency domain.

- What frequencies are present and what is their strength (energy)

- We can translate between the two formats using a
fourier transform
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Relationship between Data Rate
and Bandwidth

* The greater the (spectral) bandwidth, the
higher the information-carrying capacity of
the signal

* Intuition: if a signal can change faster, it can
be modulated in a more detailed way and can
carry more data

» E.g. more bits or higher fidelity music

- Extreme example: a signal that only changes
once a second will not be able to carry a lot of
bits or convey a very interesting TV channel

- Can we make this more precise?
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Adding Detail to the Signal
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Some Intuition

Smooth time domain signal has narrow
frequency range
» Sine wave — pulse at exactly one frequency

Adding detail widens frequency range
» Need to add additional frequencies to represent details
» Very sharp edges are especially bad (many frequencies)

The opposite is also true
» Pulse in time domain has very wide spectrum
» Same is true for random noise (“noise floor”)

Implication: modulation has a bid impact on
how much (scarce) spectrum is used
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Increasing the Bit Rate

* Increases the rate at which the
! signal changes.

» Proportionally increases all
signals present, and thus the
spectral bandwidth

* Increase the number of bits per

| change in the signal
H H H H H H » Adds detail to the signal,
which also increases the

spectral BW
Frequency -
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So Why Don’t we Always Send a
Very High Bandwidth Signal?

« Channels have a limit on the
type of signals they can carry
effectively

* Wires only transmit signals in
certain frequency ranges

» Stronger attenuation and
distortion outside of range

* Wireless radios are only

allowed to use certain parts of /N / \_/ \

the spectrum

» The radios are optimized for that
frequency band

 Distortion makes it hard for ‘_<
receiver to extract the
information

» A major challenge in wireless
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Propagation Degrades
RF Signals

- Attenuation in free space: signal gets weaker
as it travels over longer distances

» Radio signal spreads out — free space loss
» Refraction and absorption in the atmosphere

- Obstacles can weaken signal through
absorption or reflection.

» Reflection redirects part of the signal

« Multi-path effects: multiple copies of the signal
interfere with each other at the receiver

» Similar to an unplanned directional antenna

* Mobility: moving the radios or other objects
changes how signal copies add up

» Node moves "> wavelength -> big change in signal strength
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Transmission Channel
Considerations

Example: grey frequencies get Good Bad
attenuated significantly | |

- For wired networks, channel
limits are an inherent property of
the wires

- Different types of fiber and copper
have different properties

- Capacity also depends on the radio
and modulation used

- Improves over time, even for same Frequency
wire
For wireless networks, limits are
often imposed by policy

« Can only use certain part of the

spectrum
- Radio uses filters to comply ‘ | ‘ ‘ n ‘ ‘ ‘ ‘ ‘ |
Signal
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Outline

* Challenges in Wireless Networking
* RF introduction

* Modulation and multiplexing
» Analog versus digital signals
» Forms of modulation
» Baseband versus carrier modulation
» Multiplexing

- Channel capacity

- Antennas and signal propagation
* Modulation

* Diversity and coding

- OFDM
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Channel Capacity

 Data rate - rate at which data can be
communicated (bps)

» Channel Capacity — the maximum rate at which data can
be transmitted over a given channel, under given
conditions

- Bandwidth - the bandwidth of the transmitted
signhal as constrained by the transmitter and
the nature of the transmission medium (Hertz)

* Noise - average level of noise over the
communications path

* Error rate - rate at which errors occur
» Error = transmit 1 and receive 0; transmit 0 and receive 1
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The Nyquist Limit

A noiseless channel of bandwidth B can at
most transmit a binary signal at a capacity 2B

» E.g.a 3000 Hz channel can transmit data at a rate of at
most 6000 bits/second

» Assumes binary amplitude encoding

For M levels: C=2B log, M

» M discrete signal levels

More aggressive encoding can increase the
actual channel bandwidth

» Example: modems

Factors such as noise can reduce the capacity
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Decibels

Decibels: ratio between signal powers
decibels (db) = 10log,,(P, / P,)

Is used in many contexts:
» The loss of a wireless channel, gain of an amplifier, ...

Note that dB is a relative value.

Absolute value requires a reference point.
» Decibel-Watt — power relative to 1W
» Decibel-milliwatt — power relative to 1 milliwatt (dbm)

Some example values (WiFi):
» Noise floor -90 dbm

» Received signal strength: -70 to -65 dbm
» Transmit power (2.4 GHz): 20 dbm
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Signal-to-Noise Ratio

Ratio of the power in a signal to the power
contained Iin the noise that is present at a
particular point in the transmission

» Typically measured at a receiver

Signal-to-noise ratio (SNR, or S/N)
1ignal
(SNR),., =10log,, signal power

Nno1S€ pOWer

- A high SNR means a high-quality signal

Low SNR means that it may be hard to
“extract” the signal from the noise

SNR sets upper bound on achievable data rate

kist 15
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Shannon Capacity Formula

Equation: C=R 10g2 (1 + SNR)

Represents error free capacity

» It is possible to design a suitable signal code that will
achieve error free transmission (you design the code)

Result is based on many assumptions
» Formula assumes white noise (thermal noise)
» Impulse noise is not accounted for
» Various types of distortion are also not accounted for

We can also use Shannon’s theorem to
calculate the noise that can be tolerated to
achieve a certain rate through a channel
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Shannon Discussion

 Bandwidth B and noise N are not independent

» N is the noise in the signal band, so it increases with the
bandwidth

* Shannon does not provide the coding that will
meet the limit, but the formula is still useful

* The performance gap between Shannon and a
practical system can be roughly accounted
for by a gap parameter

» Still subject to same assumptions
» Gap depends on error rate, coding, modulation, etc.

C = Blog,(1+SNR/T)

Peter A. Steenkiste
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Example of Nyquist and
Shannon Formulations

« Spectrum of a channel between 3 MHz
and 4 MHz ; SNR ; =24 dB

B=4MHz-3MHz=1MHz
SNR ,, =24 dB =101log,,(SNR)
SNR =251

* Using Shannon’s formula
C =10°xlog,(1+251)~10° x8 = 8Mbps
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Example of Nyquist and
Shannon Formulations

- How many signaling levels are required
using Nyquist?
C=2Blog,M

8x10° =2x(10° )xlog, M
4 =1log, M
M =16

* Look out for: dB versus linear values,
log, versus log,,

Peter A. Steenkiste
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Outline

* Challenges in Wireless Networking
* RF introduction

* Modulation and multiplexing

- Channel capacity

- Antennas and signal propagation

» How do antennas work
» Propagation properties of RF signals
» Modeling the channel

 Modulation

* Diversity and coding
- OFDM
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What is an Antenna?

- Conductor that carries an electrical signal
and radiates an RF signal.

» The RF signal “is a copy of” the electrical signal in the
conductor

- Also the inverse process: RF signals are
“captured” by the antenna and create an
electrical signal in the conductor.

» This signal can be interpreted (i.e. decoded)

- Efficiency of the antenna depends on its size,
relative to the wavelength of the signal.

» E.g. quarter of a wavelength

Peter A. Steenkiste
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Types of Antennas

* Abstract view: antenna is a point source that
radiates with the same power level in all
directions — omni-directional or isotropic.

» Not common — shape of the conductor tends to create a
specific radiation pattern

» Note that isotropic antennas are not very efficient!!
— Unless you have a very large number of receivers

« Common shape is a straight conductor.
» Creates a “disk” pattern, e.g. dipole

* Shaped antennas can be used to direct the
energy in a certain direction.

» Well-known case: a parabolic antenna
» Pringles boxes are cheaper
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Antenna Types: Dipoles

- Simplest: half-wave dipole and quarter wave
vertical antennas
» Very simple and very common

» Elements are quarter wavelength of frequency that is
transmitted most efficiently

» Donut shape

- May other designs
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Multi-element Antennas

 Multi-element antennas have
multiple, independently
controlled conductors.

» Signal is the sum of the individual
signals transmitted (or received) by
each element

- Can electronically direct the RF
signal by sending different

versions of the signal to each
element.

» For example, change the phase in

two-element array.
- Covers a lot of different types of w
antennas.

» Number of elements, relative .
op Time
position of the elements, control
over the signals, ...

24
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Directional Antenna Properties

Horizontal Pattern Vertical Pattern

150 180

- dBi: antenna gain in dB relative to an
iIsotropic antenna with the same power.

» Example: an 8 dBi Yagi antenna has a gain of a factor of
6.3 (8db=101log 6.3)

Peter A. Steenkiste 2 5



Examples 2.4 GHz
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Summary

 The maximum capacity of a channel depends
on the SINR

» How close you get to this maximum depends on the
sophistication of the radios

» Distortion of the signal also plays a role — next lecture

- Antennas are responsible for transmitting and
receiving the EM signals

» The “ideal” isotropic antenna is a point source that
radiates energy in a sphere

» Practical antennas are directional in nature, as a result of
the antenna shape or the use of multi-element antennas

» The antenna gain is expressed in dBi

Peter A. Steenkiste
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Outline
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Challenges in Wireless Networking
RF introduction

Modulation and multiplexing
Channel capacity

Antennas and signal propa%gtion
» How do antennas work A\ Bad News

» Propagation properties of RF signals — Good News
» Modeling the channel Story

Modulation
Diversity and coding
OFDM
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Propagation Modes

 Line-of-sight (LOS) propagation.
» Most common form of propagation
» Happens above ~ 30 MHz
» Subject to many forms of degradation (next set of slides)

* Obstacles can redirect the signal and create
multiple copies that all reach the receiver

» Creates multi-path effects

- Refraction changes direction of the signal
due to changes in density

» E.g., changes in air temperature, humidity, ...
» If the change in density is gradual, the signal bends!
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Impact of Obstacles

- Besides line of sight, signal
can reach receiver in three
“indirect” ways.

- Reflection: signal is 1
reflected from a large
object.

- Diffraction: signal is
scattered by the edge of a
large object — “bends”.

- Scattering: signal is
scattered by an object that
is small relative to the
wavelength.

30
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Refraction

+ Speed of EM signals depends
on the density of the material
» Vacuum: 3 x 108 m/sec
» Denser: slower

* Density is captured by
refractive index

- Explains “bending” of signals
iIn some environments

» E.g. sky wave propagation: Signal
“bounces” off the ionosphere back to
earth — can go very long distances

» But also local, small scale differences
in the air density, temperature, etc.

Peter A. Steenkiste
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Fresnel Zones

« Sequence of ellipsoids centered around the LOS path
between a transmitter and receiver

* The zones identify areas in which obstacles will have
different impact on the signal propagation

» Capture the constructive and destructive interference due to
multipath caused by obstacles
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Fresnel Zones

- Zones create different phase
differences between paths

» First zone: 0-90

» Second zone: 90-270
» Third zone: 270-450
» Ete.

« 0Odd zones create constructive
interference, even zones
destructive

* Also want clear path in most of

the first Fresnel zone, e.g. 60% Ground
* The radius F,, of the nth Fresnel Buildings
zone depends on the distances Etc.

d, and d, to the transmitter and
receiver and the wavelength
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Sketch of Calculation:
Difference in Path Length

D, \ D,

a,” d, d,

- Difference in path length (a, is small)
» Dy —dy = F *sin a,

- But for small a, we also have
»sina,=tana, =F/d,
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Sketch of Calculation
Fresnel Radios
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¢ Given D1—d1 — F2/d1
.and(D1+D2)—(d1+d1)=7\~*n

° or
Fﬂ =Jﬂ}ldldg
dy + dy

Peter A. Steenkiste

35



