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Rate Adaptation

* WIiFi supports multiple bit rates but does not
standardize bit rate selection

* Outline
» Background
» RRAA
» Charm
» MIMO discussion

Peter A. Steenkiste 3



Bit Rate Adaptation

 All modern WiFi standards are multi bit rate

» 802.11b has 4 rates, more recent standards have 10s
» Vendors can have custom rates!

- Many factors influence packet delivery:

» Fast and slow fading: nature depends strongly on the
environment, e.g., vehicular versus walking

» Interference versus WiFi contention: response to
collisions is different

» Random packet losses: can confuse “smart” algorithms
» Hidden terminals: decreasing the rate increases the
chance of collisions
* Transmit rate adaptation: how does the
sender pick?
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Transmit Rate Selection

* Goal: pick rate that provides best throughput
» E.g. SINR 14 dB > 5.5 Mbps
» Needs to be adaptive
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“Static” Channel

35
30r i
251 |
11 Mbps
L !
i |
il e
% I 5.5 Mbps
% 2 Mbps
1 Mbps
300 Sec

Time

Peter A. Steenkiste



Mobile Channel - Pedestrian
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High Level Designs

* “Trial and Error”: senders use past packet
success or failures to adjust transmit rate
» Sequence of x successes: increase rate
» Sequence of y failures: reduce rate
» Hard to get x and y right
» Random losses can confuse the algorithm

+ Senders use channel state information to pick
transmit rate
» Early days: SNR .... Today: channel state matrix
» Assumes a relationship between PDR and channel state
— Need to recover if this fails, e.g., hidden terminals

 Today: need to consider other factors
» Different transmission modes, traffic load, ...
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Robust Rate

Adaptation Algorithm

- RRAA goals

» Maintain a stable rate in the presence of random loss

» Responsive to drastic channel changes, e.g., caused
by mobility or interference

e Adapt rate based on

short term PDR
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» Thresholds and
averaging windows
depend on rate

e Selectively enable
RTS-CTS
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CHARM

annel-aware rate selection algorith
Transmitter passively determines SINR at
receiver by leveraging channel reciprocity

» Determines SINR without the overhead of active
probing (RTS/CTS)

+ Select best transmission rate using rate table
» Table is updated (slowly) based on history

» Needed to accommodate diversity in hardware and
special conditions, e.g., hidden terminals

Jointly considers problem of transmit
antenna selection
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SINR: Noise and Interference

RSS

Noise + Y Interference

SINR =

* Noise
» Thermal background radiation

» Device inherent
— Dominated by low noise amplifier noise figure

» ~Constant

* Interference
» Mitigated by CSMA/CA
» Reported as “noise” by NIC
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SINR: RS§S

RSS:Ptx"‘Gtx_PL_'_GTx (1)

TSl

PL:PtSU_I_GtCC_'_G’P:L‘_RSS (2)

- By the reciprocity theorem, at a given instant of
time

» PLao5g=Plgsa
A overhears packets from B and records RSS (1)

Node B records P,, and card-reported noise level
In beacons and probes, so A has access to them

A can then calculate path-loss (2) and estimate
RSS and SINR at B
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CHARM: Channel-aware Rate
Selection

* Leverage reciprocity to
obtain path loss
» Compute path loss for each
host: P,, - RSSI
* On transmit:
: » Predict path loss based on
\ 4 history

SINR Per-node History » Select rate & antenna
» Update rate thresholds

- Today’s algorithms use
CSI but are much more
sophisticated

Time —> » E.g., have to deal with more
many more rates, MIMO, etc.
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IP Address Structure

Network 1D Node ID

Network ID identifies the network
» CMU =128.2

Node ID identifies node within a network
» Node IDs can be reused in different networks
» Can be assigned independently by local administrator

Size of Network and Node IDs are variable

» Originally Network IDs came in three sizes only
» Variable sized Network IDs are often called a prefix

Great, but what does this have to do with
mobility?
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Routing and Forwarding in
the Internet

Network ID Node ID
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Mobility Challenges

* When a host moves to a bl |
new network, it gets a ;N
new IP address [/ -

 How do other hosts R ‘.
connect to it? A\F

_ _ nternet
» Assume you provide services
» They have old IP address

 How do peers know you
are the same host?
» IP address identifies host
» Associated with the socket
of any active sessions

 What assumption is made
here?
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Main TCP Functions

- Connection management
» Maintain state at endpoints to optimize protocol

 Flow control: avoid that sender outruns the
receiver

» Uses sliding window protocol

 Error control: detect and recover from errors
» Lost, corrupted, and out of order packets

- Congestion control: avoid that senders flood
the network
» Leads to inefficiency and possibly network collapse
» Very hard problem — was not part of original TCP spec!
» Solution is sophisticated (and complex)
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Wireless and the Internet
Challenges

TCP congestion control interprets packet
losses as a sign of congestion

» Assumes links are reliable, so packet loss = full queue
» Not true for wireless links!

Mobile hosts are hard to find
» Their address does not match the network they are in

IP addresses are used both to forward
packets to a host and to identify the host

» Active session break when a host moves

Applications generally assume that they are
continuously connected to the Internet

» Can access servers, social networks, ...

» Mobile apps must support “disconnected” operations!
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TCP Congestion Control

- Congestion control avoids that the network is overloaded
» Must slow down senders to match available bandwidth

* Requires routers giving feedback to senders
» Routers drop packet when their queue is full
» Senders view dropped packets as a signh of congestion

« Assumes packet loss = congestion — not so in wireless!

- Solution: have wireless network aggressively retransmit
packets to reduce packet drop rate
» Lots of complicated alternatives have been explored!
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Communicating with Mobile Hosts:
Requirements

« Communicate with mobile hosts using their
“home” IP address

* Mobility should be transparent to applications
and higher level protocols
» No need to modify the software

- Minimize changes to host and router software
» No changes to communicating host

+ Security should not get worse

* Challenge: Internet routing will delivery to the
wrong (home) network

* Need a new solution: mobile IP!

Peter A. Steenkiste 22



Finding Mobile Hosts: Mobile IP

Any host can contact mobile host using its usual “home” IP
address

» Target is “nomadic” devices: do not move while communicating, i.e.,
laptop
Home network has a home agent that is responsible for
intercepting packets and forwarding them to the mobile host.
» E.g., router at the edge of the home network
» Forwarding is done using tunneling

Remote network has a foreign agent that manages
communication with mobile host.

» Module that runs on mobile and the point of contact for the mobile host

Binding ties home IP address of mobile host to a “care of”
address in the foreign network.

» binding = (home IP address, foreign IP addess)
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Mobile IP Operation

+ Registration process: mobile host registers
with home agent.

» Home agents needs to know that it should
intercept packet and forward them

* In foreign network, foreign agent gets local
“care of” address and notifies home agent

» Home agent knows where to forward
packets

* Tunneling
» Home agent forward packets to foreign agent

» Return packets are tunneled in the reverse Foreign
direction Agent 2

«  Supporting mobility

» Update binding in home and foreign agents.
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Tunneling
IP-in-IP Encapsulation

Traffic CH <

Home Agent ——_ | Original | Original
IP Header | IP Payload
Outer Original | Original
IP header IP Header | IP Payload
/ Other
Optional

Home Agent/IP «— Headers
Foreign Agent/care of IP
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Registration via Foreign Agent

Mobile Foreign Home
Host " Agent Agent
3)
WA
@ ol
) 4)

1. FA advertizes service

2. MH requests service

3. FA relays request to HA

4. HA accepts (or denies) request and replies
5. FA relays reply to MH

Peter A. Steenkiste
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Authentication

Mobile Foreign Home
Host Agent Agent

/7 Darth Vader will receive all the traffic
destined to the mobile host

Solution: Registration messages between a mobile host
and its home agent must be authenticated
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Mobile IP Discussion

Mobile IP not used in practice

Mobile devices are typically clients, not servers, i.e., they
initiate connections

» The problem Mobile IP solves rare in practice
Mobile IP is not designed for truly mobile users

» Designed for nomadic users, e.g. visitors to a remote site

IETF defined several solutions that are more efficient

» Also more heavy weight: creates overlay with tunnels and special
“routers”, but they rely on “relays” similar to mobile IP

Reality: maintaining your “home” address while being
mobile is not particularly useful

Practical solution: when you connect to new network, you
obtain a “local” IP address and use that for communication

Peter A. Steenkiste
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More Practical Way to Support
Mobility

- Host gets new IP address in new “foreign”
network
» Simple: use Dynamic Host Configuration (DHCP)
» No impact on Internet routing

- Raises two challenges:

1. Finding the host: Host does not have constant address
-> how do other devices contact the host?

— Sometimes needed for server notifications

— Simple solutions: client periodically checks with
server instead of the server contacting the client

2. Maintaining a TCP connection while mobile
- TCP session is tied to the src/dst IP addresses

Peter A. Steenkiste
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How to Handle Active
Connections for Mobile Nodes?

* Hosts use a 4 tuple to identify a TCP
connection

» <8rc Addr, Src port, Dst addr, Dst port>
» Changing either IP address breaks the connection

- Best approach: add a level of indirection!
» An “identifier”: identifies the connection on the end-point
» A “locator”: the current IP address of the end-point
» Host does a mapping

* Practical challenge: how to update securely

state when IP addresses change

» Generally not supported for TCP but Google’s has built in
support for mobility

Peter A. Steenkiste
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Disconnected Operation

* Mobility means that devices will occasionally
be disconnected from the network
» Seconds ... Minutes ... Hours .. Days
» Mostly an issue for clients

* This can confuse systems and applications
that assume a wired/stationary model

» Clients cannot access servers, e.g., mail, calendar
applications, ...

» Distributed file systems
» Systems for back up or systems management

* Must adapt the applications and systems to
make them “disconnection aware”

32
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Two Examples

« E-mail: users must be able to “work on” e-
mail offline and operations are performed
when the mobile client is redirected

» Compose, read and delete e-mail
» Possibly others: manage folders, etc.

- Calendars and tasks are similar: operations
performed offline must be executed later

» Adding or removing appointment and tasks, ...

 Must sometimes resolve conflicts when
multiple clients are used offline

» E.g., mail is deleted on one client and moved to another
folder on another — delete or keep?

» Tend to be minor — ask user for help if needed
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More Complex Case:
File System

A distributed file system can be accessed
from many computers

» Files tend to be cached in the computers

Creates opportunities for inconsistencies

» E.g., a file is modified on two different computers — how
do you merge the changes? Who is responsible?

The consistency model depends on the file
system

» Stronger consistency requires that the system can keep
track of all copies and remove/lock them if needed

Disconnected operation makes the
consistency problem harder!

» Some file copies my be inaccessible for long periods!
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Mobility is Common Today

- Many applications are designed to work on
mobile clients so they deal properly with
disconnections

» Many apps on mobile devices are designed for mobility

» Most clients server applications can work offline with at
least partial functionality

- Does not work for interactive applications
» Games, etc.

- Disconnection can still be very inconvenient

» Need state that is not cached on your client device
» Things like back ups cannot be performed
» Unpredictable delays in communication
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Challenged Networks

* Violate one or more of Internet’s assumptions
» End-points may rarely/never be online at the same time
» Very long delay path, frequent disconnections, ...

» Have naming semantics for their particular application
domain

» Not be well served by the current end-to-end TCP/IP

- Examples

» Terrestrial mobile networks
» Some ad-hoc networks
» Sensor/actuator networks

* Goals for “disruption tolerant” networks

» Achieve interoperability between very diverse types
networks

» Sometimes also called disruption tolerant
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Background

Mobile network

Movement

w

Sensor network
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High-level Architecture

« Characteristics:
» Operate as an overlay above the existing transport layers

» Based on an abstraction of message switching
— Bundle
— Bundle forwarder (DTN gateway)
— Store-and-forward gateway function between different networks

i

source DTN gateway DTN gateway destination

Constituent of DTN architecture

» Region: internally homogenous, i.e. same network stack,
addressing, ...

» DTN gateway: Interconnection point between region boundaries
» Name Tuple: {Region name, Entity name}
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Example DTN
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