

18-452/18-750  
Wireless Networks and Applications  
Lecture 8: Wireless LANs  
802.11 Wireless

Peter Steenkiste

Spring Semester 2020

<http://www.cs.cmu.edu/~prs/wirelessS20/>

Peter A. Steenkiste, CMU

1

## So What about Wireless?

- Wireless datalink protocols similar to those used in wired networks
- Wireless is inherently multiple access
- The specifics depend on many factors, but ..
- Random access solutions are a good fit for data in the unlicensed spectrum
  - » Low control complexity, especially for contention-based protocols (e.g., Ethernet)
  - » No control over the shared spectrum band
- Cellular uses scheduled access
  - » Need to be able to guarantee performance
  - » Have control over spectrum – simplifies scheduled access
  - » There is always a central controller



Peter A. Steenkiste, CMU

3

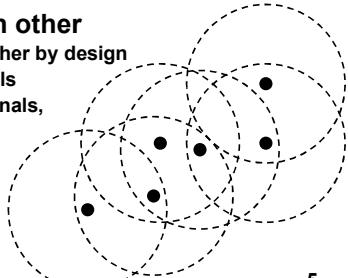
## Outline

- Data link fundamentals
  - » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

Peter A. Steenkiste, CMU

2

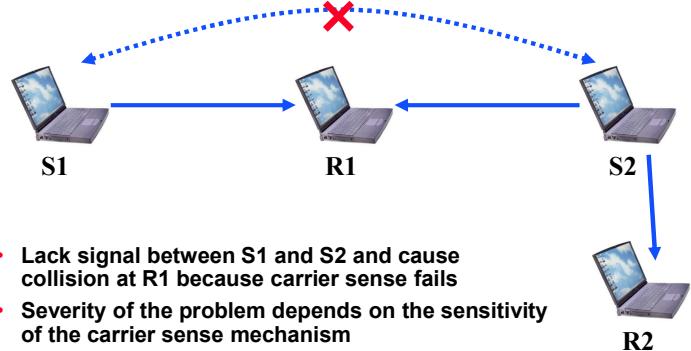
## Wireless Ethernet is a Good Idea, but ...


- Attenuation is very different from that of a wire
  - » Also depends strongly on distance, frequency
- Wired media have exponential attenuation
  - » Received power at  $d$  meters proportional to  $10^{-kd}$
  - » Attenuation in dB =  $k d$ , where  $k$  is dB/meter
- Wireless media has logarithmic attenuation
  - » Received power at  $d$  meters proportional to  $d^{-n}$
  - » Attenuation in dB =  $n \log d$ , where  $n$  is path loss exponent;  $n=2$  in free space
  - » Signal level maintained for much longer distances?
- But we are ignoring the constants!
  - » Wireless attenuation at 2.4 GHz: 60-100 dB
  - » In practice numbers are much lower for wired

Peter A. Steenkiste, CMU

4

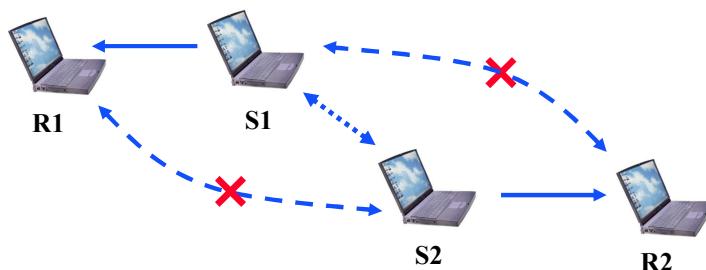
## Implications for Wireless Ethernet


- Collision detection is not practical
  - » Ratio of transmitted signal power to received power is too high at the transmitter
  - » Transmitter cannot detect competing transmitters (is deaf while transmitting)
  - » So how do you detect collisions?
- Not all nodes can hear each other
  - » Ethernet nodes can hear each other by design
  - » “Listen before you talk” often fails
  - » Hidden terminals, exposed terminals,
  - » Capture effects
- Made worse by fading
  - » Changes over time!



5

Peter A. Steenkiste, CMU

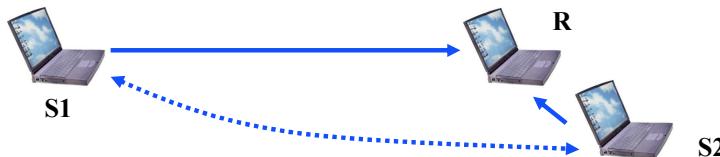

## Hidden Terminal Problem



6

Peter A. Steenkiste, CMU

## Exposed Terminal Problem




7

- Carrier sense prevents two senders from sending at the same time even when they cannot reach each other's receiver
- Severity again depends on CCA threshold
  - » Higher CCA reduces occurrence of exposed terminals, but can create hidden terminal scenarios

Peter A. Steenkiste, CMU

## Capture Effect




8

Peter A. Steenkiste, CMU

- Sender S2 will almost always “win” if there is a collision at receiver R.
- Can lead to extreme unfairness and even starvation.
- Solution is power control
  - » Very difficult to manage in a non-provisioned environment!

## Wireless Packet Networking Problems



- Some nodes suffer from more interference than others
  - » Node density
  - » Traffic volume sent by neighboring nodes
- Leads to unequal throughput
- Similar to wired network: some flows traverse tight bottleneck while others do not

9

Peter A. Steenkiste, CMU

## Summary Wireless Challenges

- Wireless signal propagation creates problems for “wireless Ethernet”
  - » Collision Detection is not possible
  - » Hidden and exposed terminals
  - » Capture effect
- Aloha uses a very simple protocol: offers low latency but has terrible capacity
- Ethernet has much better performance but its key features do not work for wireless
- How can we do better for wireless?

10

Peter A. Steenkiste, CMU

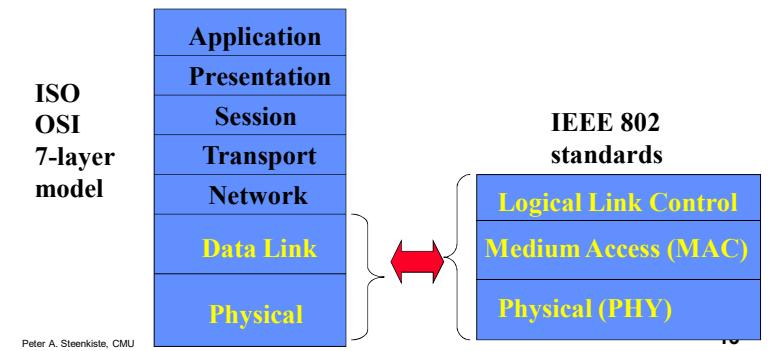
## Outline

- Data link fundamentals
  - » And what changes in wireless
- Ethernet
- Aloha
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards
  - » 802 protocol overview
  - » Wireless LANs – 802.11
  - » Personal Area Networks – 802.15

11

Peter A. Steenkiste, CMU

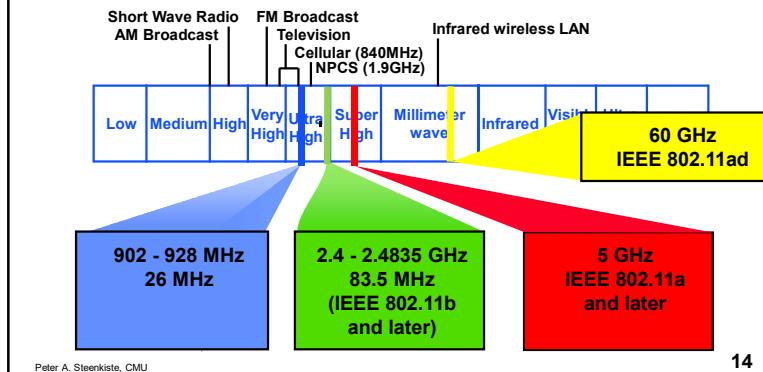
## History


- Aloha wireless data network
- Car phones
  - » Big and heavy “portable” phones
  - » Limited battery life time
  - » But introduced people to “mobile networking”
  - » Later turned into truly portable cell phones
- Wireless LANs
  - » Originally in the 900 MHz band
  - » Later evolved into the 802.11 standard
  - » Later joined by the 802.15 and 802.16 standards
- Cellular data networking
  - » Data networking over the cell phone
  - » Many standards – throughput is the challenge

12

Peter A. Steenkiste, CMU

## Standardization of Wireless Networks


- Wireless networks are standardized by IEEE
- Under 802 LAN MAN standards committee



13

## Frequency Bands

- Industrial, Scientific, and Medical (ISM) bands
- Generally called “unlicensed” bands



14

## The 802 Class of Standards

- List on next two slides
- Some standards apply to all 802 technologies
  - E.g. 802.2 is LLC
  - Important for inter operability
- Some standards are for technologies that are outdated
  - Not actively deployed anymore
  - Many of the early standards are obsolete

15

Peter A. Steenkiste, CMU

## 802 Standards – Part 1

| Name          | Description                                                    | Note                                                  |
|---------------|----------------------------------------------------------------|-------------------------------------------------------|
| IEEE 802.1    | Higher Layer LAN Protocols (Bridging)                          | active                                                |
| IEEE 802.2    | LLC                                                            | disbanded                                             |
| IEEE 802.3    | Ethernet                                                       | active                                                |
| IEEE 802.4    | Token bus                                                      | disbanded                                             |
| IEEE 802.5    | Token ring MAC layer                                           | disbanded                                             |
| IEEE 802.6    | MANS (DODB)                                                    | disbanded                                             |
| IEEE 802.7    | Broadband LAN using Coaxial Cable                              | disbanded                                             |
| IEEE 802.8    | Fiber Optic TAG                                                | disbanded                                             |
| IEEE 802.9    | Integrated Services LAN (ISLan or isoEthernet)                 | disbanded                                             |
| IEEE 802.10   | Interoperable LAN Security                                     | disbanded                                             |
| IEEE 802.11   | Wireless LAN (WLAN) & Mesh (Wi-Fi certification)               | active                                                |
| IEEE 802.12   | 100BaseVG                                                      | disbanded                                             |
| IEEE 802.13   | Unused <sup>[2]</sup>                                          | Reserved for Fast Ethernet development <sup>[3]</sup> |
| IEEE 802.14   | Cable modems                                                   | disbanded                                             |
| IEEE 802.15   | Wireless PAN                                                   | active                                                |
| IEEE 802.15.1 | Bluetooth certification                                        | active                                                |
| IEEE 802.15.2 | IEEE 802.15 and IEEE 802.11 coexistence                        |                                                       |
| IEEE 802.15.3 | High-Rate wireless PAN (e.g., UWB, etc.)                       |                                                       |
| IEEE 802.15.4 | Low-Rate wireless PAN (e.g., ZigBee, WirelessHART, MiWi, etc.) | active                                                |
| IEEE 802.15.5 | Mesh networking for WPAN                                       |                                                       |

Peter A. Steenkiste, CMU

## 802 Standards – Part 2

|               |                                                 |                      |
|---------------|-------------------------------------------------|----------------------|
| IEEE 802.15.6 | Body area network                               | active               |
| IEEE 802.15.7 | Visible light communications                    |                      |
| IEEE 802.16   | Broadband Wireless Access (WiMAX certification) |                      |
| IEEE 802.16.1 | Local Multipoint Distribution Service           |                      |
| IEEE 802.16.2 | Coexistence wireless access                     |                      |
| IEEE 802.17   | Resilient packet ring                           | hibernating          |
| IEEE 802.18   | Radio Regulatory TAG                            |                      |
| IEEE 802.19   | Coexistence TAG                                 |                      |
| IEEE 802.20   | Mobile Broadband Wireless Access                | hibernating          |
| IEEE 802.21   | Media Independent Handoff                       |                      |
| IEEE 802.22   | Wireless Regional Area Network                  |                      |
| IEEE 802.23   | Emergency Services Working Group                |                      |
| IEEE 802.24   | Smart Grid TAG                                  | New (November, 2012) |
| IEEE 802.25   | Omni-Range Area Network                         |                      |

Peter A. Steenkiste, CMU

17

## Outline

- 802 protocol overview
- Wireless LANs – 802.11
  - » Overview of 802.11
  - » 802.11 MAC, frame format, operations
  - » 802.11 management
  - » 802.11\*
  - » Deployment example
- Personal Area Networks – 802.15

Peter A. Steenkiste, CMU

18

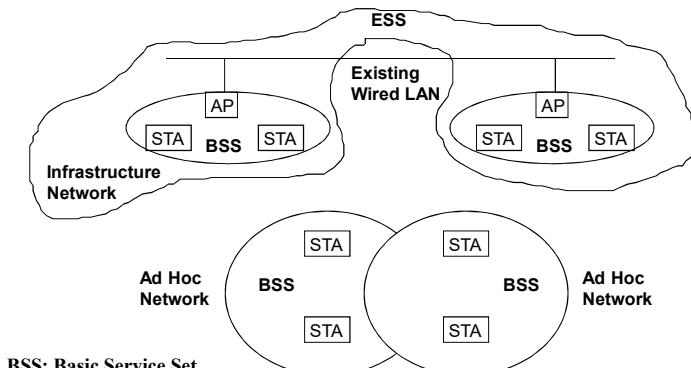
## IEEE 802.11 Overview

- Adopted in 1997 with goal of providing
  - » Access to services in wired networks
  - » High throughput
  - » Highly reliable data delivery
  - » Continuous network connection, e.g. while mobile
- The protocol defines
  - » MAC sublayer
  - » MAC management protocols and services
  - » Several physical (PHY) layers: IR, FHSS, DSSS, OFDM
- Wi-Fi Alliance is industry group that certifies interoperability of 802.11 products

Peter A. Steenkiste, CMU

19

## Infrastructure and Ad Hoc Mode


- Infrastructure mode: stations communicate with one or more access points which are connected to the wired infrastructure
  - » What is deployed in practice
- Two modes of operation:
  - » Distributed Control Functions - DCF
  - » Point Control Functions – PCF
  - » PCF is rarely used - inefficient
- Alternative is “ad hoc” mode: multi-hop, assumes no infrastructure
  - » Rarely used, e.g. military
  - » Hot research topic!



Peter A. Steenkiste, CMU

20

## 802.11 Architecture



Peter A. Steenkiste, CMU

21

## Terminology for DCF

- **Stations and access points**
- **BSS - Basic Service Set**
  - » One access point that provides access to wired infrastructure
  - » Infrastructure BSS
- **ESS - Extended Service Set**
  - » A set of infrastructure BSSs that work together
  - » APs are connected to the same infrastructure
  - » Tracking of mobility
- **DS – Distribution System**
  - » AP communicates with each other
  - » Thin layer between LLC and MAC sublayers

Peter A. Steenkiste, CMU

22

## Outline

- 802 protocol overview
- Wireless LANs – 802.11
  - » Overview of 802.11
  - » 802.11 MAC, frame format, operations
  - » 802.11 management
  - » 802.11\*
  - » Deployment example
- Personal Area Networks – 802.15

Peter A. Steenkiste, CMU

23

## How Does WiFi Differ from Wired Ethernet?

- **Signal strength drops off quickly with distance**
  - » Path loss exponent is highly dependent on context
- **Should expect higher error rates**
  - » Solutions?
- **Makes it impossible to detect collisions**
  - » Difference between signal strength at sender and receiver is too big
  - » Solutions?
- **Senders cannot reliably detect competing senders resulting in hidden terminal problems**
  - » Solutions?

Peter A. Steenkiste, CMU

24

## Features of 802.11 MAC protocol

- Supports MAC functionality
  - » Addressing
  - » CSMA/CA
- Error detection (FCS)
- Error correction (ACK frame)
- Flow control: stop-and-wait
- Fragmentation (More Frag)
- Collision Avoidance (RTS-CTS)

Peter A. Steenkiste, CMU

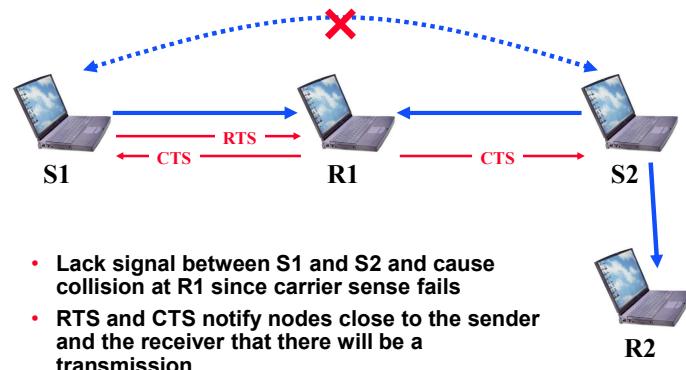
25

## Carrier Sense Multiple Access

- Before transmitting a packet, sense carrier
- If it is idle, send
  - » After waiting for one DCF inter frame spacing (DIFS)
- If it is busy, then
  - » Wait for medium to be idle for a DIFS (DCF IFS) period
  - » Go through exponential backoff, then send (non-persistent solution)
  - » Want to avoid that several stations waiting to transmit automatically collide
  - » Cost of a collision is high and medium is expected to be busy
- Wait for ack
  - » If there is one, you are done
  - » If there isn't one, assume there was a collision, retransmit using exponential backoff

Peter A. Steenkiste, CMU

26


## Why Do Collisions Happen

- Near simultaneous transmissions
  - » Period of vulnerability: propagation delay
  - » Similar to ethernet
- Difficult to detect collisions in a radio environment
  - » Fading can cause signals from neighboring nodes to be weak, so carrier sense fails
- Hidden node situation: two transmitters cannot hear each other causing collisions
- Solution has two parts:
  - » Collision Avoidance – CSMA/CA
  - » Virtual carrier sense

Peter A. Steenkiste, CMU

27

## Collision Avoidance RTS/CTS Protocol



Peter A. Steenkiste, CMU

28

## Request-to-Send and Clear-to-Send

- Before sending a packet, first send a station first sends a RTS
  - » Collisions can still occur but chance is relatively small since RTS packets are short
  - » Headers contain information on transmission length
- The receiving station responds with a CTS
  - » Tells the sender that it is ok to proceed
- RTS and CTS use shorter IFS to guarantee access (more later)
  - » Effectively priority over data packets
- First introduced in the Multiple Access with Collision Avoidance (MACA) protocol
  - » Fixed problems observed in Aloha

Peter A. Steenkiste, CMU

29

## Virtual Carrier Sense

- The header of RTS and CTS header contains a Duration ID that indicates the duration of the entire transmission (data + control packets)
  - » The same information is also stored in all data packet headers
    - redundant to increase chances of receiving it
- Stations that hear the header of any packet “remember” how long the medium will be busy
  - » Based on a Duration ID in the packet headers
  - » Note that they may not be able to hear the entire packet!
- Virtual Carrier Sensing: stations maintain Network Allocation Vector (NAV)
  - » Time that must elapse before a station can use channel
  - » The medium is busy even if node cannot sense a signal

Peter A. Steenkiste, CMU

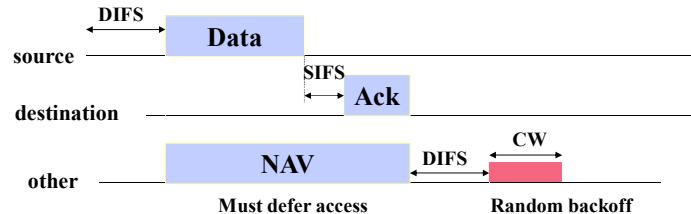
30

## No Collision Detection

- Any received signal is effectively noise during a transmission so it cannot be detected
  - » Received signals are very weak
- In Ethernet all nodes can detect a collision and they abort the transmission right away
  - » Cost of a collision (in lost transmission time) is low
- In wireless all transmission are completed – even transmissions corrupted by a collision
  - » Lack of an ACK signals that the packet was lost
- The cost of collision is high!

Peter A. Steenkiste, CMU

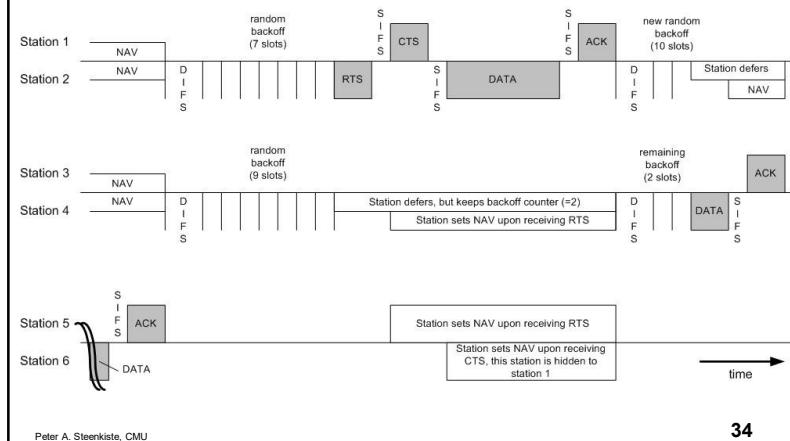
31


## Exponential Backoff

- Force stations to wait for random amount of time to reduce the chance of collision
  - » Backoff period increases exponential after each collision
  - » Similar to Ethernet
- If the medium is sensed it is busy:
  - » Wait for medium to be idle for a DIFS (DCF IFS) period
  - » Pick random number in contention window (CW) = backoff counter
  - » Decrement backoff timer until it reaches 0
    - But freeze counter whenever medium becomes busy
  - » When counter reaches 0, transmit frame
  - » If two stations have their timers reach 0; collision will occur;
- After every failed retransmission attempt:
  - » increase the contention window exponentially
  - »  $2^i - 1$  starting with  $CW_{min}$  up to  $CW_{max}$  e.g., 7, 15, 31, ...

Peter A. Steenkiste, CMU

32


## DCF mode transmission without RTS/CTS



Peter A. Steenkiste, CMU

33

## Use of RTS/CTS



34

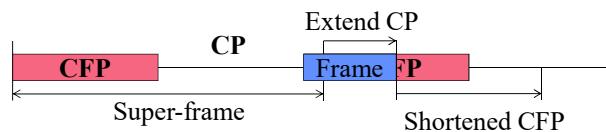
## Some More MAC Features

- Use of RTS/CTS is controlled by an RTS threshold
  - » RTS/CTS is only used for data packets longer than the RTS threshold
  - » Pointless to use RTS/CTS for short data packets – high overhead!
- Number of retries is limited by a Retry Counter
  - » Short retry counter: for packets shorter than RTS threshold
  - » Long retry counter: for packets longer than RTS threshold
- Packets can be fragmented.
  - » Each fragment is acknowledged
  - » But all fragments are sent in one sequence
  - » Sending shorter frames can reduce impact of bit errors
  - » Lifetime timer: maximum time for all fragments of frame

Peter A. Steenkiste, CMU

35

## Summary 802.11 MAC Protocol Features


- Supports MAC functionality
  - » IEEE addressing
  - » CSMA/CA
- Error detection (checksum)
- Error correction (ACK frame)
- Flow control: stop-and-wait
- Fragmentation (More Frag)
- Collision Avoidance (RTS-CTS)

Peter A. Steenkiste, CMU

36

## Now What about PCF?

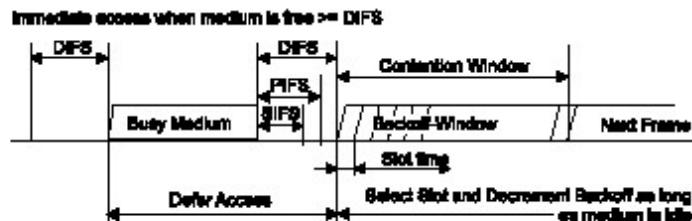
- IEEE 802.11 combines random access with a “taking turns” protocol
  - » DCF (Distributed Coordination Mode) – Random access
    - CP (Contention Period): CSMA/CA is used
  - » PCF (Point Coordination Mode) – Polling
    - CFP (Contention-Free Period): AP polls hosts



Peter A. Steenkiste, CMU

37

## Playing Games with Inter Frame Spacing


- Assigning different IFS effectively provides a mechanism for prioritizing packets and events
- SIFS - short IFS: for high priority transmissions
- PIFS – PCF IFS: used by PCF during contention-free period
- DIFS – DCF IFS: used for contention-based services
- EIFS – extended IFS: used when there is an error



Peter A. Steenkiste, CMU

38

## Effect of Different IFS



- PCF transmissions effectively get priority over DCF transmission because they use a shorter IFS

Peter A. Steenkiste, CMU

39

## PCF Operation Overview

- PC – Point Coordinator
  - » Uses polling – eliminates contention
  - » Polling list ensures access to all registered stations
  - » Over DCF but uses a PIFS instead of a DIFS – gets priority
- CFP – Contention Free Period
  - » Alternate with DCF
- Periodic Beacon – contains length of CFP
  - » NAV prevents transmission during CFP
  - » CF-End – resets NAV
- CF-Poll – Contention Free Poll by PC
  - » Stations can return data and indicate whether they have more data
  - » CF-ACK and CF-POLL can be piggybacked on data

Peter A. Steenkiste, CMU

40

## And What about Ad Hoc?

- **Infrastructure mode:** access points relay packets
  - » Based on an Infrastructure BSS
  - » APs are connected through a distribution system
- **Ad-hoc mode: no fixed network infrastructure**
  - » Based on an Independent BSS
  - » A wireless endpoint sends and all nodes within range can pick up signal
  - » Each packet carries destination and source address
  - » Effectively need to implement a “network layer”
    - How do know who is in the network?
    - Routing?
    - Security?
  - » Research area – discussed later in the course

Peter A. Steenkiste, CMU

41

## Summary WiFi

- Supports infrastructure and ad hoc mode
- Uses ACKs to detect collisions
- Uses RTS-CTS to avoid hidden terminals
  - » Adds virtual carrier sense to physical carrier sense
  - » Almost never used because of overhead
- **Supports a point control function in addition to distributed control**
  - » Supports scheduled access in addition to random access
  - » Almost never used because of overhead

Peter A. Steenkiste, CMU

42