

18-452/18-750
Wireless Networks and Applications
Lecture 3: Physical Layer
Capacity and Signal Propagation

Peter Steenkiste
Carnegie Mellon University

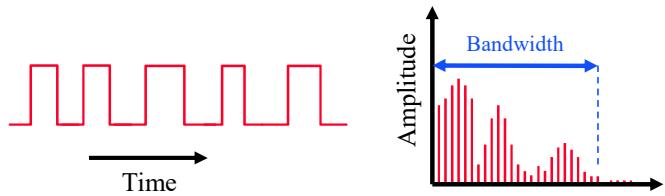
Spring 2020

<http://www.cs.cmu.edu/~prs/wirelessS20/>

Peter A. Steenkiste

1

Outline


- RF introduction
- Modulation and multiplexing - review
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

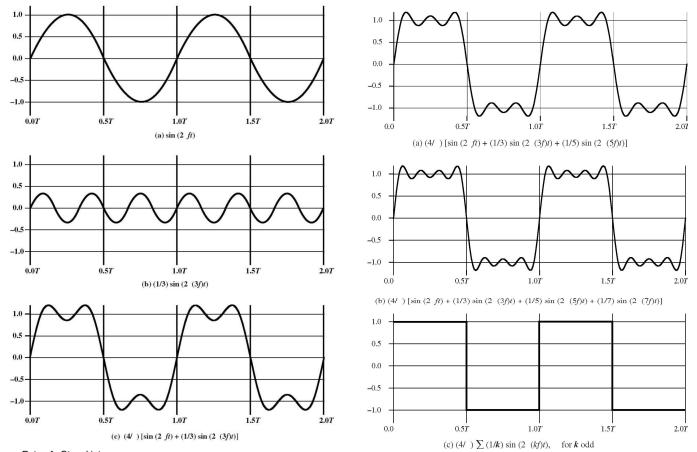
2

The Frequency Domain

- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
 - Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
 - What frequencies are present and what is their strength (energy)
- We can translate between the two formats using a fourier transform

3

Peter A. Steenkiste


Relationship between Data Rate and Bandwidth

- The greater the (spectral) bandwidth, the higher the information-carrying capacity of the signal
- Intuition: if a signal can change faster, it can be modulated in a more detailed way and can carry more data
 - » E.g. more bits or higher fidelity music
- Extreme example: a signal that only changes once a second will not be able to carry a lot of bits or convey a very interesting TV channel
- Can we make this more precise?

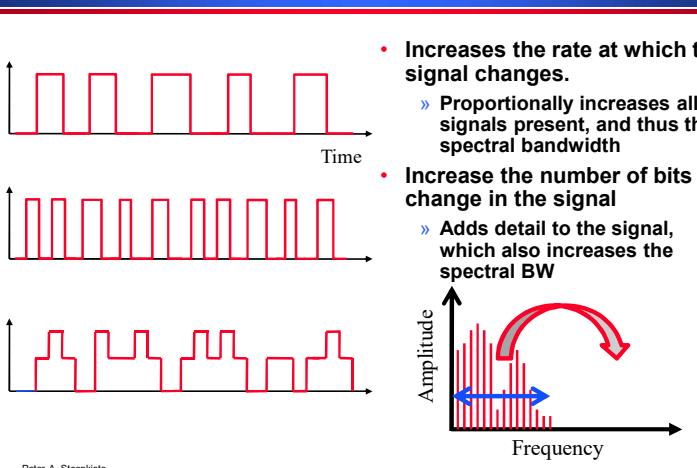
Peter A. Steenkiste

4

Adding Detail to the Signal

Peter A. Steenkiste

5

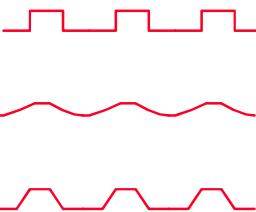

Some Intuition

- Smooth time domain signal has narrow frequency range
 - » Sine wave \rightarrow pulse at exactly one frequency
- Adding detail widens frequency range
 - » Need to add additional frequencies to represent details
 - » Very sharp edges are especially bad (many frequencies)
- The opposite is also true
 - » Pulse in time domain has very wide spectrum
 - » Same is true for random noise ("noise floor")
- Implication: modulation has a big impact on how much (scarce) spectrum is used

Peter A. Steenkiste

6

Increasing the Bit Rate



Peter A. Steenkiste

7

So Why Don't we Always Send a Very High Bandwidth Signal?

- Channels have a limit on the type of signals they can carry effectively
- Wires only transmit signals in certain frequency ranges
 - » Stronger attenuation and distortion outside of range
- Wireless radios are only allowed to use certain parts of the spectrum
 - » The radios are optimized for that frequency band
- Distortion makes it hard for receiver to extract the information
 - » A major challenge in wireless

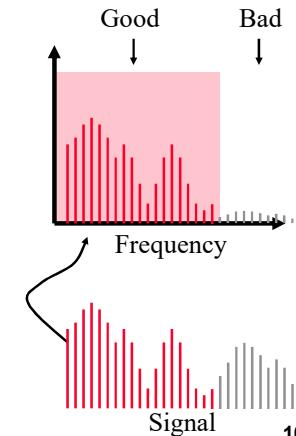
Peter A. Steenkiste

8

Propagation Degrades RF Signals

- Attenuation in free space: signal gets weaker as it travels over longer distances
 - » Radio signal spreads out – free space loss
 - » Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 - » Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 - » Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 - » Node moves $\frac{1}{2}$ wavelength -> big change in signal strength

Peter A. Steenkiste


9

Transmission Channel Considerations

- Example: grey frequencies get attenuated significantly
- For wired networks, channel limits are an inherent property of the wires
 - Different types of fiber and copper have different properties
 - Capacity also depends on the radio and modulation used
 - Improves over time, even for same wire
- For wireless networks, limits are often imposed by policy
 - Can only use certain part of the spectrum
 - Radio uses filters to comply

Peter A. Steenkiste

10

Outline

- RF introduction
- Modulation and multiplexing - review
 - » Analog versus digital signals
 - » Forms of modulation
 - » Baseband versus carrier modulation
 - » Multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

11

Channel Capacity

- Data rate - rate at which data can be communicated (bps)
 - » Channel Capacity – the maximum rate at which data can be transmitted over a given channel, under given conditions
- Bandwidth - the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise - average level of noise over the communications path
- Error rate - rate at which errors occur
 - » Error = transmit 1 and receive 0; transmit 0 and receive 1

Peter A. Steenkiste

12

The Nyquist Limit

- A noiseless channel of bandwidth B can at most transmit a binary signal at a capacity $2B$
 - » E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second
 - » Assumes binary amplitude encoding
- For M levels: $C = 2B \log_2 M$
 - » M discrete signal levels
- More aggressive encoding can increase the actual channel bandwidth
 - » Example: modems
- Factors such as noise can reduce the capacity

Peter A. Steenkiste

13

Decibels

- Decibels: ratio between signal powers
$$\text{decibels (db)} = 10 \log_{10}(P_1 / P_2)$$
- Is used in many contexts:
 - » The loss of a wireless channel, gain of an amplifier, ...
- Note that dB is a relative value.
- Absolute value requires a reference point.
 - » Decibel-Watt – power relative to 1W
 - » Decibel-milliwatt – power relative to 1 milliwatt (dbm)
- Some example values (WiFi):
 - » Noise floor -90 dbm
 - » Received signal strength: -70 to -65 dbm
 - » Transmit power (2.4 GHz): 20 dbm

Peter A. Steenkiste

14

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that is present at a particular point in the transmission
 - » Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N)
$$(SNR)_{\text{dB}} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$
- A high SNR means a high-quality signal
- Low SNR means that it may be hard to “extract” the signal from the noise
- SNR sets upper bound on achievable data rate

Peter A. Steenkiste

15

Shannon Capacity Formula

- Equation: $C = B \log_2(1 + \text{SNR})$
- Represents error free capacity
 - » It is possible to design a suitable signal code that will achieve error free transmission (you design the code)
- Result is based on many assumptions
 - » Formula assumes white noise (thermal noise)
 - » Impulse noise is not accounted for
 - » Various types of distortion are also not accounted for
- We can also use Shannon's theorem to calculate the noise that can be tolerated to achieve a certain rate through a channel

Peter A. Steenkiste

16

Shannon Discussion

- Bandwidth **B** and noise **N** are not independent
 - » N is the noise in the signal band, so it increases with the bandwidth
- Shannon does not provide the coding that will meet the limit, but the formula is still useful
- The performance gap between Shannon and a practical system can be roughly accounted for by a gap parameter
 - » Still subject to same assumptions
 - » Gap depends on error rate, coding, modulation, etc.

$$C = B \log_2(1 + \text{SNR}/\Gamma)$$

Peter A. Steenkiste

17

Example of Nyquist and Shannon Formulations

- Spectrum of a channel between 3 MHz and 4 MHz ; $\text{SNR}_{\text{dB}} = 24 \text{ dB}$

$$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$

$$\text{SNR}_{\text{dB}} = 24 \text{ dB} = 10 \log_{10}(\text{SNR})$$

$$\text{SNR} = 251$$

- Using Shannon's formula

$$C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8 \text{ Mbps}$$

Peter A. Steenkiste

18

Example of Nyquist and Shannon Formulations

- How many signaling levels are required using Nyquist?

$$C = 2B \log_2 M$$

$$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$

$$4 = \log_2 M$$

$$M = 16$$

- Look out for: dB versus linear values, \log_2 versus \log_{10}

Peter A. Steenkiste

19

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
 - » How do antennas work
 - » Propagation properties of RF signals
 - » Modeling the channel
- Equalization and diversity
- Modulation and coding
- Spectrum access

Peter A. Steenkiste

20

What is an Antenna?

- Conductor that carries an electrical signal and radiates an RF signal.
 - » The RF signal “is a copy of” the electrical signal in the conductor
- Also the inverse process: RF signals are “captured” by the antenna and create an electrical signal in the conductor.
 - » This signal can be interpreted (i.e. decoded)
- Efficiency of the antenna depends on its size, relative to the wavelength of the signal.
 - » E.g. quarter of a wavelength

Peter A. Steenkiste

21

Types of Antennas

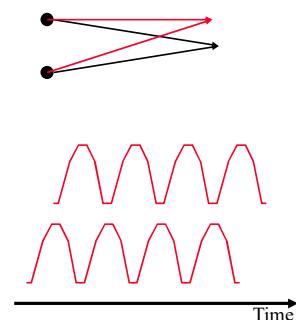
- Abstract view: antenna is a point source that radiates with the same power level in all directions – omni-directional or isotropic.
 - » Not common – shape of the conductor tends to create a specific radiation pattern
 - » Note that isotropic antennas are not very efficient!!
 - Unless you have a very large number of receivers
- Common shape is a straight conductor.
 - » Creates a “disk” pattern, e.g. dipole
- Shaped antennas can be used to direct the energy in a certain direction.
 - » Well-known case: a parabolic antenna
 - » Pringles boxes are cheaper

Peter A. Steenkiste


22

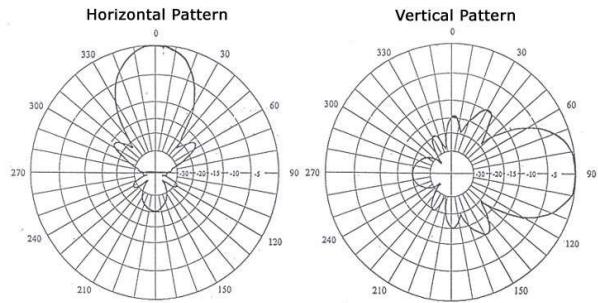
Antenna Types: Dipoles

- Simplest: half-wave dipole and quarter wave vertical antennas
 - » Very simple and very common
 - » Elements are quarter wavelength of frequency that is transmitted most efficiently
 - » Donut shape
- May other designs


Peter A. Steenkiste

23

Multi-element Antennas


- Multi-element antennas have multiple, independently controlled conductors.
 - » Signal is the sum of the individual signals transmitted (or received) by each element
- Can electronically direct the RF signal by sending different versions of the signal to each element.
 - » For example, change the phase in two-element array.
- Covers a lot of different types of antennas.
 - » Number of elements, relative position of the elements, control over the signals, ...

Peter A. Steenkiste

24

Directional Antenna Properties

- **dBi: antenna gain in dB relative to an isotropic antenna with the same power.**
 - » Example: an 8 dBi Yagi antenna has a gain of a factor of 6.3 (8 dB = $10 \log 6.3$)

Peter A. Steenkiste

25

Examples 2.4 GHz

26

Summary

- The maximum capacity of a channel depends on the **SINR**
 - » How close you get to this maximum depends on the sophistication of the radios
 - » Distortion of the signal also plays a role – next lecture
- **Antennas are responsible for transmitting and receiving the EM signals**
 - » The “ideal” isotropic antenna is a point source that radiates energy in a sphere
 - » Practical antennas are directional in nature, as a result of the antenna shape or the use of multi-element antennas
 - » The antenna gain is expressed in **dBi**

Peter A. Steenkiste

27

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- **Antennas and signal propagation**
 - » How do antennas work
 - » Propagation properties of RF signals
 - » Modeling the channel
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

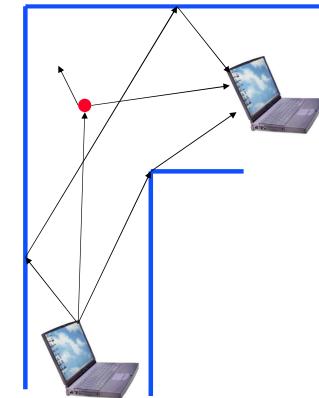
28

Bad News
Good News
Story

Propagation Modes

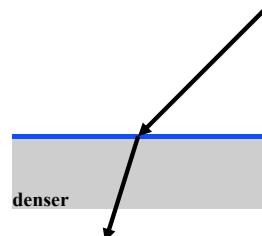
- Line-of-sight (LOS) propagation.
 - » Most common form of propagation
 - » Happens above ~ 30 MHz
 - » Subject to many forms of degradation (next set of slides)
- Obstacles can redirect the signal and create multiple copies that all reach the receiver
 - » Creates multi-path effects
- Refraction changes direction of the signal due to changes in density
 - » E.g., changes in air temperature, humidity, ...
 - » If the change in density is gradual, the signal bends!

Peter A. Steenkiste


29

Impact of Obstacles

- Besides line of sight, signal can reach receiver in three “indirect” ways.
- Reflection: signal is reflected from a large object.
- Diffraction: signal is scattered by the edge of a large object – “bends”.
- Scattering: signal is scattered by an object that is small relative to the wavelength.

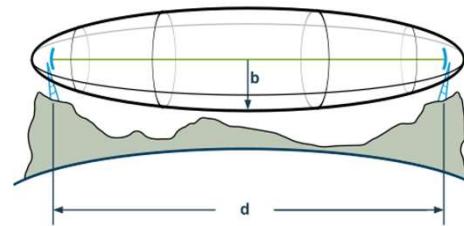

Peter A. Steenkiste

30

Refraction

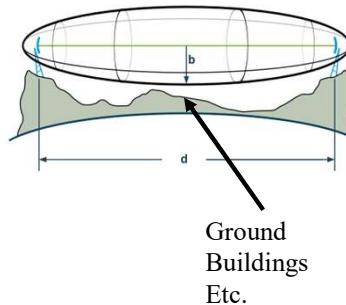
- Speed of EM signals depends on the density of the material
 - » Vacuum: 3×10^8 m/sec
 - » Denser: slower
- Density is captured by refractive index
- Explains “bending” of signals in some environments
 - » E.g. sky wave propagation: Signal “bounces” off the ionosphere back to earth – can go very long distances
 - » But also local, small scale differences in the air density, temperature, etc.

Peter A. Steenkiste


31

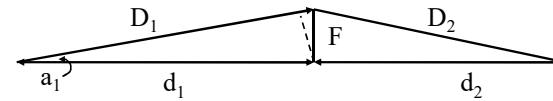
Fresnel Zones

- Sequence of ellipsoids centered around the LOS path between a transmitter and receiver
- The zones identify areas in which obstacles will have different impact on the signal propagation
 - » Capture the constructive and destructive interference due to multipath caused by obstacles


Peter A. Steenkiste

32

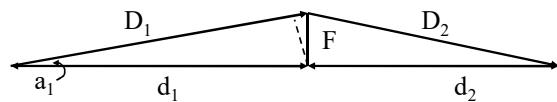
Fresnel Zones


- Zones create different phase differences between paths
 - » First zone: 0-90
 - » Second zone: 90-270
 - » Third zone: 270-450
 - » Etc.
- Odd zones create constructive interference, even zones destructive
- Also want clear path in most of the first Fresnel zone, e.g. 60%
- The radius F_n of the n th Fresnel zone depends on the distances d_1 and d_2 to the transmitter and receiver and the wavelength

33

Peter A. Steenkiste

Sketch of Calculation: Difference in Path Length



- Difference in path length (a_1 is small)
 - » $D_1 - d_1 \approx F * \sin a_1$
- But for small a_1 we also have
 - » $\sin a_1 = \tan a_1 = F / d_1$
- So $D_1 - d_1 = F^2 / d_1$

34

Peter A. Steenkiste

Sketch of Calculation Fresnel Radios

- Given $D_1 - d_1 = F^2 / d_1$
- and $(D_1 + D_2) - (d_1 + d_2) = \lambda * n$
- $(D_1 - d_1) + (D_2 - d_2) = F^2 / d_1 + F^2 / d_2$
- or

$$F_n = \sqrt{\frac{n\lambda d_1 d_2}{d_1 + d_2}}$$

35

Peter A. Steenkiste